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Abstract

Mobile healthcare system integrating wearable sensing and wireless communication technologies continu-

ously monitors the users’ health status. However, the mHealth system raises a severe privacy concern as the data

it collects are private information, such as heart rate and blood pressure. In this paper, we propose an efficient

and privacy-preserving mHealth data release approach for the statistic data with the objectives to preserve the

unique patterns in the original data bins. The proposed approach adopts the bucket partition algorithm and the

differential privacy algorithm for privacy preservation. A customized bucket partition algorithm is proposed to

combine the database value bins into buckets according to certain conditions and parameters such that the patterns

are preserved. The differential privacy algorithm is then applied to the buckets to prevent an attacker from being

able to identify the small changes at the original data. We prove that the proposed approach achieves differential

privacy. We also show the accuracy of the proposed approach through extensive simulations on real data. Real

experiments show that our partitioning algorithm outperforms the state-of-the-art in preserving the patterns of

the original data by a factor of 1.75.

I. INTRODUCTION

The mobile healthcare (mHealth) system with emerging wearable devices and wireless commu-

nications has removed geographical and distance related barriers of healthcare and has made the
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continuously-collected health data available anytime and anywhere [1]–[4]. However, the mHealth

system raises a severe privacy concern to its users because the mHealth data usually contain private

information [5], such as heart rate and blood pressure, at a highly fine-grained level, which may be

maliciously used to derive patients’ sensitive information, such as daily activities and health conditions.

Keeping privacy of the data is the most important challenge of the emerging mHealth system [3], [6].

Differential Privacy (DP) [7] has been studied to help release data with privacy protection and accuracy

assurance. DP can simply be explained as the mechanism of randomizing the results of the given query

by adding some noise, commonly generated through Laplace distribution, to the original results based

on a privacy budget ε to preserve the privacy of the individual records in the database. DP can guarantee

mathematically-provable and measurable privacy preservation because of its precise definition and proof

of privacy protection [8]. DP has been applied to release the data of the histogram in Fig. 1 (left) [9],

[10]. With DP, it can be guaranteed that an attacker cannot distinguish the original histogram and the

histogram with any bin plus 1 or minus 1. However, the aggregate mHealth data are much different from

histogram bins from three perspectives (shown in Fig. 1): i) The bin values usually represent real values

but not counts; ii) The bins can be generated at a high frequency, such as heart rate being continuously

monitored by wearable devices at a rate of one per minute; and iii) The bins may be interpreted with

special diagnosis needs and some particular pattern consistency is required. All these distinctive features

make the existing DP mechanisms [10], [11] inefficient when applied to the mHealth data.
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Fig. 1. Histogram and mHealth data bins

In this paper, we focus on an efficient and privacy-preserving data release approach specially designed

for the mHealth data. We observe that the pattern consistency is particularly important for the mHealth

data analysis. If the pattern of the original data is removed for the privacy concern, we consider such

privacy-preserving approach is unacceptable in the mHealth data analysis. Here, we particularly study

two pattern consistency requirements: i) if the difference of the values of two bins are larger than a

threshold, the relationship of the outputs corresponding to the two bins must be preserved; and ii) if

the difference of the values of two adjacent bins are larger than a threshold, the relationship of the
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outputs must be preserved. Naturally, the difference threshold for the adjacent bins is smaller than the

first one to distinguish between rapid and slight changes. The motivation behind these requirements is

to enable healthcare providers to observe the patients’ health conditions from the preserved patterns.

Specifically, we propose a novel differential privacy mechanism to release the aggregate query results

of the mHealth data as shown in Fig. 1 (right). To preserve the defined pattern, the DP mechanism

consists of two stages: the first stage is the private partitioning of the database bins into DP-compliant

buckets, and the second stage is the noise addition to the average value in each bucket for data release

to achieve DP. Specifically, the contributions of this paper can be summarized as follows:

• First, we study the patterns occurring in the mHealth data and observe that there are two dis-

tinguishable patterns of “rapid change” and “slight change” in these data, which the current privacy

preserving techniques are unable to distinguish and preserve them in the final result. The slight change

is referred to the minor changes that happen over the time, while the rapid changes happen between

two adjacent data bins.

