
Which IoT Protocol?
Comparing standardized approaches over a common M2M application

Konstantinos Fysarakis, Ioannis Askoxylakis
Institute of Computer Science

Foundation for Research and Technology - Hellas (FORTH)
Heraklion, Crete, Greece

kfysarakis@ics.forth.gr, asko@ics.forth.gr

Othonas Soultatos, Ioannis Papaefstathiou
Dept. of Electronic & Computer Engineering

Technical University of Crete
Chania, Crete, Greece

othonass@gmail.com, ypg@mhl.tuc.gr

Charalampos Manifavas
Dept. of Electrical Engineering and Computing Sciences

Rochester Institute of Technology
Dubai, UAE

cxmcad@rit.edu

Vasilios Katos
Dept. of Computing

Bournemouth University
Poole, UK

vkatos@bournemouth.ac.uk

Abstract—Computing devices already permeate working and
living environments, while researchers and engineers aim to
exploit the potential of pervasive systems in order to introduce
new types of services and address inveterate and emerging
problems. This process will lead us eventually to the era of urban
computing and the Internet of Things (IoT). However, the long-
promised improvements require overcoming some significant
obstacles introduced by these technological advancements. One
such obstacle is the lack of interoperable solutions, to facilitate
the use, monitoring and management of the plethora of devices
and their services. While seamless machine-to-machine (M2M)
and human-to-machine (H2M) interactions are a necessity for
secure and truly ubiquitous computing, the current status quo is
that of a segregated and incompatible assortment of devices. The
resource-constraints of the platforms integrated into smart
environments, and their heterogeneity in hardware, network and
overlaying technologies, only exacerbate these interoperability
issues. Motivated by the above, this paper identifies three
promising, standardized protocols, each following a different
approach in addressing the above concerns. We evaluate the
selected protocols in the context of designing and implementing
an application requiring various M2M interactions, namely a
policy-based access control framework for IoT devices. Thus,
three variants of the application are developed, considering each
protocol’s intrinsic characteristics and features. Finally, the
developed applications are evaluated on a common testbed of
embedded devices, allowing us to extract useful conclusions
concerning the protocols’ performance, their intricacies and their
applicability in similar applications.

Keywords— Internet of things; Ubiquitous computing; M2M;
Policy-based access control; Authorization; DPWS; CoAP; MQTT;
XACML

I. INTRODUCTION
Advances in computing and communication technologies

have enabled a new reality where interconnected computing
systems, in various forms, are constantly gaining popularity,
permeating our environments and aiming to enhance all aspects

of our everyday lives. The IP-based connectivity of devices,
systems and services, which goes beyond the traditional
human-to-machine (H2M) and machine-to-machine (M2M)
interactions, is labeled the Internet of Things (IoT). Ubiquitous
computing devices, featuring sensors and actuators, are already
deployed in a variety of domains (residential/home automation,
industrial systems, military, e-textiles, healthcare and
automobiles, among others). Nevertheless, while existing
networking and security mechanisms are updated and adapted
to handle the vast population of IoT devices, higher level,
seamless M2M and H2M interactions, are another important
requirement in order to effectively monitor and manage the
infrastructure, allowing the use of its full potential. End-users
typically do not possess the skills to configure and setup the
devices that may be found in smart environments; in large-
scale deployments, individually setting up devices is not even
feasible. From the perspective of implementers, there is a need
for rapid development and deployment, while simultaneously
tackling issues of scaling and inherent limitations in terms of
resources (CPU, memory, power etc.). However, at its current
state, the ubiquitous computing landscape is segregated,
consisting of numerous proprietary solutions, which are
typically incompatible with each other. This makes setting up,
managing and securing a smart device ecosystem, significantly
challenging.

Various “IoT protocols” aim to address these issues, while
standardization initiatives try to guarantee interoperability,
through the wide and structured deployment of the proposed
mechanisms. Motivated by the above issues and associated
efforts, this paper identifies three prominent approaches to
providing seamless and lightweight IoT interactions,
highlighting a representative, standardized protocol for each of
these approaches. Moreover, an application featuring M2M
interactions is selected, designing and implementing the
required entities and interactions, while adapting them to the
intricacies of each protocol. Finally, the developed solutions

are deployed and evaluated on a common testbed, allowing
valuable conclusion to be extracted.

This paper is organized as follows: Section II presents the
protocols and compares their features; Section III details the
application that was used to assess the protocols, along with the
intricacies of each protocol-specific implementation; Section
IV presents the evaluation results; and Section V closes the
paper with some concluding remarks and pointers to future
work.

