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Abstract

Millimeter wave multiple-input multiple-output (MIMO) communication systems must operate over sparse

wireless links and will require large antenna arrays to provide high throughput. To achieve sufficient array gains,

these systems must learn and adapt to the channel state conditions. However, conventional MIMO channel estimation

can not be directly extended to millimeter wave due to the constraints on cost-effective millimeter wave operation

imposed on the number of available RF chains. Sparse subspace scanning techniques that search for the best

subspace sample from the sounded subspace samples have been investigated for channel estimation. However, the

performance of these techniques starts to deteriorate as the array size grows, especially for the hybrid precoding

architecture. The millimeter wave channel estimation challenge still remains and should be properly addressed

before the system can be deployed and used to its full potential. In this work, we propose a sparse subspace

decomposition (SSD) technique for sparse millimeter wave MIMO channel estimation. We formulate the channel

estimation as an optimization problem that minimizes the subspace distance from the received subspace samples.

Alternating optimization techniques are devised to tractably handle the non-convex problem. Numerical simulations

demonstrate that the proposed method outperforms other existing techniques with remarkably low overhead.

I. INTRODUCTION

The operating frequency of modern wireless systems is steadily shifting to the millimeter wave (e.g.,

28-100 GHz) bands which can provide a much wider bandwidth. These higher frequencies will force

systems to use large arrays to generate narrow beams in order to overcome the pathloss and atmospheric

impairments encountered at these frequencies. There is particular interest in using advanced multiple

antenna concepts at millimeter wave frequencies, but these techniques cannot be directly applied due to

the prohibitively complex baseband signal processing overhead [1].

To alleviate the increased overhead, hybrid precoding architectures [2], [3] have been explored for use at

millimeter wave frequencies [4], [5]. In a hybrid architecture, a large antenna-array is driven by a limited
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number of RF chains mapped to the antennas using analog processing, i.e., a phase shifter network that

linearly processes the RF signal. Digital processing of the small number of RF chains is then possible.

This architecture, however, does not allow the digital baseband to directly access the entire channel, since

it only processes analog pre-processed samples. This causes a subspace sampling limitation problem [6],

which limits the hybrid system’s ability to track and adapt to the channel.

To address the subspace sampling limitation, earlier work mainly focused on hierarchical beam scanning

techniques [6]–[8]. The transmitter and receiver iteratively search for the best subspace pair by scanning

all the subspace pairs chosen in the hierarchical subspace sounding codebooks [6], [7]. However, the

performances of these techniques will be degraded as the antenna size grows, especially when combined

with hybrid precoding, due to the increased search overhead.

There have been multiple channel measurement campaigns demonstrating that practical millimeter wave

channels present substantially sparse scattering [9], [10]. In this kind of environment, the size of the useful

subspace is considerably smaller than the channel dimension. Hence, channel estimation should be adapted

to the sparse channel subspace in order to address the subspace sampling limitation problem. Recently,

subspace estimation using the Arnoldi method [11] and the support recovery leveraging the virtual channel

representation [12] have been proposed. With the exception of the work in [11], [12], little is known on how

to efficiently adapt channel estimation to the sparse but large-dimensional millimeter wave multiple-input

multiple-output (MIMO) channel.

In this paper, we formulate millimeter wave MIMO channel estimation as a subspace distance minimiza-

tion problem. This problem is related to the general rank minimization problem [13], which is NP-hard.

The rank minimization problem [13] can be relaxed by using nuclear norm minimization (NNM) [14],

[15]. Though NNM provides robust performance, it does not guarantee a low rank solution and does not

scale to large-dimensional applications due to computational issues. A matrix factorization (MF) algorithm

is proposed in [16], which is faster than NNM, to ensure a low rank solution. The general challenge of

the techniques in [14]–[16] is that when noisy observations are made, the reconstruction is often matched

to the noise, causing the critical over-matching problem.

