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Abstract—Download delay is a crucial performance metric in
distributed storage systems as it greatly impacts user experience.
Recently, plenty of research has pointed out that coding can
reduce delay compared with replication. However, almost all
previous studies only focus on the case in which all of the users
require the same size of files and hence must download all files
of a codeword and ignore the case in which some users only
need some of the files in the codeword. Moreover, they do not
consider the advantage of codes with original data nodes, such
as systematic codes. In this paper, based on a more general and
practical case in which download requests may desire different
sizes of files and hence only some of the files of a codeword in
a systematic (n, k) MDS-coded storage system, we propose the
compound read method, characterize its mean download delay in
low arrival rate scenario and derive upper and lower bounds on
its mean download delay in high arrival rate scenario. We also
compare the delay performance of compound and k-access reads
and propose a scheme C & K to dynamically take advantage of
them according to users’ required size of files to reduce the mean
download delay. In addition, with real service time traces from
Amazon S3, we conduct trace-driven simulations to verify our
theoretical analyses and the effectiveness of the C & K scheme.

Keywords—Systematic code, MDS property, k-access read, com-
pound read, fork-join queues.

I. INTRODUCTION

In massive distributed storage systems, failure is the norm
rather than the exception [1]. To tolerate frequent failures
and provide sufficient reliability, we need to increase storage
redundancy by replication or erasure coding.

A single codeword of an erasure code has n nodes, k
of which are the original data nodes, and the other n − k
are parity nodes. If a code satisfies the maximum-distance-
separable (MDS) property, any k out of the n nodes are
sufficient to reconstruct all data in the k original data nodes. As
illustrated in Fig. 1, a codeword of (9,6) MDS code consists
of 6 data nodes and 3 parity nodes. The code is systematic
since d1 to d6 are in uncoded form.

Delay is a key performance metric for distributed storage
systems and has great impact on user experience, especially for
data retrieval applications. Compared with replication, erasure
codes enjoy a higher degree of fault tolerance and storage
efficiency and recently, there has been a significant interest
in how erasure codes can reduce delay as well.

Till now, previous work has proved that coding can reduce
delay compared with replication and redundant requests can
further improve delay performance since they can make use
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Fig. 1. A codeword of systematic (9,6) MDS code.

of extra resources and abandon unnecessary tasks when the
corresponding request has been met [2]. As illustrated in Fig.
2, based on a fork-join queueing model, a typical work flow
in an (n, k) MDS-coded storage system is given as follows:
when a user request arrives, it is forked into n tasks which are
sent to each of the n nodes and the results of any k out of the
n tasks, constituting a completed request, are sent back to the
user. At the same time, the other n − k unfinished tasks are
abandoned immediately.
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Fig. 2. A typical work flow.

Other than some work that mentioned direct reads [3], [4],
almost all previous studies analyze download delay when a
user is interested in downloading all files in a codeword, i.e.,
each request to the storage system needs to access at least k
storage nodes (k-access read). However, in practical storage
systems such as Windows Azure storage system (WAS), only
when files reach a certain size (e.g., 1 GB), will it be a
candidate for erasure coding [3]. That is, in practice, files
stored in a codeword are usually very large and users’ requests
may only desire part of these files, and this desired part can
be directly read from the systematic part in the codeword.
Therefore, it is significant to analyze the delay performance
when users only request a subset of the erasure coded content,
with a corresponding reduced delay.



In this paper we focus a case where different requests
may desire different sizes of files from a codeword. That is, a
request may only be interested in obtaining the files of d nodes,
where 1 ≤ d ≤ k. For instance, consider when a request only
desires d1 in Fig. 1. A k-access read can meet the requirement
since it gets all the information in the codeword by the MDS
property. But we note that we can also satisfy the requirement
by only sending a task to the d1 node (direct read), possibly
obtaining superior delay performance. Although Kadhe et al.
[5] also considered direct read, they only analyzed the special
case when d = 1 and they focused on availability codes rather
than MDS codes.

