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Abstract—Computing devices already permeate working and 
living environments, while researchers and engineers aim to 
exploit the potential of pervasive systems in order to introduce 
new types of services and address inveterate and emerging 
problems. This process will lead us eventually to the era of urban 
computing and the Internet of Things (IoT). However, the long-
promised improvements require overcoming some significant 
obstacles introduced by these technological advancements. One 
such obstacle is the lack of interoperable solutions, to facilitate 
the use, monitoring and management of the plethora of devices 
and their services. While seamless machine-to-machine (M2M) 
and human-to-machine (H2M) interactions are a necessity for 
secure and truly ubiquitous computing, the current status quo is 
that of a segregated and incompatible assortment of devices. The 
resource-constraints of the platforms integrated into smart 
environments, and their heterogeneity in hardware, network and 
overlaying technologies, only exacerbate these interoperability 
issues. Motivated by the above, this paper identifies three 
promising, standardized protocols, each following a different 
approach in addressing the above concerns. We evaluate the 
selected protocols in the context of designing and implementing 
an application requiring various M2M interactions, namely a 
policy-based access control framework for IoT devices. Thus, 
three variants of the application are developed, considering each 
protocol’s intrinsic characteristics and features. Finally, the 
developed applications are evaluated on a common testbed of 
embedded devices, allowing us to extract useful conclusions 
concerning the protocols’ performance, their intricacies and their 
applicability in similar applications. 

Keywords— Internet of things; Ubiquitous computing; M2M; 
Policy-based access control; Authorization; DPWS; CoAP; MQTT; 
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I. INTRODUCTION 
Advances in computing and communication technologies 

have enabled a new reality where interconnected computing 
systems, in various forms, are constantly gaining popularity, 
permeating our environments and aiming to enhance all aspects 

of our everyday lives. The IP-based connectivity of devices, 
systems and services, which goes beyond the traditional 
human-to-machine (H2M) and machine-to-machine (M2M) 
interactions, is labeled the Internet of Things (IoT). Ubiquitous 
computing devices, featuring sensors and actuators, are already 
deployed in a variety of domains (residential/home automation, 
industrial systems, military, e-textiles, healthcare and 
automobiles, among others). Nevertheless, while existing 
networking and security mechanisms are updated and adapted 
to handle the vast population of IoT devices, higher level, 
seamless M2M and H2M interactions, are another important 
requirement in order to effectively monitor and manage the 
infrastructure, allowing the use of its full potential. End-users 
typically do not possess the skills to configure and setup the 
devices that may be found in smart environments; in large-
scale deployments, individually setting up devices is not even 
feasible. From the perspective of implementers, there is a need 
for rapid development and deployment, while simultaneously 
tackling issues of scaling and inherent limitations in terms of 
resources (CPU, memory, power etc.). However, at its current 
state, the ubiquitous computing landscape is segregated, 
consisting of numerous proprietary solutions, which are 
typically incompatible with each other. This makes setting up, 
managing and securing a smart device ecosystem, significantly 
challenging.  

Various “IoT protocols” aim to address these issues, while 
standardization initiatives try to guarantee interoperability, 
through the wide and structured deployment of the proposed 
mechanisms. Motivated by the above issues and associated 
efforts, this paper identifies three prominent approaches to 
providing seamless and lightweight IoT interactions, 
highlighting a representative, standardized protocol for each of 
these approaches. Moreover, an application featuring M2M 
interactions is selected, designing and implementing the 
required entities and interactions, while adapting them to the 
intricacies of each protocol. Finally, the developed solutions 



are deployed and evaluated on a common testbed, allowing 
valuable conclusion to be extracted. 

This paper is organized as follows: Section II presents the 
protocols and compares their features; Section III details the 
application that was used to assess the protocols, along with the 
intricacies of each protocol-specific implementation; Section 
IV presents the evaluation results; and Section V closes the 
paper with some concluding remarks and pointers to future 
work.  