In this paper, we propose a sparse subspace decomposition technique for the large-dimensional millime-

ter wave MIMO channel estimation. The devised technique is general enough to allow channel estimation

in different classes of sparse channels. We design an alternating optimization technique that tractably

handles the formulated sparse decomposition problem. The algorithm has low complexity and converges

to a stationary point. Moreover, based on intuition from the strong law of large numbers, we develop a

simple method to avoid the over-matching issue arising in the low signal-to-noise ratio (SNR) regime.



The proposed algorithm outperforms the conventional methods [15], [16] with substantially reduced

computational overhead.

Notations: A bold lower case letter a is a vector, a bold capital letter A is a matrix. [A]i,j is the ith

row and jth column entry of A, and [A]i is the ith column of A. A∗,AT ,A−1, tr(A), ‖A‖F , ‖a‖2, ‖A‖∗,

respectively, are the conjuagate transpose, transpose, inverse, trace of A, Frobenius norm of A, l2-norm

of a, and the nuclear norm of A, which is the sum of its singular values. IM ∈ RM×M is the identity

matrix. A ⊗ B is the Kronecker product of A and B. Let vec(A) be the operator that stacks columns

of A into a column vector. Let diag(A) be the operator that collects the diagonal elements of a square

matrix A and forms a column vector.

II. SYSTEM MODEL

In this section, we provide signal model, motivations, and general statements of the channel estimation

problem in the millimeter wave MIMO systems.

A. Signal Model

Consider a point-to-point MIMO hybrid precoding system with Nt transmit and Nr receive antennas,

where each side is equipped with NRF RF chains. The number of data streams is Nd, and we assume

Nd≤NRF≤min(Nr, Nt). The transmitter employs the analog precoder FA∈CNt×NRF and digital precoder

FD∈CNRF×Nd . At the receiver, WD∈CNRF×Nd and WA∈CNr×NRF , respectively, denote the digital and

analog combiners. The entries of FA and WA are constrained such that |[FA]i,j|= 1√
Nt

and |[WA]i,j|= 1√
Nr

,

∀i, j, which are imposed due to analog processing. The channel input and output relation is therefore

given by

r = W∗
DW∗

AHFAFDs + W∗
DW∗

An, (1)

where H ∈ CNr×Nt is the sparse millimeter wave MIMO channel with rank(H) = L. We assume
L

min(Nr,Nt)
≈ 0. Notice that, in general, L is not known a priori. Instead, we assume that a rank upper

bound of H, which we define as d (i.e., rank(H)≤ d), is known a priori. The vector n ∈ CNr×1 in (1)

is the additive noise with each entry independent and identically distributed (i.i.d.) as n∼CN (0, σ2INr).

The vector s ∈ CNd×1 is the transmit signal satisfying E[‖FAFDs‖22]=1. The SNR is, thus, 1/σ2.

Extracting a high quality channel estimate is the key to facilitating advanced MIMO precoding tech-

niques. However, conventional MIMO channel estimation does not directly extend to a millimeter wave

hybrid precoding architecture since the digital baseband only accesses the analog compressed channel

W∗
AHFA∈CNRF×NRF , rather than the entire H as shown in (1). This limitation is the major hurdle when



estimating the large-dimensional millimeter wave MIMO channel. Without direct access to H, the channel

sounding problem is converted to a subspace sampling problem.

B. Subspace Scanning

CSI acquisition techniques using subspace sampling were investigated in [6]–[8]. Provided a subspace

pair (Wk,Fk), where Wk∈CNr×Nd and Fk∈CNt×Nd , the subspace sample yk∈CNd×1 at the kth channel

use is

yk = W∗
kHFksk + W∗

knk, k = 1, . . . , K, (2)

where sk ∈ CNd×1 is typically an all one vector with proper normalization. Each subspace pair (Wk,Fk)

is chosen from a pre-designed subspace sampling codebook [6]–[8]. In particular, if both the digital and

analog parts are utilized, we have Fk=FA,kFD,k and Wk=WA,kWD,k, k = 1, . . . , K.