II. THE PROTOCOLS
Surveying the academic literature and the web, reveals a

plethora of protocols aiming to unify IoT devices and
applications; some are still in their infancy, some are openly
available, some are proprietary, and there are also significant
efforts to standardize some protocols. Nevertheless, three main
approaches seem to have gained the most traction at this stage,
both in terms of research efforts, and in terms of actual
applications being already provided to end users. These
approaches are detailed in the subsections below.

A. Service-oriented Approach – The Devices Profile for Web
Services Protocol
Service Oriented Architectures (SOAs) provide an

attractive option for IoT node interactions, as web services
allow stakeholders to focus on the services themselves, rather
than the underlying hardware and network technologies. When
examining SOAs, the Devices Profile for Web Services
(DPWS, [1]) stands out. It was introduced in 2004 by a
consortium led by Microsoft and is now an OASIS open
standard (at version 1.1 since July 2009). DPWS was originally
conceived and introduced as a successor to UPnP, but
nowadays is actively pushed by industry stakeholders as the
solution of choice for large-scale enterprise (e.g. industrial)
deployments [2]. Like UPnP, DPWS is natively integrated into
the various versions of the Windows operating system. The
specification defines a minimal set of implementation
constraints to enable secure Web Service messaging, including
discovery, description, synchronous (via operation invocations)
and asynchronous (via subscription and event-driven changes)
interactions on resource-constrained devices. The profile’s
architecture includes hosting and hosted services. A single
hosting service is associated with each device while the same
device may accommodate various hosted services. The latter
represent the device’s various functional elements and rely on
the hosting service for discovery. DPWS enables the adoption
of a SOA approach on embedded and sensor devices with
limited resources, allowing system owners to leverage the SOA
benefits across heterogeneous systems that may be found in
smart environments. The use and benefits of DPWS have been
studied extensively in the context of various applications areas,
which, other than the ones already mentioned, include
automotive and railway systems [3], industrial automation [4],
eHealth [5], smart cities [6] and smart homes [7].

B. Resource-oriented Approach – The Constrained
Application Protocol
Another interesting approach for IoT interactions is the use

of protocols following the Representational State Transfer
(REST) architecture, which currently dominates the World
Wide Web. RESTful implementations typically use the
Hypertext Transfer Protocol (HTTP), but the latter is not
appropriate for IoT applications, when considering the
resource, bandwidth and energy restrictions of the target
devices. Thus, the Internet Engineering Task Force (IETF)
Constrained RESTful environments (CoRE) Working Group
presented the Constrained Application Protocol (CoAP, [8]),
now an IETF standard. CoAP is a specialized web transfer
protocol for use with constrained nodes and constrained
networks in the Internet of Things, aiming to maintain
compatibility with the existing Internet infrastructure, through
simple proxies. The protocol is often referred to as “the HTTP
for the Internet of Things”. It follows a request/response
model, where a client may interact with the server using a
subset of the HTTP methods, namely using GET, PUT, POST
and DELETE on the server’s resources. The protocol features
two layers: the "Transaction layer" responsible for single
message exchange between end points and the
"Request/Response layer" which is responsible for
request/response transmission and resource management; thus
providing reliability mechanisms and basic congestion control.
Moreover, basic publish/subscribe interactions are also
supported, as, by extending the HTTP GET method, a client
can “observe” a specific resource. There is significant research
interest in CoAP, with numerous efforts to leverage its
extremely lightweight interactions in domains such as smart
homes [9], mobile IoT deployments [10], cloud services [11],
healthcare [12], smart cities [13] and industrial WSNs [14].

C. Message-oriented Approach – The MQ Telemetry
Transport Protocol
Message-oriented protocols typically focus on providing

asynchronous data transfers between distributed devices. Their
focus is on reliable messaging, including message buffers and
Quality of Service (QoS) facilities, controlled by centralized
entities. The MQ Telemetry Transport (MQTT, [15]) is one
such message-oriented protocol, introduced by IBM in 1999
and recently standardized by OASIS, as the IoT developments
brought it back into the limelight. It is also standardized as
ISO/IEC 20922 1 . MQTT was designed as an extremely
lightweight publish/subscribe messaging transport, for small
sensors and mobile devices, optimized for high-latency or
unreliable networks. An MQTT Broker is responsible for
handling and organizing all communications between the
various devices. Messages are published with specific “topics”,
and each client can subscribe to various topics (though the
Broker may require username/password authentication before
allowing subscription). Topics are organized in a hierarchical
manner, like the folder structure in a file system; e.g.
“home/kitchen/oven/temperature” could be a topic where a
device can subscribe to get updates on the oven’s temperature.
When a client publishes a message, the Broker then relays this
message to all clients subscribed to the message’s topic. Thus,

1 http://www.iso.org/iso/catalogue_detail.htm?csnumber=69466

all interactions are asynchronous and clients only communicate
directly with the Broker. As with the previous protocols,
researchers have already studied MQTT in a variety of
domains, including eHealth applications [16][17], WSNs and
smart grid [18], smart homes [19] and also mobile IoT contexts
[20], among others.