Our Contributions. Based on a more general and practical
case in which users may require different sizes of files in
a systematic (n, k) MDS-coded storage system, we propose
the compound read method, characterize its mean download
delay for the low arrival rate scenario and compare it with
that of k-access read. We also propose a scheme C & K which
dynamically takes advantage of compound and k-access reads
according to users’ required number of data nodes, d to reduce
download delay. For the high arrival rate scenario, we present
both upper and lower bounds on the mean download time of
compound read. Finally, with real service time traces from
Amazon S3, we conduct trace-driven simulations and validate
our theoretical analyses and verify the effectiveness of C & K.

II. THEORETICAL ANALYSES

We consider a systematic (n, k) MDS-coded storage sys-
tem and let Ti denote the service time of node i, 1 ≤ i ≤ n.
As with previous work [2], [5], [6], [7], we assume that Ti is
an independent and identically distributed (i.i.d.) exponential
random variable for each node, say Ti ∼ exp(µ).

Similar to [5], we consider two specific cases.

(1) Low arrival rate case, in which the request arrival rate
is so small that there is no overlap between different requests,
i.e., nodes in a codeword will not simultaneously serve tasks
from different requests.

(2) High arrival rate case, in which the request rate is high,
and hence there is a need to queue the requests before they
can be served. In this case, the download requests may overlap,
i.e., nodes in a codeword can simultaneously serve tasks from
different requests.

A. Low Arrival Rate Scenario

When a download request which desires d out of the k
original data nodes arrives, we first analyze the mean download
time for direct read and k-access read.

(1) Direct read

Direct read means that the download request only accesses
the d desired nodes. Denote T (d) as the time required by all the
d nodes to complete their respective tasks. Then T (d) would
be the maximum of d exponential random variables, that is,

T (d) = max
1≤i≤d

Ti. (1)

Lemma 1: For the low arrival rate scenario in a systematic
(n, k) MDS-coded storage system, the mean download time for

d nodes with direct read is given as

E
[
T (d)

]
=

1

µ

d∑
i=1

(
d

i

)
(−1)i+1

i
, (2)

where 1 ≤ d ≤ k.

The proof of Lemma 1 is similar to that of Theorem 1 and
due to the lack of space, we omit it here.

(2) K-access read

In an (n, k) MDS-coded system, any k out of the n nodes
can reconstruct the whole information in a codeword. With k-
access read, when a download request arrives, no matter how
many files it desires from a codeword, it is forked into n tasks
which are sent to each of the n nodes. The request is complete
when any k out of n nodes complete their services. Then, the
download time T (n,k) is given as

T (n,k) = Tk:n, (3)

where Tk:n denotes the kth order statistics out of n i.i.d.
exponential random variables. According to [8], [9], the mean
download time of k-access read is given as

E[T (n,k)] =
1

µ

k−1∑
i=0

1

n− i
. (4)

We note that direct read utilizes the systematic property
while k-access read uses the MDS property. Hence, we will
propose a compound read that can take advantage of both
direct read and k-access read.

(3) Compound read

In a systematic (n, k) MDS-coded storage system, when a
download request which desires d out of the k original data
nodes arrives, it is forked into n tasks which are sent to each
of the n nodes. The request is complete if the d desired data
nodes complete their services or any k out of the remaining
n − d nodes complete their services. Let T (d,n−d,k) be the
random variable that denotes the time required by compound
read, we have

T (d,n−d,k) = min{max
1≤i≤d

Ti, Tk:n−d}. (5)

This allows us to get the following result for the mean
download time.

Theorem 1: For the low arrival rate scenario in a system-
atic (n, k) MDS-coded storage system, the mean download
time for d nodes with compound read is given as

E[T (d,n−d,k)] =
1

µC(n, d)

k−1∑
i=0

C(n, d)− C(i, d)
n− d− i

, (6)

where C(n, d) =
d−1∏
j=0

(n− j), C(i, d) =
d∏
j=1

(i+ j), 1 ≤ d ≤

min(k, n− k) and C(n,d)−C(i,d)
n−d−i is a polynomial.