After collecting K subspace samples, the best pair (Wkopt ,Fkopt) is selected by maximizing the received

power,

kopt = argmax
k=1,...,K

‖yk‖22 . (3)

The best pair (Wkopt ,Fkopt) can be directly used or further processed to generate the precoder and combiner

for data transmission. This framework is investigated in [6], [8] for beamforming and [7] for precoding.

C. Motivations and General Statement of Technique

Obviously, the decesion in (3) is highly susceptible to noise. When the sampling SNR is low, the noise

realizations can lead to incorrect subspace decisions. This is because the subspace scanning approach only

looks at the largest power of {yk}Kk=1 rather than correlating the observation with the aligned subspace

pairs. Since the millimeter wave channel is sparse [9], [10], advanced approaches must also leverage

this fact to enhance the channel estimation. Our proposed approach will therefore take sparse subspace

information into account by taking the subspace correlation with the noisy observations.

To this end, we slightly modify the subspace sampling framework in (2) to make full use of NRF

subspace dimension at baseband. At the kth channel use, we have

yk = W∗
kHfk + W∗

knk, k = 1, 2, . . . , K, (4)

where yk∈CNRF×1, Wk∈CNr×NRF , and fk∈CNt×1. Unlike (2), the receiver in (4) collects NRF subspace

samples per channel use using the subspace pair (Wk, fk) where Wk=WA,kWD,k and fk=FA,kFD,ksk



with WD,k ∈ CNRF×NRF and FD,k ∈ CNRF×NRF . After collecting K subspace samples, we form y =

[yT
1 ,y

T
2 , . . . ,y

T
K ]

T ∈ C(KNRF)×1.

Channel Use Overhead K: The subspace sampling in (4) must be done within a channel coherence

block T . Typically, we assume the number of channel uses K such that K�T . Let the minimum required

channel uses be Kmin. Assuming the noiseless scenario, Kmin that guarantees the perfect reconstruction

of H∈CNr×Nt with rank(H)≤d is given by Kmin=d(Nr +Nt − d) [15]. Since the sampling in (4) can

collect in total KNRF samples, we have the minimum channel uses Kmin=
d(Nr+Nt−d)

NRF
. Now, considering

the noise, the channel use overhead should satisfy

K > d(Nr +Nt − d)/NRF. (5)

III. SPARSE RECONSTRUCTION OBJECTIVE FUNCTIONS

In this section, we formulate the sparse subspace estimation problem as an optimization problem under

the sparse channel constraints. This problem will be solved in the next section.

First off, suppose the precoding and combining gain maximization problem for H with rank(H) ≤ d,

i.e.,

(
Ŵ, F̂

)
=argmax

W,F
‖W∗HF‖2F s.t. W∗W=INd

,F∗F=INd
, (6)

where W ∈ CNr×Nd and F ∈ CNt×Nd . The (6) can be written in an alternative form given by(
Û, V̂

)
=argmin

U,V
min

Λ
‖H−UΛV∗‖2F

subject to U∗U = Id, V∗V = Id,

(7)

where U ∈ CNr×d and V ∈ CNt×d. The Λ ∈ Cd×d is a diagonal matrix with the diagonal elements

being sorted in descending order. The relation between (6) and (7) is that [Ŵ]i = [Û]i and [F̂]i = [V̂]i,

i = 1, 2, · · · , Nd. The formulation in (7) is important because it shows that maximizing the precoding

gain in (6) is equivalent to approximating the low rank matrix H with UΛV∗. One challenge is how to

efficiently use the K subspace samples in (4) to make a correct approximation.

Inspired by (7), we now formulate our objective function under the noisy observation that minimizes

the subspace distance from the received K subspace samples in (4). Mathematically,

(
Û, V̂, Λ̂

)
=argmin

U,V,Λ

K∑
k=1

‖yk −W∗
kUΛV∗fk‖22

subject to U∗U = Id, V∗V = Id.

(8)



The channel estimate will be Ĥ = ÛΛ̂V̂∗. However, dealing with the summation in (8) is not convenient.