D. Comparison & Related Work
DPWS, CoAP and MQTT share some important

characteristics which make them good candidates for IoT
applications, and which motivated us to consider them for this
comparison. More specifically, all three protocols: are open
standards with significant traction in the research community
and the industry; are designed with constrained environments
in mind; can offer seamless M2M interactions; run on IP; and
have a range of implementations readily available to
developers and researchers alike. Nevertheless, as each follows
a different approach to provide entity interactions, the
protocols are, in many aspects, very different from each other.

While CoAP messages are transported over UDP, MQTT
relies on TCP, and DPWS uses a combination of both (TCP for
the bulk of the device interactions, and UDP for device
discovery and other auxiliary functions); with each protocol
inheriting different characteristics from the underlying
transport mechanisms. This also affects the available security
mechanisms, with DPWS and MQTT deployments supporting
the use of TLS, and CoAP applications supporting DTLS. In
the case of DPWS, the mechanisms detailed in the WS-
Security specification are also applicable, as with any other
Web Services deployment. MQTT is suited, by design, for
publish/subscribe interactions, CoAP also has support for
observing resources, partly covering such functionality, but it is
better suited for synchronous interactions, instead of event-
based ones. DPWS is more flexible in this regard, as the WS-
Eventing specification enables a feature-rich publish/subscribe
functionality, including interactions that are triggered at pre-
defined intervals and/or when a specific event takes place.
Moreover, QoS is an important aspect in MQTT, with the
protocol supporting three different modes of message delivery
(“Fire and forget”, “Delivered at least once” and “Delivered
exactly once”), whereas CoAP only offers a rudimentary
choice between “Confirmable” and “Non-confirmable”
messages. The former have to be acknowledge by the received
with an ACK packet, in applications where it is necessary to
cater for UDP’s unreliable transport. DPWS has no such
features built-in, relying solely on TCP’s delivery mechanisms.
Various extensions enhance the reliability and QoS features of
Web Services (e.g. [21]), but these have not been integrated
into DPWS yet.

A detailed theoretical comparison of the protocols is
beyond the scope of this work, which aims to highlight
differences that may not necessarily stand out on paper, but
become evident when trying to use the protocols in an actual
implementation. This is an aspect missing from the current
literature, which mostly focuses on theoretical comparisons of
various protocols or detailed comparisons focusing on specific
protocol aspects such as packet loss. A high level survey of IoT
protocols can be found in [22], though DPWS is not included
in the comparison. Authors in [23], have compared DPWS to

OPC-UA, a WS-based version of protocols typically used in
the industrial domain. A hands-on comparison of CoAP and
MQTT, in the context of a smartphone-based application, can
be found in [24]. Authors in [25] have also compared the two
protocols, using a common middleware which allowed them to
assess the protocols’ behavior in changing network conditions
(as in scenarios with high packet loss). Another lab-based
comparison of CoAP and MQTT, along with OPC-UA, in the
context of communications over cellular networks, can be
found in [26]. Finally, there is a significant body of work in the
literature aiming to combine various IoT protocols. A custom
Broker that support both CoAP and MQTT, bridging the two
protocols, is presented in [27]. Researchers have also tried to
bridge DPWS with RESTful architectures [28] and CoAP in
specific [29]. A direct comparison of DPWS, CoAP and
MQTT is missing altogether from the literature, to the best of
our knowledge.