Proof: The complimentary CDF of T (d,n−d,k) can be
given by

P (T (d,n−d,k) > t)
= P (min{max

1≤i≤d
Ti, Tk:n−d} > t)

= P ({max
1≤i≤d

Ti > t} ∩ {Tk:n−d > t})

(b1)
= P ({max

1≤i≤d
Ti > t})P ({Tk:n−d > t})

= (1− P ({max
1≤i≤d

Ti ≤ t}))(1− P (Tk:n−d ≤ t))

(b2)
= (1− (P (Ti ≤ t))d)(P (Tk:n−d > t))
(b3)
= (1− (1− e−µt)d)

k−1∑
i=0

(
n−d
i

)
(1− e−µt)ie−µt(n−d−i)

=
k−1∑
i=0

(
(
n−d
i

)
(1− e−µt)ie−µt(n−d−i)

−
k−1∑
i=0

(
n−d
i

)
(1− e−µt)d+ie−µt(n−d−i)

= P1(t)− P2(t),

where (b1) follows from the independence of events
{max
1≤i≤d

Ti > t} and {Tk:n−d > t}, (b2) follows from the

independence of the d T ′is. To obtain (b3), we use the standard
expression for the CDF of the kth order statistics of n − d
independent random variables as

P ({Tk:n−d ≤ t}) =
n−d∑
i=k

(
n−d
i

)
[P (Ti ≤ t)]i[P (Ti > t)]n−d−i,

then, we have
P ({Tk:n−d > t}) = 1− P ({Tk:n−d ≤ t})

=
k−1∑
i=0

(
n−d
i

)
[P (Ti ≤ t)]i[P (Ti > t)]n−d−i.

Finally, (b3) also follows from the fact that each Ti ∼ exp(µ).

Then, we can compute the mean download time as follows

E
[
T (d,n−d,k)] =

∫∞
t=0

P (T (d,n−d,k) > t)dt
=

∫∞
t=0

P1(t)dt−
∫∞
t=0

P2(t)dt
= E [T1]− E [T2] .

Then, we can compute E [T1] and E [T2], respectively.

E [T1] =
k−1∑
i=0

(
n−d
i

) ∫∞
t=0

(1− e−µt)ie−µt(n−d−i)dt

(c1)
= 1

µ

k−1∑
i=0

(
n−d
i

) ∫ 1

x=0
xi(1− x)n−d−i−1dx

(c2)
= 1

µ

k−1∑
i=0

(
n−d
i

)
β(i+ 1, n− d− i)

(c3)
= 1

µ

k−1∑
i=0

1
n−d−i ,

where (c1) can be obtained by substituting 1 − e−µt =
x, (c2) follows from the definition of the beta function
β(x, y) =

∫ 1

0
vx−1(1− v)y−1dv. Finally, c(3) is obtained by

using β(x, y) = (x−1)!(y−1)!
(x+y−1)! , where x and y are positive

integers.

Similarly, we can get

E [T2] =
1
µ

(n−d)!
n!

k−1∑
i=0

(i+d)!
i!(n−d−i) .

Accordingly, we have

E
[
T (d,n−d,k)] = E [T1]− E [T2]

= (n−d)!
µn!

k−1∑
i=0

[
n!

(n−d)!(n−d−i) −
(i+d)!

i!(n−d−i)

]
= 1

µ
d−1∏
j=0

(n−j)

k−1∑
i=0

d−1∏
j=0

(n−j)−
d∏

j=1
(i+j)

n−d−i

= 1
µC(n,d)

k−1∑
i=0

C(n,d)−C(i,d)
n−d−i .

In a systematic (n, k) MDS-coded system, there are only k
original data nodes, so d ≤ k. If k > n−d, then the remaining
n− d nodes are insufficient to reconstruct the information of
the whole codeword, therefore, d ≤ n − k. Hence, 1 ≤ d ≤
min(k, n− k).

When n = d+ i,

C(n, d)− C(i, d) = n!
(n−d)! −

(i+d)!
i!

= (i+d)!
i! − (i+d)!

i!
= 0.

Therefore i+d is a root of C(n, d)−C(i, d) and by the Factor
Theorem, C(n,d)−C(i,d)

n−d−i is a polynomial.