To make the problem intuitive, we introduce an affine map A : F × W × CNr×Nt 7→ CKNRF×1, where

F = {fk}Kk=1 and W = {Wk}Kk=1. Then, A(F ,W ,H) yields

A(F ,W ,H)=
[
(W∗

1Hf1)
T, . . . , (W∗

KHfK)
T
]T∈CKNRF×1. (9)

The problem in (8) is now rewritten by(
Û, V̂, Λ̂

)
=argmin

U,V,Λ
‖y −A(F ,W ,UΛV∗)‖22

subject to U∗U = Id, V∗V = Id.

(10)

The problem in (10) has much overlap with the rank minimzation problems [13]–[16]. The original rank

minimization problem [13] is, however, non-convex and is infeasible to be directly solved (i.e., NP-hard).

One alternative approach is to use the nuclear norm heuristic [14]. The nuclear norm minimization (NNM)

problem leveraging the millimeter wave channel subspace samples in (4) can be written as

Ĥ = argmin
H
‖H‖∗ subject to y−A(F ,W ,H) ∈ C.

The set C is a convex set which can be adjusted based on the noise power [15]. This problem is convex

and solvable.

Though NNM provides robust performance, it does not guarantee the low rank solution, leading

to inaccurate channel estimate under the noisy observation. The most significant drawback is that the

computational complexity becomes prohibitively high as Nr and Nt grow.

Much like our setting, the matrix factorization (MF) technique [16] is proposed to guarantee the low

rank solution and can be formulated as(
Û, V̂

)
= argmin

U,V
‖y −A(F ,W ,UV)‖22 , (11)

where U∈CNr×d and V ∈CNt×d. An alternating optimization can be used to find a local minimum of

(11). The computation complexity is lower than NNM. However, since U and V are not constrained to

lie on the unitary subspace, when it is compared with (10) and NNM, it exhibits the worst performance

(as shown in Section V).

IV. SPARSE MILLIMETER WAVE CHANNEL ESTIMATION

Our method will address two major challenges: low-rank guarantee and reduced complexity with robust

performance.



A. Sparse Subspace Decomposition (SSD)

The objective function in (10) finds the column and row subspaces of H, i.e., U and V, respectively,

along with the power allocation matrix Λ to meet U∗U = Id and V∗V = Id. Unfortunately, these semi-

unitary constraints are not tractable to handle since they are non-convex. Though Cayley Transform [17]

can be employed to deal with the orthogonality constraints, the computational complexity is prohibitively

high. Instead, we will consider the convex relaxation of (10) as(
Û, V̂, Λ̂

)
=argmin

U,Λ,V
‖y −A(F ,W ,UΛV∗)‖22

subject to tr(U∗U) ≤ d, tr(V∗V) ≤ d.

(12)

Notice that the problem (12) is still non-convex since those optimization parameters are coupled

each other. Nevertheless, the problem (12) can be suboptimally but tractably solved by using alternating

minimization techniques. In particular, optimizing one parameter by fixing the other two parameters in

(12) is convex. We can iteratively optimize U, V, and Λ by solving the following three subproblems:

(S1) Fix the row subspace V and power allocation Λ, optimize the column subspace U,

(S2) Fix the column subspace U and power allocation Λ, optimize the row subspace V,

(S3) Fix the row subspace V and column subspace U, optimize the power allocation Λ.

A formal description of the alternating minimization is provided in Algorithm 1. Since (S1), (S2), and

(S3) are all convex, we can obtain the global optima of each subproblem. Moreover, due to the covexity,

the objective function ‖y −A(F ,W ,UΛV∗)‖22 converges over the iterations.

Now, the optimal solutions of the subproblems are of interest. We limit our discussion to the column

subspace optimization problem (S1), bearing in mind that the same applies to the row subspace optimiza-

tion (S2). For simplicity, we omit the iteration index ` attached to the variables throughout this subsection.

The following lemma provides the solution to (S1).