III. THE APPLICATION - ACCESS CONTROL FRAMEWORK
The expanded attack surface that results from the

integration of the numerous smart devices around us with the
Internet, needs new or adapted mechanisms to mitigate these
new threats. The Open Web Application Security Project
(OWASP) organization includes “Insufficient
Authentication/Authorization” in the second place of its list of
top ten security problems identified on IoT devices [30],
preceded only by the use of “Insecure Web Interfaces”. Such
negligence in terms of proper authorization is bound to inhibit
any efforts made towards using these pervasive devices to
handle our personal sensitive data

Aiming to address the above concerns, we have presented a
policy-based access control framework for smart ubiquitous
devices [6][31]. Based on the OASIS-standardized eXtensible
Access Control Markup Language (XACML, [32]), the
proposed solution provides the means to control access to the
resources of IoT nodes, based on policy constraints centrally
managed by the system owner. While XACML defines the
structure and content of access requests & responses, it
provides no information on the mechanisms for transferring
these messages. Typical XACML deployments require the
setup of complex infrastructures to enable entities' interaction
and policy retrieval (e.g. via LDAP); an approach not suitable
in the context of IoT applications and the average user. To
overcome this limitation, the policy-based framework could
leverage the benefits of IoT protocols, gaining seamless
Machine-to-Machine (M2M) discovery and interactions, and
allowing the deployment of the framework's entities to any
platform, anywhere on the network, with minimal involvement
on behalf of the users. Thus, we decided to assess the
applicability and performance of the selected protocols in the
context of designing and implementing said authorization
framework for IoT devices. To achieve this, three different
implementations of the framework and its entities were
developed, using each of the investigated protocols.

The framework’s key entities that had to be implemented,
were the following: a Policy Enforcement Point (PEP) which
makes decision requests and enforces authorization decisions; a
Policy Decision Point (PDP) which evaluates requests against
applicable policies and renders an authorization decision; a

Policy Administration Point (PAP) which creates/manages
policies or policy sets; and a Policy Information Point (PIP)
acts as a source of attribute values.

As an example of the framework’s flow of interactions,
consider the case of a person who owns a smart thermostat.
The thermostat is a device that hosts a service which supports
multiple operations such as setting the target temperature,
selecting operation mode, enabling power save, getting the
current status or even events such as notifications when the
temperature in the room changes, or the target temperature has
been reached. As soon as the available device and its service
are discovered, a guest in the house can request access to the
node that is of particular interest, e.g. in order to extract the
latest values from the temperature sensor attached to it. The
guest’s request is intercepted by the node’s PEP module which
then forwards the request to the PDP, the latter running on the
house owner’s trusted device. The PDP has to consider all
applicable policies, enriched by any relevant information, from
the PIP/PAP. Once all the required information has been
collected, the PDP issues a decision which is sent back to the
node’s PEP. Based on that decision the PEP may or may not
allow the guest to access said nodes data of interest.

A. Implementation
Differentiations between the variants were kept to a

minimum, where possible, to avoid masking the performance
differences during the evaluation phase. Thus, Sun’s XACML
engine was the basis for all access control implementations; a
choice that remains popular among developers and is actually
the basis of various current open source and commercial
offerings. Moreover, while there is a variety of APIs, based on
different programming languages, for all three protocols, the
devices were developed using solely open source, Java-based
APIs. These were typically the most mature and feature-rich of
the available options for each protocol, and, moreover, offer
platform-agnostic implementations that can be easily be moved
between hardware platforms; an important benefit in the
context of heterogeneous IoT platforms. Nevertheless, the
exact M2M interactions had to be adapted to the intricacies of
each protocol, as will be presented in the subsections below.
The description of each implementation will only cover the
interactions taking place when a client invokes a resource; the
setup process (e.g. device discovery, subscription to
events/topics etc.) is not included, for simplicity.

1) DPWS-based Framework
A survey on APIs for DPWS development reveals a

plethora of available solutions with diverse characteristics.
Still, when focusing on key features such as code portability,
support for IPv6 (necessary for IoT applications) and active
development and support of the tools, the valid options are
actually fewer, with WS4D-JMEDS2 standing out as the most
attractive choice, being constantly updated and improved. The
flexibility and feature-rich functionality of the protocol meant
there were no significant restrictions when designing the
framework and its entities’ interactions. Therefore, exploiting
the discovery and publish/subscribe features of DPWS, the
PDP subscribes to the “SAReq” eventing operation of any

2 http://ws4d.org/jmeds

Fig. 1. Sequence Diagram of DPWS Variant

Fig. 2. Sequence Diagram of CoAP Variant

Fig. 3. Sequence Diagram of MQTT Variant

Fig. 4. Evaluation Setup

PEP-equipped device that joins the network. This event is fired
as soon as a client tries to access a protected resource on the
device, relaying the necessary information to the PDP. The
PDP then invokes the “PolicyReq” operation on the PIP/PAP,
getting the applicable policies in reply. Having all the required
information, the PDP evaluates the policies and issues a
decision, and then invokes the “SAResp” operation on the PEP
to inform it of its decision. Depending on said decision, the
device either allows or denies access to the client. This
sequence of events appears in Fig. 1.