II. THE PROTOCOLS 
Surveying the academic literature and the web, reveals a 

plethora of protocols aiming to unify IoT devices and 
applications; some are still in their infancy, some are openly 
available, some are proprietary, and there are also significant 
efforts to standardize some protocols. Nevertheless, three main 
approaches seem to have gained the most traction at this stage, 
both in terms of research efforts, and in terms of actual 
applications being already provided to end users. These 
approaches are detailed in the subsections below. 

A. Service-oriented Approach – The Devices Profile for Web 
Services Protocol 
Service Oriented Architectures (SOAs) provide an 

attractive option for IoT node interactions, as web services 
allow stakeholders to focus on the services themselves, rather 
than the underlying hardware and network technologies. When 
examining SOAs, the Devices Profile for Web Services 
(DPWS, [1]) stands out. It was introduced in 2004 by a 
consortium led by Microsoft and is now an OASIS open 
standard (at version 1.1 since July 2009). DPWS was originally 
conceived and introduced as a successor to UPnP, but 
nowadays is actively pushed by industry stakeholders as the 
solution of choice for large-scale enterprise (e.g. industrial) 
deployments [2]. Like UPnP, DPWS is natively integrated into 
the various versions of the Windows operating system. The 
specification defines a minimal set of implementation 
constraints to enable secure Web Service messaging, including 
discovery, description, synchronous (via operation invocations) 
and asynchronous (via subscription and event-driven changes) 
interactions on resource-constrained devices. The profile’s 
architecture includes hosting and hosted services. A single 
hosting service is associated with each device while the same 
device may accommodate various hosted services. The latter 
represent the device’s various functional elements and rely on 
the hosting service for discovery. DPWS enables the adoption 
of a SOA approach on embedded and sensor devices with 
limited resources, allowing system owners to leverage the SOA 
benefits across heterogeneous systems that may be found in 
smart environments. The use and benefits of DPWS have been 
studied extensively in the context of various applications areas, 
which, other than the ones already mentioned, include 
automotive and railway systems [3], industrial automation [4], 
eHealth [5], smart cities [6]  and smart homes [7]. 

B. Resource-oriented Approach – The Constrained 
Application Protocol 
Another interesting approach for IoT interactions is the use 

of protocols following the Representational State Transfer 
(REST) architecture, which currently dominates the World 
Wide Web. RESTful implementations typically use the 
Hypertext Transfer Protocol (HTTP), but the latter is not 
appropriate for IoT applications, when considering the 
resource, bandwidth and energy restrictions of the target 
devices. Thus, the Internet Engineering Task Force (IETF) 
Constrained RESTful environments (CoRE) Working Group 
presented the Constrained Application Protocol (CoAP, [8]), 
now an IETF standard. CoAP is a specialized web transfer 
protocol for use with constrained nodes and constrained 
networks in the Internet of Things, aiming to maintain 
compatibility with the existing Internet infrastructure, through 
simple proxies. The protocol is often referred to as “the HTTP 
for the Internet of Things”. It follows a request/response 
model, where a client may interact with the server using a 
subset of the HTTP methods, namely using GET, PUT, POST 
and DELETE on the server’s resources. The protocol features 
two layers: the "Transaction layer" responsible for single 
message exchange between end points and the 
"Request/Response layer" which is responsible for 
request/response transmission and resource management; thus 
providing reliability mechanisms and basic congestion control. 
Moreover, basic publish/subscribe interactions are also 
supported, as, by extending the HTTP GET method, a client 
can “observe” a specific resource. There is significant research 
interest in CoAP, with numerous efforts to leverage its 
extremely lightweight interactions in domains such as smart 
homes [9], mobile IoT deployments [10], cloud services [11], 
healthcare [12], smart cities [13] and industrial WSNs [14]. 