Lemma 1: Suppose the following quadratic programming,

Û=argmin
U
‖y−A(F ,W ,UΛV∗)‖22 s.t. tr(U∗U)≤ d, (16)

where y ∈ CKNRF×1, U ∈ CNr×d, V ∈ CNt×d, and Λ ∈ Cd×d. Let B be

B=[((ΛV∗f1)
T ⊗W∗

1)
T , . . . , ((ΛV∗fK)

T ⊗W∗
K)

T ]T (17)

where B ∈ C(KNRF)×(dNr). Then, the optimal solution Û is given by either vec(Û) = (B∗B)−1B∗y such

that ‖ vec(Û)‖22 ≤ d or vec(Û) = (B∗B+λIdNr)
−1B∗y such that g(λ), ‖ vec(Û)‖22 = d, where λ > 0



Algorithm 1 Sparse subspace decomposition (SSD) for millimeter wave channel estimation
1: Input: Codebooks F and W , and subspace samples y.
2: Initialization: Set iteration number ` = 0. U(0), V(0), and Λ(0) are arbitrary.
3: repeat
4: Update the column subspace of H:

(S1)

{
U(`+1)= argmin

U

∥∥y−A(F ,W ,UΛ(`)V
∗
(`))
∥∥2
2

subject to tr(U∗U) ≤ d,
(13)

5: Update the row subspace of H:

(S2)

{
V(`+1)=argmin

V

∥∥y−A(F ,W ,U(`+1)Λ(`)V
∗)
∥∥2
2

subject to tr(V∗V) ≤ d,
(14)

6: Update the power allocation to the subspaces Λ:

(S3) Λ(`+1)=argmin
Λ

∥∥y−A(F ,W ,U(`+1)ΛV∗(`+1))
∥∥2
2
, (15)

7: ` = `+ 1, and Ĥ(`) = U(`)Λ(`)V
∗
(`)

8: until ` exceeds a maximum number of iterations or the iterations stagnate.
9: Output: Ĥ = Ĥ(`).

is the unique solution to the fixed point equation g(λ)=d, in which g(λ) is monotonically decreasing in

λ > 01.

Proof Given the affine mapA in (9), using the Kronecker product equality, vec(W∗
kUΛV∗fk) = ((ΛV∗fk)

T⊗

W∗
k) vec(U), for k = 1, . . . , K and collecting them as a column vector yield an equivalent problem to

(16) as

Û=argmin
U
‖y−B vec(U)‖22 subject to ‖vec(U)‖22≤d, (18)

where B is defined in (17). This problem is convex and applying KKT condition [18] for (18) gives
B∗B vec(U)−B∗y+λ vec(U)=0, (first-order condition)

λ ≥ 0, (dual constraint)

λ[‖vec(U)‖22 − d] = 0, (complementary slackness)

where λ is the Lagrange multiplier for the constraint in (18). By the complementary slackness, the optimal

solution is found by considering two cases, i.e., λ = 0 and ‖vec(U)‖22 − d = 0.

When λ = 0, we have vec(Û) = (B∗B)−1B∗y with ‖ vec(Û)‖22 ≤ d. According to (5), KNRF ≥

1The λ > 0 that satisfies ‖ vec(Û)‖22 = d can be tractably found by using a bisection method.



d(Nr +Nt − d)≥dNr, hence, B∗B is invertible.

When λ > 0, ‖vec(U)‖22 = d holds and the optimal Û should meet the two conditions vec(U) =

(B∗B + λI)−1B∗y, λ > 0 and ‖vec(U)‖22 = d. This concludes the proof.

We turn our attention to the subspace power allocation problem (S3).

Lemma 2: Suppose the subspace power allocation problem

Λ̂ = argmin
Λ
‖y −A(F ,W ,UΛV∗)‖22 , (19)

where Λ ∈ Cd×d is the diagonal matrix, y ∈ CKNRF×1, U ∈ CNr×d, and V ∈ CNt×d. Then the optimal

solution to (19) is

diag(Λ̂) = (P∗P)−1P∗y,

where P∈CKNRF×d, and [P]j=A(F ,W , [U]j[V]∗j), ∀j.