Corollary 1: In the conditions of Theorem 1, when
d = 1, E

[
T (1,n−1,k)] = k

µn ; when d = 2,
E
[
T (2,n−2,k)] = k

µn
2n+k+1
2(n−1) ; when d = 3, E

[
T (3,n−3,k)] =

k
µn

6n2+3(k−1)n+2(k+1)(k+2)
6(n−1)(n−2) .

The results of Corollary 1 can be obtained from Theorem
1 and Corollary 1 obtains the same result as [5] for the case
when d = 1. This demonstrates that the result on MDS codes
in [5] is a special case of this paper.

Note that under the same conditions, the mean download
time of direct read is not smaller than that of compound
read since the extra k-access read will help reduce the mean
download time. Next, we will compare the mean download
time for compound read and k-access read.

Corollary 2: For the low arrival rate scenario in a system-
atic (n, k) MDS-coded storage system, the mean download
time for the case of d = 1 with compound read is smaller than
that of k-access read, i.e.,E[T (1,n−1,k)] < E[T (n,k)]; while for
d = k, E[T (k,n−k,k)] ≥ E[T (n,k)].

Proof: We can obtain E[T (n,k)] = 1
µ

k−1∑
i=0

1
n−i by Eq. (4).

Therefore, E
[
T (n,k)

]
> 1

µ

k−1∑
i=0

1
n = k

µn = E
[
T (1,n−1,k)] by

Corollary 1.

For d = k with compound read, the download request
completes when the k data nodes complete their services or
any k out of the remaining n−k nodes complete their services.
While for k-access reads, any k out of all n nodes completing
their services will result in the request completed. Obviously,
E[T (k,n−k,k)] ≥ E[T (n,k)].

Note that, for fixed n and k, as d increases, E
[
T (d,n−d,k)]

will increase while E[T (n,k)] remains the same. Moreover,



Algorithm 1 C & K
1: In a systematic (n, k) MDS-coded storage system, com-

pute d∗ according to Eq. (4) and Theorem 1.
2: When a download request desiring d data nodes arrives,

run C & K().
3: function C & K()
4: if d ≤ d∗ then
5: take compound read
6: else
7: take k-access read
8: end if
9: end function

by Corollary 2, E[T (1,n−1,k)] < E[T (n,k)] ≤ E[T (k,n−k,k)].
Hence, there must be two integers i, i + 1 ∈ [1, k], such that
E[T (i,n−i,k)] ≤ E[T (n,k)] ≤ E[T (i+1,n−i−1,k)]. Unfortunately,
by the results from Eq. (4) and Theorem 1, we cannot obtain
the explicit solution of d from E[T (d,n−d,k)] = E[T (n,k)].
However, given specific n and k, by the results from Eq. (4)
and Theorem 1, we can easily obtain explicit solutions of d for
the equation E[T (d,n−d,k)] = E[T (n,k)]. Consequently, there
must be a number d∗ satisfying the definition as follows.

Definition 1(Integer d∗): For the low arrival rate scenario in
a systematic (n, k) MDS-coded storage system, for any down-
load request for d data nodes, when d ≤ d∗, E[T (d,n−d,k)] <
E[T (n,k)] and when d > d∗, E[T (d,n−d,k)] ≥ E[T (n,k)].

Then, we can propose a scheme to reduce mean download
time by Compound read and K-access read (C & K) as
illustrated in Algorithm 1.

Given specific (n, k), we can easily compute the corre-
sponding d∗ by Eq. (4) and Theorem 1. Due to the lack of
space, in Table I, we only give the values of d∗ for different
n and k, where 2 ≤ n ≤ 16. As an example, for systematic
(14,10) MDS code (used in HDFS-RAID in Facebook [10]),
from Table I, we get its d∗ = 2. With Algorithm 1, when any
download request for d data nodes arrives, if d ≤ 2, we should
take compound read, otherwise we should take k-access read.