C. Message-oriented Approach – The MQ Telemetry 
Transport Protocol 
Message-oriented protocols typically focus on providing 

asynchronous data transfers between distributed devices. Their 
focus is on reliable messaging, including message buffers and 
Quality of Service (QoS) facilities, controlled by centralized 
entities. The MQ Telemetry Transport (MQTT, [15]) is one 
such message-oriented protocol, introduced by IBM in 1999 
and recently standardized by OASIS, as the IoT developments 
brought it back into the limelight. It is also standardized as 
ISO/IEC 20922 1 . MQTT was designed as an extremely 
lightweight publish/subscribe messaging transport, for small 
sensors and mobile devices, optimized for high-latency or 
unreliable networks. An MQTT Broker is responsible for 
handling and organizing all communications between the 
various devices. Messages are published with specific “topics”, 
and each client can subscribe to various topics (though the 
Broker may require username/password authentication before 
allowing subscription). Topics are organized in a hierarchical 
manner, like the folder structure in a file system; e.g. 
“home/kitchen/oven/temperature” could be a topic where a 
device can subscribe to get updates on the oven’s temperature. 
When a client publishes a message, the Broker then relays this 
message to all clients subscribed to the message’s topic. Thus, 

                                                           
1 http://www.iso.org/iso/catalogue_detail.htm?csnumber=69466 



all interactions are asynchronous and clients only communicate 
directly with the Broker. As with the previous protocols, 
researchers have already studied MQTT in a variety of 
domains, including eHealth applications [16][17], WSNs and 
smart grid [18], smart homes [19] and also mobile IoT contexts 
[20], among others. 

D. Comparison & Related Work 
DPWS, CoAP and MQTT share some important 

characteristics which make them good candidates for IoT 
applications, and which motivated us to consider them for this 
comparison. More specifically, all three protocols: are open 
standards with significant traction in the research community 
and the industry; are designed with constrained environments 
in mind; can offer seamless M2M interactions; run on IP; and 
have a range of implementations readily available to 
developers and researchers alike. Nevertheless, as each follows 
a different approach to provide entity interactions, the 
protocols are, in many aspects, very different from each other.  

While CoAP messages are transported over UDP, MQTT 
relies on TCP, and DPWS uses a combination of both (TCP for 
the bulk of the device interactions, and UDP for device 
discovery and other auxiliary functions); with each protocol 
inheriting different characteristics from the underlying 
transport mechanisms. This also affects the available security 
mechanisms, with DPWS and MQTT deployments supporting 
the use of TLS, and CoAP applications supporting DTLS. In 
the case of DPWS, the mechanisms detailed in the WS-
Security specification are also applicable, as with any other 
Web Services deployment. MQTT is suited, by design, for 
publish/subscribe interactions, CoAP also has support for 
observing resources, partly covering such functionality, but it is 
better suited for synchronous interactions, instead of event-
based ones. DPWS is more flexible in this regard, as the WS-
Eventing specification enables a feature-rich publish/subscribe 
functionality, including interactions that are triggered at pre-
defined intervals and/or when a specific event takes place. 
Moreover, QoS is an important aspect in MQTT, with the 
protocol supporting three different modes of message delivery 
(“Fire and forget”, “Delivered at least once” and “Delivered 
exactly once”), whereas CoAP only offers a rudimentary 
choice between “Confirmable” and “Non-confirmable” 
messages. The former have to be acknowledge by the received 
with an ACK packet, in applications where it is necessary to 
cater for UDP’s unreliable transport. DPWS has no such 
features built-in, relying solely on TCP’s delivery mechanisms. 
Various extensions enhance the reliability and QoS features of 
Web Services (e.g.  [21]), but these have not been integrated 
into DPWS yet.  