Proof Decompose the affine map A in (9) as

A(F ,W ,UΛV∗)=A(F ,W ,
d∑

j=1

[U]j[Λ]j,j[V]∗j)

=
d∑

j=1

[Λ]j,jA(F ,W , [U]j[V]∗j), (20)

where [Λ]j,j in (20) is the power allocation to the corresponding subspace [U]j[V]∗j . Using (20), the

problem (19) can be rewritten as

Λ̂ = argmin
Λ

∥∥y − d∑
j=1

[Λ]j,jA(F ,W , [U]j[V]∗j)
∥∥2
2
. (21)

Solving the least square problem in (21) results in

diag(Λ̂) = (P∗P)−1P∗y,

where P∈CKNRF×d, and [P]j=A(F ,W , [U]j[V]∗j), j = 1, · · · , d. This concludes the proof.

B. Sparse Subspace Decomposition with Thresholding (SSD-T)

In our channel estimation problem, a normalized mean square error (NMSE), i.e.,

NMSE = E
[∥∥H− Ĥ

∥∥2
F
/‖H‖2F

]
. (22)

is evaluated to confirm the accuracy of an estimator. Obviously, there is a gap between the objective

function in (12) and NMSE in (22). Though our objective function monotonically decreases per iteration to



Algorithm 2 Sparse subspace decomposition with thresholding (SSD-T) for millimeter wave channel
estimation

1: Input: Codebooks F and W , subspace samples y, and noise variance σ2.
2: Initialization: Set iteration number ` = 0. U(0), V(0) and Λ(0) are arbitrary.
3: repeat
4: Get H(`) from Algorithm 1,
5: ` = `+ 1,
6: until ` exceeds a maximum number of iterations, the iterations stagnate, or (23) is satisfied.
7: Output: Ĥ = Ĥ(`).
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Fig. 1: Objective function of (12) and NMSE vs. iteration `
(Nt = 64, Nr = 16, L = 2, K = 100, NRF = 4,SNR=0 dB).

a local minimum point, the NMSE in (22) would exhibit a non-monotonic behavior. This is because the ob-

jective in (12) contains the disturbance, i.e., the noise n. The decoupling between the objective and NMSE

becomes critical in a low SNR, especially when ‖y‖22 ≈ ‖ñ‖22, where ñ = [(W∗
1n1)

T , · · · , (W∗
KnK)

T ]T .

In this case, the objective function is approximated as ‖ñ−A(F ,W , Ĥ)‖22. Minimizing ‖ñ−A(F ,W , Ĥ)‖22
results in large deviation from the true H.

To illustrate this in a low SNR scenario, we display the curves of the objective function of (12) and

NMSE of the proposed SSD (i.e., Algorithm 1) across iteration ` in Fig. 1 with 0 dB SNR. As expected,

the objective function of (12) decreases monotonically. However, NMSE rather increases after a few

iterations because the algorithm finds Ĥ close to the noise, resulting in the over-matching.

One remedy is to terminate the iteration rather than making ‖y−A(F ,W , Ĥ)‖22 as small as possible.

Specifically, provided the output of Algorithm 1 at iteration `, i.e., Ĥ(`), the stopping condition can be

given by

∥∥y −A(F ,W , Ĥ(`))
∥∥2
2

/
(KNRF) < σ2. (23)

The underlying intuition of (23) is that by the strong law of large number the left hand side (l.h.s.) of



TABLE I: Execution Time (in seconds) for Algorithms.

Nr ×Nt Channel
Uses (K) MF NNM SSD SSD-T
16× 64 100 5.23 228.83 15.09 2.41
16× 64 150 10.60 483.09 25.05 3.78
8× 16 20 0.32 3.47 1.19 0.17
8× 16 60 1.20 12.60 3.91 0.57

(23) will converge to the variance of noise, i.e., σ2, as K grows, given that the output of Algorithm 1 is

close to the true H. The inequality in (23) signifies that we treat the case when the l.h.s. of (23) is smaller

than σ2 as the over-matching and stop the iteration. The formal description of the SSD combined with the

thresholding in (23), namely SSD with thresholding (SSD-T), is provided in Algorithm 2. By reducing

the number of iterations, Algorithm 2 will decrease the computational complexity while enhancing the

performance in a low SNR.