2) CoAP-based Framework
There are numerous CoAP libraries available to developers,

many being platform-specific, i.e. focusing on specific devices.
Our implementation was based on the most popular Java-based
option, the open-source Californium 3 API, provided by the
Eclipse Foundation. There were two obstacles when designing
the CoAP-based framework. Firstly, due to the nature of its
transport protocols, there are limitations with regard to the
reliability of the “observe” mechanism, so we cannot use it
inform the PDP of requests coming to the PEP, as in the case
of the subscription in the DPWS implementation. As stated in
its RFC [8], the mechanism was designed with the “principle of
eventual consistency”, and a client cannot rely on observing
every single state that a resource might go through. This is not
tolerable in our application, as we want to be sure all requests
reach the PDP for evaluation. Secondly, CoAP’s discovery
features are restricted (esp. since DTLS does not support
multicast UDP messages [33]), prohibiting a consistent
automated discovery, as in DPWS above. Thus, for the CoAP
implementation of the authorization framework, we focused on
using simpler POST-based interactions between the entities,
with the access control –related operations being exposed as
resources on the devices’ endpoints (e.g. “PDP/SAReq”), as
depicted in Fig. 2.

3) MQTT-based Framework
For the MQTT implementation we used Paho4, the Eclipse

Foundation’s API for MQTT clients, which provides open-
source client implementations of open and standard messaging
protocols. It has a rich documentation and examples for many
languages that the client is implemented. As a Broker, we used
Mosquito 5 which is an Open Source MQTT v3.1/v3.1.1
Broker. As in MQTT everything has to go through the Broker,
the implementation had to be modified accordingly: all
interactions were defined as message posting to the
corresponding topics, with the Broker being responsible to
deliver these messages to the intended recipient. Each of the
framework’s operations features its own hierarchical topic (e.g.
“/PDP/SAReq”), to ensure that all the entities get the messages
intended for them. The sequence of interactions appears in Fig.
3.

IV. EVALUATION RESULTS
A common test bed, featuring relatively resource-

constrained embedded devices, was used to compare the

3 http://www.eclipse.org/californium
4 https://eclipse.org/paho
5 http://mosquitto.org

performance of the three implementation variants of our
application (i.e. the access control framework). In more detail,
the PEP-equipped target device (i.e. the device providing the
actual service to be accessed) was deployed on a Beaglebone, a
low-cost credit-card-sized device, running a compact Linux-
based operating system. It uses an ARM Cortex-A8 single core
CPU running at 720MHz (throttled at 500MHz during testing)
with 256MB DDR2 RAM. The test-bed for the Service
Orchestrator was a similar, but slightly more powerful and
versatile, Beagleboard-xM embedded platform, featuring an
1GHz ARM Cortex-A8 processor (throttled to run at 600MHz
during testing) and 512MB DDR2 RAM, also running a
minimal Linux-based operating system. The access control
infrastructure entities, i.e. the PDP and PIP/PAP, were
deployed on a desktop system (Core i5 CPU at 3.3GHz, 8GB
DDR3 RAM), as these are expected to run on more resource-
rich devices (e.g. the main system used to control and
configure our smart home). This system also hosted the Broker
needed in the case of the MQTT setup. Finally, the client
application was run on a laptop computer, which was
programmed to automatically invoke the resources of the
device. The client-side response time of 100 consecutive
requests to the protected devices was monitored for
benchmarking purposes, along with various other parameters
on the embedded devices (i.e. the Beaglebone featuring the
PEP and the Beagleboard xM assigned with the PDP
functionality. Finally, all systems were interconnected via
wired Ethernet to minimize the network’s impact on the
reported performance figures. The setup for all three variants of
the framework appears in Fig. 4.

One of the most important aspects compared during
benchmarking was the client-side response time, as this refers
to the delay a user would experience in each case when trying
to access the protected resource (e.g. the temperature of a smart
thermostat). The recorded times, averaged over 100 requests,
were 130.6ms for DPWS, 100.3ms for CoAP and 97.84ms for
MQTT. As is evident from these results, the CoAP- and
MQTT- based variants of the framework performed
equivalently in this regard, with their DPWS counterpart
needing about 30% more time to respond. Further analyzing
the response times reveals that in all cases, the bulk (i.e. 60-
70%) of the delay can be attributed to the Client-Device (i.e.
PEP-PDP) communication, which also includes the time

Fig. 5. Average CPU Load (%) on Embedded Devices

Fig. 6. Average Memory Utilization (kB) on Embedded Devices

needed for the PDP to issue a decision on the evaluated access
request. The latter gives a bottom barrier to the delay a client
can experience, and is irrelevant to the protocol used, as it is
inherent to the specific application (more specifically, the
policy evaluation mechanism of XACML), and beyond the
scope of this work to analyze and improve.