A detailed theoretical comparison of the protocols is 
beyond the scope of this work, which aims to highlight 
differences that may not necessarily stand out on paper, but 
become evident when trying to use the protocols in an actual 
implementation. This is an aspect missing from the current 
literature, which mostly focuses on theoretical comparisons of 
various protocols or detailed comparisons focusing on specific 
protocol aspects such as packet loss. A high level survey of IoT 
protocols can be found in [22], though DPWS is not included 
in the comparison. Authors in [23], have compared DPWS to 

OPC-UA, a WS-based version of protocols typically used in 
the industrial domain. A hands-on comparison of CoAP and 
MQTT, in the context of a smartphone-based application, can 
be found in [24]. Authors in [25] have also compared the two 
protocols, using a common middleware which allowed them to 
assess the protocols’ behavior in changing network conditions 
(as in scenarios with high packet loss). Another lab-based 
comparison of CoAP and MQTT, along with OPC-UA, in the 
context of communications over cellular networks, can be 
found in [26]. Finally, there is a significant body of work in the 
literature aiming to combine various IoT protocols. A custom 
Broker that support both CoAP and MQTT, bridging the two 
protocols, is presented in [27]. Researchers have also tried to 
bridge DPWS with RESTful architectures [28] and CoAP in 
specific [29]. A direct comparison of DPWS, CoAP and 
MQTT is missing altogether from the literature, to the best of 
our knowledge. 

III. THE APPLICATION - ACCESS CONTROL FRAMEWORK 
The expanded attack surface that results from the 

integration of the numerous smart devices around us with the 
Internet, needs new or adapted mechanisms to mitigate these 
new threats. The Open Web Application Security Project 
(OWASP) organization includes “Insufficient 
Authentication/Authorization” in the second place of its list of 
top ten security problems identified on IoT devices [30], 
preceded only by the use of “Insecure Web Interfaces”. Such 
negligence in terms of proper authorization is bound to inhibit 
any efforts made towards using these pervasive devices to 
handle our personal sensitive data 

Aiming to address the above concerns, we have presented a 
policy-based access control framework for smart ubiquitous 
devices [6][31]. Based on the OASIS-standardized eXtensible 
Access Control Markup Language (XACML, [32]), the 
proposed solution provides the means to control access to the 
resources of IoT nodes, based on policy constraints centrally 
managed by the system owner. While XACML defines the 
structure and content of access requests & responses, it 
provides no information on the mechanisms for transferring 
these messages. Typical XACML deployments require the 
setup of complex infrastructures to enable entities' interaction 
and policy retrieval (e.g. via LDAP); an approach not suitable 
in the context of IoT applications and the average user. To 
overcome this limitation, the policy-based framework could 
leverage the benefits of IoT protocols, gaining seamless 
Machine-to-Machine (M2M) discovery and interactions, and 
allowing the deployment of the framework's entities to any 
platform, anywhere on the network, with minimal involvement 
on behalf of the users. Thus, we decided to assess the 
applicability and performance of the selected protocols in the 
context of designing and implementing said authorization 
framework for IoT devices. To achieve this, three different 
implementations of the framework and its entities were 
developed, using each of the investigated protocols. 

The framework’s key entities that had to be implemented, 
were the following: a Policy Enforcement Point (PEP) which 
makes decision requests and enforces authorization decisions; a 
Policy Decision Point (PDP) which evaluates requests against 
applicable policies and renders an authorization decision; a 



 
Policy Administration Point (PAP) which creates/manages 
policies or policy sets; and a Policy Information Point (PIP) 
acts as a source of attribute values. 

As an example of the framework’s flow of interactions, 
consider the case of a person who owns a smart thermostat. 
The thermostat is a device that hosts a service which supports 
multiple operations such as setting the target temperature, 
selecting operation mode, enabling power save, getting the 
current status or even events such as notifications when the 
temperature in the room changes, or the target temperature has 
been reached. As soon as the available device and its service 
are discovered, a guest in the house can request access to the 
node that is of particular interest, e.g. in order to extract the 
latest values from the temperature sensor attached to it. The 
guest’s request is intercepted by the node’s PEP module which 
then forwards the request to the PDP, the latter running on the 
house owner’s trusted device. The PDP has to consider all 
applicable policies, enriched by any relevant information, from 
the PIP/PAP. Once all the required information has been 
collected, the PDP issues a decision which is sent back to the 
node’s PEP. Based on that decision the PEP may or may not 
allow the guest to access said nodes data of interest. 