B. High Arrival Rate Scenario

As in the low arrival rate scenario, we suppose that the
service time at each node is an i.i.d. exponential random
variable with mean 1

µ . Similar to previous work [2], [5], [11],
we assume that download requests arrive as a Poisson process
with aggregate rate λ. As with existing research [2], [5], it
is widely shared that fork-join queue is an excellent choice
to describe the work flow in a systematic MDS-coded storage
system as illustrated in Fig. 2. However, fork-join (FJ) queue
is difficult to analyze and generally only bounds can be found
for the mean download time [12].

Similar to previous work [2], [5], [9], we also analyze the
upper bound with a more restricted queueing model, split-
merge (SM) system. In an FJ queue, when a node completes
serving a task, it can start serving the task of the next request
immediately. However, in an SM system, only when the current
request is completed, can idle nodes in the codeword begin
to serve the task of the next request. Therefore, due to the
blocking of idle nodes, the mean download time of SM system
is an upper bound of the corresponding FJ system.

TABLE I. DIFFERENT VALUES OF d∗ FOR VARIOUS (n, k).

(n, k) d∗ (n, k) d∗ (n, k) d∗ (n, k) d∗

(2,1) 1 (9,3) 1 (12,6) 1 (14,13) 1
(3,1) 1 (9,4) 1 (12,7) 1 (15,1) 1
(3,2) 1 (9,5) 1 (12,8) 2 (15,2) 1
(4,1) 1 (9,6) 1 (12,9) 2 (15,3) 1
(4,2) 1 (9,7) 2 (12,10) 2 (15,4) 1
(4,3) 1 (9,8) 1 (12,11) 1 (15,5) 1
(5,1) 1 (10,1) 1 (13,1) 1 (15,6) 1
(5,2) 1 (10,2) 1 (13,2) 1 (15,7) 1
(5,3) 1 (10,3) 1 (13,3) 1 (15,8) 1
(5,4) 1 (10,4) 1 (13,4) 1 (15,9) 2
(6,1) 1 (10,5) 1 (13,5) 1 (15,10) 2
(6,2) 1 (10,6) 1 (13,6) 1 (15,11) 2
(6,3) 1 (10,7) 2 (13,7) 1 (15,12) 2
(6,4) 1 (10,8) 2 (13,8) 1 (15,13) 2
(6,5) 1 (10,9) 1 (13,9) 2 (15,14) 1
(7,1) 1 (11,1) 1 (13,10) 2 (16,1) 1
(7,2) 1 (11,2) 1 (13,11) 2 (16,2) 1
(7,3) 1 (11,3) 1 (13,12) 1 (16,3) 1
(7,4) 1 (11,4) 1 (14,1) 1 (16,4) 1
(7,5) 1 (11,5) 1 (14,2) 1 (16,5) 1
(7,6) 1 (11,6) 1 (14,3) 1 (16,6) 1
(8,1) 1 (11,7) 1 (14,4) 1 (16,7) 1
(8,2) 1 (11,8) 2 (14,5) 1 (16,8) 1
(8,3) 1 (11,9) 2 (14,6) 1 (16,9) 2
(8,4) 1 (11,10) 1 (14,7) 1 (16,10) 2
(8,5) 1 (12,1) 1 (14,8) 1 (16,11) 2
(8,6) 1 (12,2) 1 (14,9) 2 (16,12) 2
(8,7) 1 (12,3) 1 (14,10) 2 (16,13) 2
(9,1) 1 (12,4) 1 (14,11) 2 (16,14) 2
(9,2) 1 (12,5) 1 (14,12) 2 (16,15) 1

Note: 2 ≤ n ≤ 16 and 1 ≤ k < n.

Theorem 2 (Upper Bound on Mean Download Time). For
a fork-join queueing system using a systematic (n, k) MDS
code, the mean download time for d nodes with compound
read satisfies

E[T (d,n−d,k)] ≤ E[T ] +
λE[T 2]

2(1− λE[T ])
, (7)

where E[T ] = 1

µ
d−1∏
j=0

(n−j)

k−1∑
i=0

d−1∏
j=0

(n−j)−
d∏

j=1
(i+j)

n−d−i and E[T 2] =

d∑
i=1

(
d
i

)
(−1)i+1

k−1∑
j=0

(
n−d
j

) j∑
m=0

(
j
m

)
(−1)m 2

µ2(n+i+m−d−j)2 .