Moving to the embedded devices hosting the PEP and PDP,
the CPU load and memory footprint of each application was
monitored during the benchmarks. Results from the backend
desktop system are omitted, as the presence of the PIP/PAP
applications (and the Broker, in the case of the MQTT
deployment) had, in the context of its significant computing
capabilities, no notable impact on resource utilization. The
average CPU load recorded for each protocol and each device
appear in Fig. 5, where it is evident that the MQTT and CoAP
applications had a bigger impact on the devices’ resources
during testing. As these variants of the framework have a lower
response time compared to DPWS, a higher load is imposed to
the devices under test, since they handle more requests (and the
associated interactions) per unit of time. The MQTT
framework is even more load-intensive than its CoAP
counterpart, as it is slightly faster but also involves more
complex interactions between the devices. Moreover, the
average memory utilization of the applications recorded during
tests appears in Fig. 6. The DPWS applications (developed
with WS4D-JMEDS) had a bigger memory footprint than their
CoAP and MQTT counterparts (developed with Californium
and Paho, respectively), with the MQTT variants having a
slight advantage over the CoAP ones.

Lastly, there is, as expected by studying the corresponding

specifications, a significant difference in terms of packet size
between DPWS and the other two protocols. To assess the
exact variance in the context of our application, we focused on
a specific interaction with a minimum payload: a “Permit”
message that the PDP sends to the PEP, after positively
evaluating a request, based on the applicable policies. By
capturing the corresponding network packet for each of the
protocols, we recorded a total packet size (i.e. including all
headers, as it appears “on the wire”) of 849 bytes in the case of
DPWS, 58 bytes for CoAP and 80 bytes for MQTT. Also note
that, in the MQTT application, there are twice as many
messages sent compared to the other applications (8, instead of
4), as all interactions have to go through the Broker, who
essentially resends the message to the subscribed parties.

V. DISCUSSION & FUTURE WORK
Our goal in this work was not to just to assess the

performance of each solution – an aspect that can be gathered
from studying the specifications and the related work. Instead,
our approach aimed to also highlight how the intricacies of
each protocol (different protocol design approaches, different
supported features etc.) dictate different design decisions (e.g.
in terms of architectures, entity interactions, and device
deployment.

Thus, performance-aside, DPWS was the benchmark in
terms of the ease in designing the framework. Its robust and
flexible discovery, subscription and eventing mechanisms
meant that the entities and their interactions could be designed
in an intuitive manner. This is also true for the end application,
as it is the most hassle-free variant from the end users’
perspective; minimal setup is required and the entities discover
each other and interact seamlessly, no matter where they are
deployed on the network. CoAP was intuitive to work with,
especially considering that as most developers nowadays have
experience with RESTful applications. Still, careful study of
the protocol and its limitations (theoretical and/or in terms
what is supported in the existing APIs) is needed, as it is not as
mature as the other two protocols considered. Lastly, MQTT’s
lack of synchronous interaction support, meant that we had to
follow a not so “elegant” approach in designing the entities’
interactions, with too many interactions happening in order to
bypass the limitation of only supporting asynchronous
interactions that have to be routed through a Broker. In
summary, the protocol choice necessitates careful
consideration of the target application, as no ideal protocol
exists; some protocols have more features and are more mature
than the alternatives, while others are more lightweight, some
are ideally suited to aggregating data from a variety of sensors,
while others are better suited for end-user (e.g. consumer)
applications, etc.

Nevertheless, a complex deployment can use more than one
protocol. Moreover, the development of a custom protocol
could be investigated. An approach to be considered, and one
that does not fully sacrifice interoperability with existing
solutions, could be to combine one or more protocols,
delegating to each one a task that it’s more suited for. Thus, for
example, CoAP could be used for the lightweight M2M
interactions it can provide, MQTT for the cross-domain
communications and the SOA-based approach of DPWS could

be used for M2H interactions (to leverage the ubiquity of web
service support in all human-operated devices) – an approach
we intend to explore in future work.

ACKNOWLEDGMENT
Part of this work was funded by the European Union’s

Horizon 2020 research and innovation programme Virtuwind,
Grant Agreement No: 671648.