• Second, we propose an efficient and privacy-preserving mHealth data release mechanism. A new

pattern-preserving partitioning algorithm is developed to preserve the rapid changes from the slight

changes in the released data.

• Third, we prove that the proposed mechanism achieves ε−differential privacy. We further obtain

the accuracy analysis results through an extensive simulations using real data set. The results show that

our algorithm achieves pattern consistency while other existing mechanisms cannot.

II. PRELIMINARIES

A. Histogram and privacy

Histograms, are commonly used to aggregate information to represent statistical data, as shown in

Fig. 1 (left). The statistical data usually are considered to be privacy-preserving because the attacker

is unable to derive the information about a single data record. However, if the database allows the

attacker to run multiple queries on histograms without any constraints, the attacker is able to find out a

newly-added or deleted data record by simply running the same query before and after the operation.

For example, in Fig. 1 (left), the attacker queries the number of patients for all the age ranges of n and

(n+ 1) consecutive days. Then, the attacker is able to derive the age of a patient admitted on (n+ 1)-th

day, which is not intended to be disclosed.
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B. Differential privacy

Differential privacy (DP) mechanisms are recently proposed to address the above privacy problem.

The idea is to tolerate a small change in the database and prevent the attacker from being able to tell

the change. Here we detail the DP definitions.

DP places a bound (controlled by privacy budget ε) on the difference in the probability of algorithm

outputs for any two neighboring databases. For any given database instance I , let nbrs(I) denote the

set of neighboring databases which differ from I in at most one record; i.e., if I ′ ∈ nbrs(I), then

|(I − I ′) ∪ (I ′ − I)| = 1.

Definition 1. A randomized algorithm A is ε−Differentially Private if for all instances I , any I ′ ∈

nbrs(I), and any subset of outputs S ⊆ Range(A), the following holds:

Pr[A(I) ∈ S] ≤ exp(ε)× Pr[A(I ′) ∈ S]

Definition 2 (Sensitivity of a query). Given a sequence of counting queries Q, the sensitivity of Q,

denoted as ∆Q, is:

∆Q = max||Q(I)−Q(I ′)||1

where I ′ ∈ nbrs(I).

Laplace mechanism: We use Lap(b) to denote the Laplace probability distribution with mean 0 and

scale b. The Laplace mechanism is commonly used to achieves DP by adding Laplace noise to a query

output.

Definition 3. Let Q be a query sequence of length d and Z be a d-length vector of random variables

where Zi:Lap(∆Qi/ε). The Laplace mechanism Q̃ is defined as:

Q̃(I) = Q(I) + Z

The randomized algorithm Q̃ is ε-differentially private.

Differential private algorithm has two properties.

• Sequential composition: If there are n independent algorithms A1, ...,An, whose privacy budgets are

ε1, ..., εn respectively, any function K of them: K(A1, ...,An) is
∑n

i=1 εi-differentially private.

• Parallel composition: If the previous mechanisms are computed on disjoint subsets of the private

dataset then the function K would be max{εi}-differentially private.
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III. PROPOSED SCHEME

In this section, we introduce the proposed privacy-preserving data release scheme.

A. Scheme overview

The overview of our scheme is shown in Fig. 2. Consider a scenario where the user has a wearable

watch to monitor her health data continuously. The watch uploads the data to the database through

smartphones and wireless communications. The database is always updated with the latest health data.

A querier can send query to the database and obtain the statistic information about the user. However,

the responses should not disclose any single data record to the querier. There are four steps for the

query process.