Proof: The SM queueing system is equivalent to an
M/G/1 queue with Poisson arrival rate λ and generalized
service time which equals that of the low arrival scenario, i.e.,
T (d,n−d,k). Then, we can use the Pollaczek-Khinichin formula
to obtain the mean download time E[TSM ] of an M/G/1
queue as follows:

E[TSM ] = E[T ] +
λE[T 2]

2(1− λE[T ])
, (8)

where E[T ] = E[T (d,n−d,k)] in the low arrival rate scenario.

Then, we need to compute E[T 2] as follows.

E[(T (d,n−d,k))2] =
∞∫
t=0

P (T (d,n−d,k) > t)d(t2)

=
∞∫
t=0

2tP (T (d,n−d,k) > t)dt.

To obtain this integration, we need a new complimentary CDF
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Fig. 3. Delay performance comparison of codes with k-access read and compound read with different d and d∗.

of T (d,n−d,k) based on the proof of Theorem 1.

P (T (d,n−d,k) > t)
(d1)
= (1− (1− e−µt)d)

k−1∑
i=0

(
n−d
i

)
(1− e−µt)ie−µt(n−d−i)

(d2)
=

d∑
i=1

(
d
i

)
(−1)i+1e−µit

k−1∑
i=0

(
n−d
i

)
(1− e−µt)ie−µt(n−d−i)

=
d∑
i=1

(
d
i

)
(−1)i+1

k−1∑
j=0

(
n−d
j

) j∑
m=0

(
j
m

)
(−1)mC(t),

where C(t) = e−µ(n+m+i−d−j)t, (d1) follows from the proof
of Theorem 1. (d2) follows from the binomial expansion of
(1− (1− e−µt)d).

Then, we have,

E[(T (d,n−d,k))2]
(d3)
=

d∑
i=1

(
d
i

)
(−1)i+1

k−1∑
j=0

(
n−d
j

) j∑
m=0

(
j
m

)
(−1)mD(t),

where D(t) =
∞∫
t=0

2tC(t)dt = 2
µ2(n+i+m−d−j)2 and (d3)

follows from interchanging the order of integration and sum-
mation. Therefore, with the values of E[T (d,n−d,k)] and
E[(T (d,n−d,k))2], we can easily compute the upper bound
E[TSM ] by Eq. (8).

Theorem 3 (Lower Bound on Mean Download Time). For
a fork-join queueing system using a systematic (n, k) MDS
code, the mean download time for d nodes with compound
read satisfies

E[T (d,n−d,k)] ≥ 1

µ

d−1∑
i=0

1

(n− i)− ρ
, (9)

where ρ = λ
µ .

Proof: We use a similar method as the proof of k-access
read in [2]. For compound read, a download request is finished
if the d systematic nodes complete their services or any k out
of the remaining n − d nodes complete their services. Since
d ≤ k, the lower bound is derived by considering that a request
is finished by the first d completed tasks, i.e., there are only
d stages and each stage completes a task at one of the desired
data nodes. Moreover, the lower bound also considers that at
first, the 0th stage, the service rate of a request is equivalent
to (n− 0)µ and at the ith stage, the service rate of a request
is equivalent to (n− i)µ. Hence, the mean time for a request
to move from the ith to (i + 1)th stage is lower bounded by

1
(n−i)µ−λ . Therefore, the total mean download time is the sum
of the mean time of the d stages and is bounded as follows,

E[T (d,n−d,k)] ≥
d−1∑
i=0

1

(n− i)µ− λ
≥ 1

µ

d−1∑
i=0

1

(n− i)− ρ
.

III. PERFORMANCE EVALUATION

The results in the last section rely on the assumption of
exponential service times. In this part, we evaluate them with
real service time traces from Amazon S3. These traces are
for read files of 1MB in size from an S3 bucket, located in
Northern California.