REFERENCES
[1] D. Driscoll, A. Mensch, T. Nixon, and A. Regnier, “Devices profile for

web services, version 1.1,” OASIS, 2009. [Online]. Available:
http://docs.oasis-open.org/ws-dd/dpws/wsdd-dpws-1.1-spec.pdf.

[2] T. Nixon, “UPnP Forum and DPWS Standardization Status,” 2008.
[Online]. Available:
http://download.microsoft.com/download/f/0/5/f05a42ce-575b-4c60-
82d6-208d3754b2d6/UPnP_DPWS_RS08.pptx.

[3] V. Venkatesh, V. Vaithayana, P. Raj, K. Gopalan, and R. Amirtharaj, “A
Smart Train Using the DPWS-based Sensor Integration,” Res. J. Inf.
Technol., vol. 5, no. 3, pp. 352–362, Mar. 2013.

[4] T. Cucinotta, A. Mancina, G. F. Anastasi, G. Lipari, L. Mangeruca, R.
Checcozzo, and F. Rusina, “A Real-Time Service-Oriented Architecture
for Industrial Automation,” IEEE Trans. Ind. Informatics, vol. 5, no. 3,
pp. 267–277, Aug. 2009.

[5] S. Pöhlsen, S. Schlichting, M. Strähle, F. Franz, and C. Werner, “A
DPWS-Based Architecture for Medical Device Interoperability,” in
World Congress on Medical Physics and Biomedical Engineering,
September 7 - 12, 2009, Munich, Germany SE - 22, vol. 25/5, O. Dössel
and W. Schlegel, Eds. Springer Berlin Heidelberg, 2009, pp. 82–85.

[6] K. Fysarakis, I. Papaefstathiou, C. Manifavas, K. Rantos, and O.
Sultatos, “Policy-based access control for DPWS-enabled ubiquitous
devices,” in Proceedings of the 2014 IEEE Emerging Technology and
Factory Automation (ETFA), 2014, pp. 1–8.

[7] R. R. Igorevich, P. Park, J. Choi, and D. Min, “iVision based Context-
Aware Smart Home system,” in The 1st IEEE Global Conference on
Consumer Electronics 2012, 2012, pp. 542–546.

[8] Z. Shelby, K. Hartke, and C. Bormann, "The constrained application
protocol (CoAP)", 2014. https://tools.ietf.org/html/rfc7252.

[9] O. Bergmann, K. T. Hillmann and S. Gerdes, "A CoAP-gateway for
smart homes," Computing, Networking and Communications (ICNC),
2012 International Conference on, Maui, HI, 2012, pp. 446-450.

[10] S. M. Chun and J. T. Park, "Mobile CoAP for IoT mobility
management," Consumer Communications and Networking Conference
(CCNC), 2015 12th Annual IEEE, Las Vegas, NV, 2015, pp. 283-289.

[11] A. Betzler, C. Gomez, I. Demirkol and M. Kovatsch, "Congestion
control for CoAP cloud services," Emerging Technology and Factory
Automation (ETFA), 2014 IEEE, Barcelona, 2014, pp. 1-6.

[12] H. A. Khattak, M. Ruta and E. Di Sciascio, "CoAP-based healthcare
sensor networks: A survey," Applied Sciences and Technology
(IBCAST), 2014 11th International Bhurban Conference on, Islamabad,
2014, pp. 499-503.

[13] A. Zanella, N. Bui, A. Castellani, L. Vangelista and M. Zorzi, "Internet
of Things for Smart Cities," in IEEE Internet of Things Journal, vol. 1,
no. 1, pp. 22-32, Feb. 2014.

[14] C. P. Kruger and G. P. Hancke, "Implementing the Internet of Things
vision in industrial wireless sensor networks," Industrial Informatics
(INDIN), 2014 12th IEEE International Conference on, Porto Alegre,
2014, pp. 627-632.

[15] A. Banks, R. Gupta, OASIS Message Queuing Telemetry Transport
(MQTT), version 3.1.1, OASIS. (2014) 1-81. http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.pdf.

[16] D. Barata, G. Louzada, A. Carreiro, and A. Damasceno, "System of
acquisition, transmission, storage and visualization of Pulse Oximeter
and ECG data using Android and MQTT". Procedia Technology, 9,
1265-1272, 2013.

[17] Y. F. Gomes, D. F. S. Santos, H. O. Almeida and A. Perkusich,
"Integrating MQTT and ISO/IEEE 11073 for health information sharing
in the Internet of Things," Consumer Electronics (ICCE), 2015 IEEE
International Conference on, Las Vegas, NV, 2015, pp. 200-201.