A. Implementation 
Differentiations between the variants were kept to a 

minimum, where possible, to avoid masking the performance 
differences during the evaluation phase. Thus, Sun’s XACML 
engine was the basis for all access control implementations; a 
choice that remains popular among developers and is actually 
the basis of various current open source and commercial 
offerings. Moreover, while there is a variety of APIs, based on 
different programming languages, for all three protocols, the 
devices were developed using solely open source, Java-based 
APIs. These were typically the most mature and feature-rich of 
the available options for each protocol, and, moreover, offer 
platform-agnostic implementations that can be easily be moved 
between hardware platforms; an important benefit in the 
context of heterogeneous IoT platforms. Nevertheless, the 
exact M2M interactions had to be adapted to the intricacies of 
each protocol, as will be presented in the subsections below. 
The description of each implementation will only cover the 
interactions taking place when a client invokes a resource; the 
setup process (e.g. device discovery, subscription to 
events/topics etc.) is not included, for simplicity. 

1) DPWS-based Framework 
A survey on APIs for DPWS development reveals a 

plethora of available solutions with diverse characteristics. 
Still, when focusing on key features such as code portability, 
support for IPv6 (necessary for IoT applications) and active 
development and support of the tools, the valid options are 
actually fewer, with WS4D-JMEDS2  standing out as the most 
attractive choice, being constantly updated and improved. The 
flexibility and feature-rich functionality of the protocol meant 
there were no significant restrictions when designing the 
framework and its entities’ interactions. Therefore, exploiting 
the discovery and publish/subscribe features of DPWS, the 
PDP subscribes to the “SAReq” eventing operation of any 

                                                           
2 http://ws4d.org/jmeds 

 
Fig. 1. Sequence Diagram of DPWS Variant 

 
 

 
Fig. 2. Sequence Diagram of CoAP Variant 

 

Fig. 3. Sequence Diagram of MQTT Variant 



Fig. 4. Evaluation Setup 

PEP-equipped device that joins the network. This event is fired 
as soon as a client tries to access a protected resource on the 
device, relaying the necessary information to the PDP. The 
PDP then invokes the “PolicyReq” operation on the PIP/PAP, 
getting the applicable policies in reply. Having all the required 
information, the PDP evaluates the policies and issues a 
decision, and then invokes the “SAResp” operation on the PEP 
to inform it of its decision. Depending on said decision, the 
device either allows or denies access to the client. This 
sequence of events appears in Fig. 1. 

2) CoAP-based Framework 
There are numerous CoAP libraries available to developers, 

many being platform-specific, i.e. focusing on specific devices. 
Our implementation was based on the most popular Java-based 
option, the open-source Californium 3  API, provided by the 
Eclipse Foundation. There were two obstacles when designing 
the CoAP-based framework. Firstly, due to the nature of its 
transport protocols, there are limitations with regard to the 
reliability of the “observe” mechanism, so we cannot use it 
inform the PDP of requests coming to the PEP, as in the case 
of the subscription in the DPWS implementation. As stated in 
its RFC [8], the mechanism was designed with the “principle of 
eventual consistency”, and a client cannot rely on observing 
every single state that a resource might go through. This is not 
tolerable in our application, as we want to be sure all requests 
reach the PDP for evaluation. Secondly, CoAP’s discovery 
features are restricted (esp. since DTLS does not support 
multicast UDP messages [33]), prohibiting a consistent 
automated discovery, as in DPWS above. Thus, for the CoAP 
implementation of the authorization framework, we focused on 
using simpler POST-based interactions between the entities, 
with the access control –related operations being exposed as 
resources on the devices’ endpoints (e.g. “PDP/SAReq”), as 
depicted in Fig. 2. 