A. Low Arrival Rate Scenario

In systems with systematic (n, k) MDS coding, we use
different values of (n, k) and find that they exhibit similar
results. Due to the lack of space, we only display the results
of (9,6), (14,10), (21,18) and (34,30) MDS coding, and their
corresponding d∗ are 1, 2, 3, and 4, respectively. We take the
average delay over 1 million sample paths for each experiment.

In Fig. 3 (a), (b), (c) and (d), we compare the delay per-
formance of k-access read and compound read with different
values of d. We observe that, when d ≤ d∗, for each case, both
mean and median delays of compound reads are lower than
those of k-access reads. This validates our theoretical analyses
for compound read and manifests the effectiveness of C & K
scheme in practice.

From Fig. 3, we can also observe that the median delay
is invariably smaller than the mean delay for both k-access
and compound reads, and we can infer that the real service
time distribution is positively skewed. It is also noted that the
minimum delay of compound read is always smaller than that
of k-access. This is in line with our analysis since compound
read can make use of direct read from the d required nodes,
for 1 ≤ d ≤ k, thus achieving lower minimum delay compared
with k-access read. We also observe that other than the case
when d = 1, the maximum delay of compound read is much
higher than that of k-access read. This implies that even though
compound read can realize lower mean, median and minimum
delays when d ≤ d∗, it suffers from a potentially much higher
maximum delay compared with k-access read when d 6= 1.
Besides, the maximum results for d = 1 further strengthen the
result in Corollary 2 and demonstrate that compound read is
superior to k-access read when d = 1.
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Fig. 4. The volatility of delay performance for codes with different read
methods.

Next, we examine the volatility of delay performance with
the standard deviation of each case. As illustrated in Fig. 4,
k-access read can invariably achieve lower volatility in terms
of delay performance compared with that of compound read.
This is because compound read may achieve lower delay by
direct read from the d required nodes, thus resulting in higher
volatility. It is also noted that the bigger d is, the higher the
volatility of compound read delay. In practice, when using
compound read and k-access read, we need to consider this
especially when users have requirements on delay volatility.

B. High Arrival Rate Scenario

We suppose that the download requests to a codeword of
MDS(10,k), where 2 ≤ k ≤ 4, arrive as a Poisson process
with parameter λ. In our simulations, we set λ = 1 request/sec,
and the number of arrivals is set to be 10000. We assume the
service time of each task is exponential with µ = 1 task/sec.
We take the average delay over 1000 sample paths for each
experiment.
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Fig. 5. Delay performance in high arrival rate scenario when λ = 1 and µ =
1 as d increases for MDS(10,4), MDS(10,3) and MDS(10,2) with compound
read.

Fig. 5 illustrates the upper and lower bounds and simula-
tions of delay performance in high arrival rate scenario. The
upper and lower bounds are numerical results when λ = 1 and
µ = 1 by Theorem 2 and 3. By Theorem 3, the lower bound
of the mean download time is independent of k, therefore,
MDS(10,4), MDS(10,3) and MDS(10,2) share the same lower
bound in Fig. 5 for the same d.

From Fig. 5, under the same conditions, the bigger d is, the
looser the bounds. It is also noted that for the same n = 10, the

smaller k is, the tighter the bounds. We know that for the same
n, smaller k means higher storage cost. Here we actually obtain
a tradeoff between the storage cost and download delay for a
systematic (n, k) MDS-coded storage system with compound
read.

IV. CONCLUSION

We presented the compound read that combines direct read
and k-access read for flexibly downloading different sizes of
files from a systematic MDS-coded distributed storage system
to achieve lower mean and median delays. We characterized
its mean download delay in low arrival rate scenario and
derived upper and lower bounds on its mean download delay in
high arrival rate scenario. We also analyzed the differences in
terms of delay performance between compound and k-access
reads and developed a scheme C & K to dynamically take
advantage of them according to users’ required size of files to
reduce download delay. Furthermore, via simulations using real
service time traces from Amazon S3, our evaluations verified
our theoretical analyses and demonstrated the effectiveness of
the C & K scheme.
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