Fig. 2. System Model

Step 1: Query generation: querier sends the query sequence Q to the database. The querier in this

case could be the personal healthcare provider of the user or any other party (e.g. doctor, hospital, etc.)

who needs to monitor the health conditions of the user. The sequence of queries can be average heart

rate of the users for every 10 minute of her daily life over a week or month. This query can help the

doctor to monitor the general pattern of changes in her patient’s heart rate on a very fine-grained basis.
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Step 2: Aggregate query generation: based on the queries, the database records would be aggregated

into data bins. For instance the database may contain user’s heart rate for each minute but the querier

(i.e. doctor) may only be interested in monitoring the information on a 5 minute basis. Thus the data bins

generated by the database aggregates information of 5 records into a single bin.

Step 3: DP-compliant partitioning: the bins resulted from previous step will be then partitioned into a set

of buckets based on the values of each bin, structure of the data and user defined threshold values indicating

the level of granularity required by the querier. The purpose of this partitioning is to achieve more efficiency

over answering the queries and also it is proven that coarser granularity achieved by a proper bucketing will

increase the accuracy of the randomization [10]. This process needs to use randomization which complies

with differential privacy requirements because the structure of the buckets may reveal information and due

to small changes in the database, private information in the database can be inferred. Also, because of

general nature of aggregation and randomization, the patterns in the original data will usually be removed

during this process. Our partitioning algorithm is proven to be differentially private and preserve the patterns

of the original data.

Step 4: Randomizing Algorithm: the query results of buckets from previous step will be randomized by

adding noise from Laplace distribution to preserve the privacy of the data. This step simply follows the

data-independent Laplace mechanism which adds noise to the results regardless of the inputs. Then the

results would be sent to the querier.

The first two steps are widely studied and the process suggested for them is fairly straightforward and

standard, thus we skip further details about them and focus on the last two steps especially the third step

as the main goal of this work.

B. DP-Compliant Partitioning

The partitioning of the data bins into the buckets has to be complying with differential privacy require-

ments because it has to be guaranteed that the bucketing is probabilistically the same for two neighboring

databases, in other words, adding or removing a record from the database should be tolerated through a

random variable. The process of partitioning itself follows a simple triple thresholded scheme:

1) Algorithm setup and initialization: The variable declarations and initializations should be done before

the start of the algorithm process itself. The Min,Max are non-negative numbers used to hold the values of

maximum and minimum of bins in each bucket. Integers i, j, size are used to hold the indexes of current bin,

current bucket and size of current bucket respectively. Also current is used to hold the value of previous
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bin (i.e. xi−1). Three following threshold parameters are learned from public accessible information and

are set based on user and querier’s setup:

• TD: this value bound the maximum possible difference in maximum and minimum values of a single

bucket to insure the uniformity of each bucket. (i.e. the bin values can dramatically change if this

threshold is too large.)

• TL: the maximum possible length of buckets is bounded by TL in order to evade creating over-sized

buckets.

• TR: this threshold which is naturally selected to be smaller than TD, ensures that changes in the data

are observed and differentiated from changes which generally will be captured by TD, because the

change in two adjacent bins may actually be smaller than the TD threshold but since it has happened

in a very small period of time, it has important information in it and has to be preserved and reflected

for the doctor. For instance increasing heart rate during daily activities will be distinguished from

changes during workout.

Due to the privacy requirement of the partitioning algorithm, it is necessary to randomize TD and TR

threshold parameters. Thus, using the Laplace mechanism, with privacy budget ε1 we produce random

noises Y, Y ′ which will be added to TD and TR and form T̂D to T̂R respectively.

2) Partitioning process: The partitioning process is done using an efficient and simple process of scanning

from beginning of the data domain to the end (i.e. first to the last bin) with possible single backtracks during

scan. The process starts with placing the first bin into the fist bucket and continues to next bins. In case

uniformity of the bins complies with threshold requirements, the bin would be added to the same bucket,

otherwise a new bucket would be created and process continues with the new bucket. The first condition

to check is the TR threshold because of its smaller value (line 15). In case of this condition not satisfying,

two single bin buckets (each containing one of the unbalanced bins) are required to be created. Based on

the size of the current bucket, three different cases are considerable (lines 16, 27 and 31). Furthermore,

after this condition the two remaining thresholds would be examined (line 38) and based on that condition,

either a new bucket would be created or the current bucket would be enlarged. Creating new bucket is

simply done by pushing the current bucket (i.e. bj) into the result set (i.e. B) and incrementing j followed

by resetting size to 0.