[18] P. Papageorgas, D. Piromalis, T. Iliopoulou, K. Agavanakis, M.
Barbarosou, K. Prekas, K. Antonakoglou, “Wireless Sensor Networking
Architecture of Polytropon: An Open Source Scalable Platform for the
Smart Grid”, Energy Procedia, Volume 50, Pages 270-276, 2014.

[19] Seong-Min Kim, Hoan-Suk Choi and Woo-Seop Rhee, "IoT home
gateway for auto-configuration and management of MQTT devices,"
Wireless Sensors (ICWiSe), 2015 IEEE Conference on, Melaka, 2015,
pp. 12-17.

[20] J. E. Luzuriaga, J. C. Cano, C. Calafate, P. Manzoni, M. Perez and P.
Boronat, "Handling mobility in IoT applications using the MQTT
protocol," Internet Technologies and Applications (ITA), 2015,
Wrexham, 2015, pp. 245-250.

[21] D. Davis, A. Karmarkar, G. Pilz, S. Winkler, and U. Yalcinalp, “Web
Services Reliable Messaging (WS-ReliableMessaging) Version 1.2,”
Oasis Standard, 2009. [Online]. Available: http://docs.oasis-
open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.pdf.

[22] V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego, and J. Alonso-
Zarate, “A Survey on Application Layer Protocols for the Internet of
Things,” Trans. IoT Cloud Comput., vol. 3, no. 1, pp. 11–17, 2015.

[23] G. Cândido, F. Jammesy, J. B. De Oliveira, and A. W. Colomboz, “SOA
at device level in the industrial domain: Assessment of OPC UA and
DPWS specifications,” in IEEE International Conference on Industrial
Informatics (INDIN), 2010, pp. 598–603.

[24] N. De Caro, W. Colitti, K. Steenhaut, G. Mangino, and G. Reali,
“Comparison of two lightweight protocols for smartphone-based
sensing,” in 2013 IEEE 20th Symposium on Communications and
Vehicular Technology in the Benelux (SCVT), 2013, pp. 1–6.

[25] D. Thangavel, X. Ma, A. Valera, H.-X. Tan, and C. K.-Y. Tan,
“Performance evaluation of MQTT and CoAP via a common
middleware,” in 2014 IEEE Ninth International Conference on
Intelligent Sensors, Sensor Networks and Information Processing
(ISSNIP), 2014, pp. 1–6.

[26] L. Durkop, B. Czybik, and J. Jasperneite, “Performance evaluation of
M2M protocols over cellular networks in a lab environment,” in 2015
18th International Conference on Intelligence in Next Generation
Networks, 2015, pp. 70–75.

[27] M. Collina, G. E. Corazza, and A. Vanelli-Coralli, “Introducing the
QEST broker: Scaling the IoT by bridging MQTT and REST,” in IEEE
International Symposium on Personal, Indoor and Mobile Radio
Communications, PIMRC, 2012, pp. 36–41.

[28] S. Han, S. Park, G. M. Lee, and N. Crespi, “Extending the Device
Profile for Web Services (DPWS) standard using a REST Proxy,” IEEE
Internet Comput., pp. 1–1, 2014.

[29] G. Moritz, F. Golatowski, and D. Timmermann, “A Lightweight SOAP
over CoAP Transport Binding for Resource Constraint Networks,” in
2011 IEEE Eighth International Conference on Mobile Ad-Hoc and
Sensor Systems, 2011, pp. 861–866

[30] OWASP, “Internet of Things Top Ten Project,” Open Web Application
Security Project (OWASP). [Online]. Available:
https://www.owasp.org/index.php/OWASP_Internet_of_Things_Top_T
en_Project.

[31] Fysarakis, K., Konstantourakis, C., Rantos, K., Manifavas, C., &
Papaefstathiou, I. (2015). WSACd-A Usable Access Control Framework
for Smart Home Devices. In Information Security Theory and Practice
(pp. 120-133). Springer International Publishing.

[32] B. Parducci, H. Lockhart, and E. Rissanen, “eXtensible Access Control
Markup Language (XACML) Version 3.0,” OASIS Standard, 2013.
[Online]. Available: http://docs.oasis-open.org/xacml/3.0/xacml-3.0-
core-spec-cs-01-en.pdf.

[33] T. A. Alghamdi, A. Lasebae, and M. Aiash, “Security analysis of the
constrained application protocol in the Internet of Things,” in Second
International Conference on Future Generation Communication
Technologies (FGCT 2013), 2013, pp. 163–168.