3) MQTT-based Framework 
For the MQTT implementation we used Paho4, the Eclipse 

Foundation’s API for MQTT clients, which provides open-
source client implementations of open and standard messaging 
protocols. It has a rich documentation and examples for many 
languages that the client is implemented. As a Broker, we used 
Mosquito 5  which is an Open Source MQTT v3.1/v3.1.1 
Broker. As in MQTT everything has to go through the Broker, 
the implementation had to be modified accordingly: all 
interactions were defined as message posting to the 
corresponding topics, with the Broker being responsible to 
deliver these messages to the intended recipient. Each of the 
framework’s operations features its own hierarchical topic (e.g. 
“/PDP/SAReq”), to ensure that all the entities get the messages 
intended for them. The sequence of interactions appears in Fig. 
3. 

IV. EVALUATION RESULTS 
A common test bed, featuring relatively resource-

constrained embedded devices, was used to compare the 

                                                           
3 http://www.eclipse.org/californium 
4 https://eclipse.org/paho 
5 http://mosquitto.org 

performance of the three implementation variants of our 
application (i.e. the access control framework). In more detail, 
the PEP-equipped target device (i.e. the device providing the 
actual service to be accessed) was deployed on a Beaglebone, a 
low-cost credit-card-sized device, running a compact Linux-
based operating system. It uses an ARM Cortex-A8 single core 
CPU running at 720MHz (throttled at 500MHz during testing) 
with 256MB DDR2 RAM. The test-bed for the Service 
Orchestrator was a similar, but slightly more powerful and 
versatile, Beagleboard-xM embedded platform, featuring an 
1GHz ARM Cortex-A8 processor (throttled to run at 600MHz 
during testing) and 512MB DDR2 RAM, also running a 
minimal Linux-based operating system. The access control 
infrastructure entities, i.e. the PDP and PIP/PAP, were 
deployed on a desktop system (Core i5 CPU at 3.3GHz, 8GB 
DDR3 RAM), as these are expected to run on more resource-
rich devices (e.g. the main system used to control and 
configure our smart home). This system also hosted the Broker 
needed in the case of the MQTT setup. Finally, the client 
application was run on a laptop computer, which was 
programmed to automatically invoke the resources of the 
device. The client-side response time of 100 consecutive 
requests to the protected devices was monitored for 
benchmarking purposes, along with various other parameters 
on the embedded devices (i.e. the Beaglebone featuring the 
PEP and the Beagleboard xM assigned with the PDP 
functionality. Finally, all systems were interconnected via 
wired Ethernet to minimize the network’s impact on the 
reported performance figures. The setup for all three variants of 
the framework appears in Fig. 4. 

One of the most important aspects compared during 
benchmarking was the client-side response time, as this refers 
to the delay a user would experience in each case when trying 
to access the protected resource (e.g. the temperature of a smart 
thermostat). The recorded times, averaged over 100 requests, 
were 130.6ms for DPWS, 100.3ms for CoAP and 97.84ms for 
MQTT. As is evident from these results, the CoAP- and 
MQTT- based variants of the framework performed 
equivalently in this regard, with their DPWS counterpart 
needing about 30% more time to respond. Further analyzing 
the response times reveals that in all cases, the bulk (i.e. 60-
70%) of the delay can be attributed to the Client-Device (i.e. 
PEP-PDP) communication, which also includes the time 



Fig. 5. Average CPU Load (%) on Embedded Devices 

Fig. 6. Average Memory Utilization (kB) on Embedded Devices 

needed for the PDP to issue a decision on the evaluated access 
request. The latter gives a bottom barrier to the delay a client 
can experience, and is irrelevant to the protocol used, as it is 
inherent to the specific application (more specifically, the 
policy evaluation mechanism of XACML), and beyond the 
scope of this work to analyze and improve. 