C. Randomizing Algorithm

After partitioning of the data into buckets, adding noise to the average value of bins in each bucket

would simply satisfy DP as long as the added noise is generated with proper setting and noise scale. In
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Algorithm 1 Private Partitioning Algorithm
1: Input: database D, TD, TL, TR, ε1

2: Output: a set of histogram buckets B

3: Initialization: Set size = 0; i = 1; j = 1, B = ∅,

4: T̂D = TD + Y, T̂R = TR + Y ′ . Y, Y ′:Lap(1/ε1)

5: while i ≤ length(D) do

6: current = NULL;

7: if (size == 0) then

8: bj ← xi . Put bin xi into bucket bj

9: Min =Max = current = xi;

10: current = xi; size++; i++; . Goto next bin

11: end if

12: Max = max(Max, xi);Min = min(Min, xi)

13: if (current 6= NULL and |current− xi| > T̂R) then

14: if size == 0 then

15: if (B[−1].length > 1) then

16: last = B.pop(); bj = last.pop()

17: B ← last; B ← bj ; j ++;

18: bj ← xi; B ← bj ;

19: j ++; current = xi; i++; size = 0;

20: else . Last bucket is already single bin

21: bj ← xi;B ← bj

22: j ++; current = xi; i++; size = 0;

23: end if

24: else if size == 1 then

25: B ← bj ; j ++; bj ← xi;B ← bj ; j ++;

26: current = xi; size = 0; i++

27: else if size > 1 then

28: last = bj .pop();B ← bj ; j ++;

29: bj ← last;B ⇐ bj ; j ++;

30: bj ← xi;B ← bj ; j ++;

31: current = xi; size = 0; i++

32: end if . size check

33: end if . T̂R check

34: if ((Max−Min ≤ T̂D) and (size ≤ TL) then

35: bj ← xi . Put bin xi into bucket bj

36: current = xi; size++; i++; . Goto next bin

37: else

38: B ← bj . Done with this bucket

39: current = xi; size = 0; j ++; . Goto next bucket

40: end if

41: end while

42: return B . Set of buckets
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this step we use the Laplace distribution for generating noise. Considering the maximum possible change

in values of bins in neighboring databases is α, since value of each bucket is the average value of its bins

and having buckets with the size = 1 is considerable, the Laplace scale for this step has to be b = α
ε

for

achieving ε−DP.

IV. PROOF OF PRIVACY

This part shows the proof of privacy for Algorithm 1. Let d0, d1 be neighboring databases andA(d0),A(d1)

be the output of the algorithm on these databases; Maxik, and Minik be the maximum and minimum value

of bins in ith bucket bi of dk. Y and Y ′ are Laplace random variables and fy, fy′ are their density function,

therefor T̂D = TD + Y and T̂R = TR + Y ′ are the randomized threshold values. To show that the algorithm

is ε−differentially private, we need to show that result of partitioning of d0 and d1 are probabilistically

equivalent, thus it is sufficient to prove: Pr(A(d0) = B) ≤ eε×Pr(A(d1) = B). The parameters effective

in partitioning results are the threshold values (i.e. TL, T̂D and T̂R), but TL is not a random variable, therefor

only T̂D and T̂R are effective in randomness of the result. Suppose the maximum difference in value of bins

in two neighboring databases is bounded by α. This α can be learned from public accessible data based on

the type of queries and maximum possible values for the under study filed of the record. For each bucket,

we have Maxi −Mini < T̂D and |current − xi| < T̂R. These two inequalities can be generalized to the

whole database:

Pr(A(d0) = B)

Pr(A(d1) = B)
≤ eε ⇔ X = (

∏
bi∈d0 Pr(Maxi0 −Mini0 < T̂D)∏
bi∈d1 Pr(Maxi1 −Mini1 < T̂D)

×
∏
bi∈d0 Pr(|current− xi0| < T̂R)∏
bi∈d1 Pr(|current− xi1| < T̂R)

) ≤ eε

Using the sequential composition property of DP, taking ε = ε1 + ε2, we have:

X = (

∏
bi∈d0 Pr(Maxi0 −Mini0 < T̂D)∏
bi∈d1 Pr(Maxi1 −Mini1 < T̂D)

≤ eε1)

×(
∏
bi∈d0 Pr(|current− xi0| < T̂R)∏
bi∈d1 Pr(|current− xi1| < T̂R)

) ≤ eε2)

Thus if both parts of this equation holds, the algorithm is ε−differentially private. We try to solve these

inequalities (i.e. X1 and X2) in order to find the required Laplace distribution scale for satisfying ε−DP.

Suppose the changed record falls into bucket bi (ith bucket of dk). Altering d0 or d1 are equivalent, thus
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we only consider one case. For the first inequality (i.e. X1), if the changed record is between minimum and

maximum values of the bucket (i.e. Mini0 ≤ xi0 ≤Maxi0), then the Maxi0 and Mini0 will not change and

Pr(Maxi0−Mini0 < T̂D) = 1 ≤ eε1 for every ε1. But if the changed value effects either Maxi0 or Mini0,

we need to find the suitable Laplace scale (b = s/ε1) in order to have this change tolerated. The Maxi0

and Mini0 are changes by α units and to the value of the X1, increasing Mini0 is equivalent to decreasing

Maxi0 and vice versa, thus we only consider change of Maxi0. We take Y :Lap(s/ε1), t = Maxi0−Mini0

and u = t− TD, then we consider two cases of changing Maxi0:
1) If Maxi0 ←Maxi0 + α:

X1 =
Pr(t+ α < T̂D)

Pr(t < T̂D)
=
Pr(Y > u+ α)

Pr(Z > u)
< 1 ≤ eε1

2) If Maxi0 ←Maxi0 − α:

X1 =
Pr(t− α < T̂D)

Pr(t < T̂D)
=
Pr(Y > u− α)
Pr(Z > u)

=

∫ +∞
u−α fy(y)dy∫ +∞
u

fy(y)dy
≤ eε1

We consider following cases in order to solve the above inequality:
• u ≥ α : X1 = eε1/s ≤ eε1 ⇒ ε1/s ≤ ε1 ⇒ 1/s ≤ 1⇒ s ≥ 1

• 0 < u < α :

X1 =
1
2 +

∫ +∞
u−α fy(y)dy∫ +∞

u
fy(y)dy

=
2− eu−αb
e

−u
b

≤ eε1

Taking v = e
u
b , then X1 = 2v − e−αb v2 ≤ eε1 ⇒ s ≥ α

• u ≤ 0 :

X1 =
1
2 +

∫ 0

u−α fy(y)dy

1
2 +

∫ 0

u
fy(y)dy

=
2− eu−αb
2− eub

≤ eε1

⇔ eε1(euε1)
1
s − [e(u−α)ε1 ]

1
s ≤ 2eε1 − 2

Taking s = α, the inequality above holds. Thus for the first part of the equation (i.e. X1), the Laplace

scale b = α
ε1

is sufficient for DP.