V. NUMERICAL SIMULATIONS

In this section, we numerically evaluate the NMSE of the proposed SSD and SSD-T algorithms and

compare them with the matrix factorization (MF) [16] and nuclear norm minimization (NNM) [15]

techniques. Also, we benchmark the computational overheads of SSD, SSD-T, MF, and NNM. The

numerical simulation setting is first discussed.

(1) Channel model: We assume the prevalent physical channel representation that models sparse mil-

limeter wave MIMO channels [1], [10]. Assume there are L propagation paths between the transmitter

and receiver, where the channel is modeled via

H =

√
NrNt

L

L∑
l=1

αlar(φr,l)a
∗
t (φt,l).

The αl is the complex gain of the lth path, i.i.d. as αl ∼ CN (0, 1), φt,l and φr,l are angles of departure

and arrival at the transmitter and receiver, respectively. The at(φt,l) and ar(φr,l) are the uniform linear

array (ULA) response vectors at the transmitter and receiver, respectively, where the inter-element spacing

of ULA is set to half of the wavelength. The maximum number of iteration of the proposed SSD (i.e.,

Algorithm 1) is 30. We further assume L=2 paths, NRF=4 RF chains, and the number of data stream

Nd=L. We assume the rank upper bound d=3.

(2) Performance Evaluation: The NMSE statistics across different SNRs and channel uses (K) are

evaluated. Each curve is obtained after averaging over 100 channel realizations.
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Table I shows the execution time statistics (in seconds on a 3.4 GHz CPU) for 8 × 16 and 16 × 64

channel dimensions when SNR = 10 dB. It can be seen from Table I that both proposed algorithms exhibit

lower complexity. The SSD-T shows the fastest execution while the NNM becomes substantially slower,

as the antenna dimension grows.

Fig. 2 illustrates the NMSE curves of the proposed SSD and SSD-T compared with MF and NNM

for 16 × 64 channel and K = 100 channel uses. It can be seen that both SSD and SSD-T outperform

the MF across a broad range of SNRs. NNM achieves robust performance at the expense of the huge

computational overhead. On the other hand, Fig. 2 reveals that SSD-T achieves similar performance as

NNM in the low SNR regime, while it starts to outperform NNM in the high SNR, verifying that SSD-T

has the ability to resolve the complexity and accuracy tradeoffs.

Fig. 3 presents NMSE curves at 10 dB and 30 dB SNRs across different channel uses. Fig. 3 clearly

shows that both SSD and SSD-T achieve similar performances with NNM at 10 dB SNR, while keeping

the complexity remarkably low. At 30 dB SNR, both SSD and SSD-T outperform NNM. The gap of the

proposed approaches, compared with MF, is clear in Fig. 3. Evidently, increasing K in the high SNR has

the effect of enhancing the accuracy of SSD and SSD-T, while only marginal improvement is observed

for NNM.

VI. CONCLUSIONS

In this paper, we investigated the estimation of sparse millimeter wave MIMO channels using hybrid

precoding systems. Based on the equivalency of optimizing the unitary precoder/combiner of the sparse

channel matrix and approximating the channel via a sparse subspace decomposition, we proposed the

SSD algorithm. The SSD consists of three constituent estimators: one for the row subspace, one for the
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Fig. 3: NMSE vs. Channel Uses (Nt = 64, Nr = 16, L = 2,SNR =10 dB and 30 dB, NRF = 4).

column subspace, and the other for the subspace power allocation. To avoid unexpected over-matching

issues, we devised the SSD-T algorithm. Our simulations showed that SDD and SDD-T achieve similar

or better accuracy than the best performing existing sparse matrix estimation benchmarks (e.g., NNM

algorithm) with remarkably low overhead.
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