Moving to the embedded devices hosting the PEP and PDP, 
the CPU load and memory footprint of each application was 
monitored during the benchmarks. Results from the backend 
desktop system are omitted, as the presence of the PIP/PAP 
applications (and the Broker, in the case of the MQTT 
deployment) had, in the context of its significant computing 
capabilities, no notable impact on resource utilization. The 
average CPU load recorded for each protocol and each device 
appear in Fig. 5, where it is evident that the MQTT and CoAP 
applications had a bigger impact on the devices’ resources 
during testing. As these variants of the framework have a lower 
response time compared to DPWS, a higher load is imposed to 
the devices under test, since they handle more requests (and the 
associated interactions) per unit of time. The MQTT 
framework is even more load-intensive than its CoAP 
counterpart, as it is slightly faster but also involves more 
complex interactions between the devices. Moreover, the 
average memory utilization of the applications recorded during 
tests appears in Fig. 6. The DPWS applications (developed 
with WS4D-JMEDS) had a bigger memory footprint than their 
CoAP and MQTT counterparts (developed with Californium 
and Paho, respectively), with the MQTT variants having a 
slight advantage over the CoAP ones. 

Lastly, there is, as expected by studying the corresponding 

specifications, a significant difference in terms of packet size 
between DPWS and the other two protocols. To assess the 
exact variance in the context of our application, we focused on 
a specific interaction with a minimum payload: a “Permit” 
message that the PDP sends to the PEP, after positively 
evaluating a request, based on the applicable policies. By 
capturing the corresponding network packet for each of the 
protocols, we recorded a total packet size (i.e. including all 
headers, as it appears “on the wire”) of 849 bytes in the case of 
DPWS, 58 bytes for CoAP and 80 bytes for MQTT. Also note 
that, in the MQTT application, there are twice as many 
messages sent compared to the other applications (8, instead of 
4), as all interactions have to go through the Broker, who 
essentially resends the message to the subscribed parties. 

V. DISCUSSION & FUTURE WORK 
Our goal in this work was not to just to assess the 

performance of each solution – an aspect that can be gathered 
from studying the specifications and the related work. Instead, 
our approach aimed to also highlight how the intricacies of 
each protocol (different protocol design approaches, different 
supported features etc.) dictate different design decisions (e.g. 
in terms of architectures, entity interactions, and device 
deployment. 

Thus, performance-aside, DPWS was the benchmark in 
terms of the ease in designing the framework. Its robust and 
flexible discovery, subscription and eventing mechanisms 
meant that the entities and their interactions could be designed 
in an intuitive manner. This is also true for the end application, 
as it is the most hassle-free variant from the end users’ 
perspective; minimal setup is required and the entities discover 
each other and interact seamlessly, no matter where they are 
deployed on the network. CoAP was intuitive to work with, 
especially considering that as most developers nowadays have 
experience with RESTful applications. Still, careful study of 
the protocol and its limitations (theoretical and/or in terms 
what is supported in the existing APIs) is needed, as it is not as 
mature as the other two protocols considered. Lastly, MQTT’s 
lack of synchronous interaction support, meant that we had to 
follow a not so “elegant” approach in designing the entities’ 
interactions, with too many interactions happening in order to 
bypass the limitation of only supporting asynchronous 
interactions that have to be routed through a Broker. In 
summary, the protocol choice necessitates careful 
consideration of the target application, as no ideal protocol 
exists; some protocols have more features and are more mature 
than the alternatives, while others are more lightweight, some 
are ideally suited to aggregating data from a variety of sensors, 
while others are better suited for end-user (e.g. consumer) 
applications, etc.  

Nevertheless, a complex deployment can use more than one 
protocol. Moreover, the development of a custom protocol 
could be investigated. An approach to be considered, and one 
that does not fully sacrifice interoperability with existing 
solutions, could be to combine one or more protocols, 
delegating to each one a task that it’s more suited for. Thus, for 
example, CoAP could be used for the lightweight M2M 
interactions it can provide, MQTT for the cross-domain 
communications and the SOA-based approach of DPWS could 



be used for M2H interactions (to leverage the ubiquity of web 
service support in all human-operated devices) – an approach 
we intend to explore in future work. 
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