For the second part (i.e. X2), we have to make sure the difference between changed record and its next

(and previous) record will be tolerated through T̂R and will not result in changing the buckets. Considering

the differences between values of consecutive bins, increasing the larger value is equivalent to decreasing

the smaller value and vice versa, thus considering only changes in one value (i.e. xi0 ← xi0 + α and

xi0 ← xi0 − α) is sufficient for the proof. We have:

X2 =
Pr(|x(i−1)0 − xi0| < T̂R)

Pr(|x(i−1)1 − xi1| < T̂R)
×
Pr(|x(i+1)0 − xi0| < T̂R)

Pr(|x(i+1)1 − xi1| < T̂R)
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Also, relative change between x(i−1)1 and xi1 is equivalent to change between x(i+1)1 and xi1, thus only

considering one case is sufficient for the proof. Considering the large value in the adjacent bins as Maxi0

and the smaller vales as Minoi through the exact same argument as the argument for previous part, the

proof of privacy for s = α⇒ b = α
ε2

is immediate.

V. EVALUATION

In this section, we evaluate the performance of our newly-designed algorithm. We have conducted real

experiments on captured heart rates from wearable devices attached to a user during two weeks. Heart rate

usually ranges between 50 and 210, and thus we choose α = 160
14

as the sensitivity. Obviously, for a bigger

time period of data collection, the required Laplace scale for achieving same privacy budget gets smaller as

a result of less sensitivity due to aggregation over more data. The experiments are run on a Linux machine

with an Intel Core i7 3.5 GHz processor and 8 GB of DDR3 memory.

A. Pattern preservation evaluation

We compare our algorithm and the state-of-the-art proposed by Li el al. [9] in terms of capturing the

patterns of the original data and reflecting them in the final output. To do so we define pattern preservation

percentage as
detected rapid changes

all rapid changes in data
× 100 Our algorithm uses an additional threshold parameter

TR as maximum difference allowed for two adjacent bins to be combined into one bucket. In case this

threshold is violated, our algorithm divides the two bins into two single-bin buckets in order to emphasis

on this rapid change as opposed to Li’s algorithm which does not capture rapid changes. In our designed

experiment we used TL = 4, TD = 30 and TR = 15 for our algorithm and for Li’s algorithm we used

two settings for their TD to be as small as our TR and also same value as our TD, and have assigned the

same value for their TL as for ours. We tested both algorithms on a set of collected heart rate per minute

data stored for two weeks. Fig. 3 is a sample result of partitioning and randomizing of both algorithms.

The black arrows are rapid changes which are captured by our algorithm. The arrow marked by (1) is an

example of failing Li’s algorithm with TD = 30 in capturing the rapid change and (2) is an example in

which both Li’s algorithms fail in doing so. As shown in Fig. 4 (a) our algorithm does better than Li’s in

preserving the pattern of original data with the same TD threshold. In case of selecting Li’s TD to be as

small as our TR, obviously every rapid change in data is also captured as subset of Max −Min factor

which Li’s algorithm is focused on, thus almost (because of the randomization effect) equal preservation

percent is reasonable in this case.

The very important point is that our algorithm other than detecting the rapid change, using the idea of

creating single bin buckets at the places of rapid change is preserving the change from being smoothed
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out through the averaging in the bucket. Specifically, as shown in Fig. 4, our algorithm outperforms Li’s

(with the same TD values) in percentage of preserved rapid changes with 70.81% compared to 40.1%. As

mentioned Li’s algorithm with TD = 15 is able to perform almost equal to ours (68.36%) but may lose

the found pattern by averaging bin values over their bucket. The values are computed by averaging over

results of 1000 experiments.

9:00 11:00 1:00 3:00
Times of Day (9pm - 4am)

0

20

40

60

80

100

120

140

160
He

ar
t R

at
e 

Av
er

ag
e 

Li's TD=30
Li's TD=15
Ours

(1)

(2)

Fig. 3. Pattern preservation results based on 10 minutes query sequence

B. Error analysis

0

10

20

30

40

50

60

70

80

Ours Li's (TD=30) Li's (TD = 15)

Pattern Preservation Percentile

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Ours Li's (TD=15) Li's (TD=30)

Relative Error After Partitioning 
Step

0

50

100

150

200

250

300

350

Ours Li's (TD=15) Li's (TD=30)

Absolute Error After Partitioning 
Step

Fig. 4. (a) Pattern preservation percentile. (b) & (c) Relative and absolute error comparison comparison

In this subsection we compare our algorithm with Li’s in terms of absolute and relative error values

in two steps and argue that preserving the pattern will result in higher accuracy (less error) because of

the structural benefit gained in our algorithm. The reason is better uniformity between bins in a bucket

which makes the averaging closest to the actual values. Obviously failing in dividing the unbalanced bin

from others will result in higher error in averaging and leads to less accuracy at the end. It is important

to mention that in the later steps of the scheme because of added significant Laplace noise (compared to

error values) drawn from the same scale in both ours and Li’s algorithms, only the errors in partitioning

step are comparable in two algorithms. As shown in Fig. 4 (b, c) our algorithm outperforms Li’s in both

absolute and relative error metrics at partitioning step.
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C. Time complexity

Due to the higher complexity of our algorithm than Li’s, also considering the efficiency of their algorithm

which does the partitioning in only one scan from the beginning to the end of the data (i.e. O(n)), a marginal

increase in time complexity is acceptable as a trade-off for more accurate pattern preservation. Specifically

our algorithm also scans the data only once, thus our algorithm has the same time complexity at Li’s.

The only overhead is in case of the TR threshold violation in which there are several cases considerable

and more computations necessary to handle the case. As average over 1000 experiments, Li’s times for

only partitioning and both steps are 0.734 ms and 1.012 ms and ours does it on 0.763 ms and 1.09 ms

respectively.

VI. RELATED WORKS

Security and privacy in eHealth data has been widely studied in the literature [4]–[6] because of the private

and sensitive nature of the date dealt with. The mechanism of mHealth [1] is a more recent extension to

eHealth for revolutionizing the healthcare systems though mobile communications and has been highly

attracted lately [12] and all privacy concerns raised in eHealth are applicable to mHelath. Our work is

specifically focused on privacy preservation in mHealth data and considers specific requirements of it due

to the sensitive nature of its data. While standard methods of secrecy hide the content of the message, covert

communication in wireless environments [13], [14] and computer networks [15], [16] hides the existence

of the communication.

Differential Privacy [7], [8], [17] is a newly emerged mechanism for private data publication with strong

mathematical proof of privacy preservation. Dwork et al. [8] introduced the Laplace mechanism (LM) for

generating noise, which is commonly used in the literature. LM uses a notion of sensitivity of the query (∆)

for finding the proper Laplace scale (b). In this work we use the same method of sensitivity and Laplace

scale.Private partitioning of histograms under differential privacy has been widely studied. Blum et al. [18]

have introduced a one-dimensional histogram, while Xiao et al. [19] have suggested a multi-dimensional one

using a wavelet-based technique. Xu et al. [11] have classified and compared different existing approaches

for histogram publishing that takes the structure of the bins into account. They have proposed two different

algorithms for publication and have stated that the granularity of the partitioning has impact on accuracy

of the results. A new partitioning algorithm achieving higher accuracy has been introduced in [10] by C.

Li et al. and the performance of their method in partitioning and update is further improved by H. Li et

al. in [9] but neither these works consider capturing the slight and rapid changes patterns in the original

data which is main goal of our work.
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VII. CONCLUSION

In this paper, we proposed a novel private partitioning scheme for mHealth data under DP that preserves

the patterns of the original data and reflects it to the results. We gave strict privacy proof to show this

scheme is differentially private. Also through evaluation in real experiment we showed that the pattern of

the original data is mostly reflected into the final results as opposed to the current state-of-the-art which is

not able to properly detect and preserve the pattern. We showed our algorithm gains more accuracy due to

its benefit from pattern preservation. In our future work, we will explore more characteristics of mHealth

data in order to gain more utility for the querier, and specifically we will focus on different methods for

improving the accuracy of pattern preservation and the results through relative error.
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