
A Robust SRAM-PUF Key Generation Scheme
Based on Polar Codes

Bin Chen, Tanya Ignatenko, Frans M.J. Willems
Eindhoven University of Technology

Eindhoven, The Netherlands
Email: {b.c.chen, t.ignatenko, f.m.j.willems}@tue.nl

Roel Maes, Erik van der Sluis, Georgios Selimis
Intrinsic-ID, Eindhoven, The Netherlands

Email: {roel.maes, erik.van.der.sluis,
georgios.selimis}@intrinsic-id.com

Abstract—Physical unclonable functions (PUFs) are relatively
new security primitives used for device authentication and
device-specific secret key generation. In this paper we focus
on SRAM-PUFs. The SRAM-PUFs enjoy uniqueness and ran-
domness properties stemming from the intrinsic randomness of
SRAM memory cells, which is a result of manufacturing varia-
tions. This randomness can be translated into the cryptographic
keys thus avoiding the need to store and manage the device
cryptographic keys. Therefore these properties, combined with
the fact that SRAM memory can be often found in today’s IoT
devices, make SRAM-PUFs a promising candidate for securing
and authentication of the resource-constrained IoT devices. PUF
observations are always effected by noise and environmental
changes. Therefore secret-generation schemes with helper data
are used to guarantee reliable regeneration of the PUF-based
secret keys. Error correction codes (ECCs) are an essential part
of these schemes. In this work, we propose a practical error
correction construction for PUF-based secret generation that
are based on polar codes. The resulting scheme can generate
128-bit keys using 1024 SRAM-PUF bits and 896 helper data
bits and achieve a failure probability of 10−9 or lower for a
practical SRAM-PUFs setting with bit error probability of 15%.
The method is based on successive cancellation combined with
list decoding and hash-based checking that makes use of the hash
that is already available at the decoder. In addition, an adaptive
list decoder for polar codes is investigated. This decoder increases
the list size only if needed.

I. INTRODUCTION

The Internet of Things (IoT) is a network, in which billions
of devices are connected. While such a network is expected to
bring tremendous economic benefits to industry and society,
its use also comes with security problems. Most of IoT devices
operate in resource-constrained and distributed environments.
As a result traditional password-based security and centralized
key management systems with costly secure elements cannot
be easily deployed in IoT networks.

Physical unclonable functions (PUFs) are low-cost hard-
ware intrinsic security primitives that possess an intrinsic
randomness (unique device ‘fingerprint”) due to the inevitable
process variations during manufacturing. Therefore, PUFs
can be used to realize cryptographic applications, such as
identification, authentication and cryptographic key generation
[1], [2], that require random, unique and unpredictable keys.
Since the device-unique randomness can be translated into a
cryptographic key, PUFs can act as trust anchors avoiding the
need for key storage.

There are several types of structures to realize PUFs, such
as Flip-Flops PUFs [3], Butterfly PUFs [4], Ring Oscillator

PUFs [5] and static random-access memory (SRAM) PUFs
[6]. Among them, SRAM-PUFs are one of the most popular
PUF constructions because they are easy to manufacture and
do not require extra investments. SRAM-PUFs also enjoy
the properties that, while being easily evaluated (after a
device power-up), they are unique, reproducible, physically
unclonable and unpredictable [7]. However, SRAM-PUFs
cannot be straightforwardly used as cryptographic keys, since
their observations are not exactly reproducible due to environ-
mental condition changes such as time, temperature, voltage
and random noise. Therefore, error correction techniques are
necessary to mitigate these effects and generate reliable keys.

Error correction techniques become essential blocks of
secret-generation schemes [8]–[10]. In these schemes two ter-
minals observe measurements of the same PUF. The encoder
(first terminal) creates a secret-key and a so-called helper
data, based on its PUF observation. This helper data facilitates
reconstruction of the secret key from the noisy observation of
the PUF at the decoder (second terminal). Since the helper
data is communicated from the encoder to the decoder, the
secrecy leakage (information that it provides about the secret
key) should be negligible.

For practical implementation of key generation schemes on
resource-constrained PUF devices, especially for IoT applica-
tions, it is crucial to construct good error correction codes to
maintain a good trade-off between reliability, implementation
complexity and secrecy leakage. Most of existing works [10]–
[14] that use simple error correction codes are impractical for
real applications, where environmental variations lead to error
rates of up to 25% in PUF observations. These high error
rates require (simple) ECCs of low rates. On the other hand,
security applications impose requirements on the minimum
(fixed) secret key size that need to be generated from a
given finite block-length SRAM cells. As a result, one need
to use powerful high-rate ECCs, which typically have high
complexity.

Therefore, in this work we propose to use polar codes that
are capacity-achieving and have low encoding and decoding
complexity. Polar codes have been also investigated for the
Slepian-Wolf problem [15] and key generation [16]. For finite
block-length, it was shown that good performance of polar
codes can be achieved by implementing enhanced decoding
algorithms based on the classical successive cancellation
decoder (SCD) [17]–[19].

Here we propose a new and efficient key generation build-

ar
X

iv
:1

70
1.

07
32

0v
3

 [
cs

.I
T

]
 2

7
Ju

l 2
01

7

PUFs protocol based on polar codes

Encoder Decoder

Helper
data

storage

NX NY

Server

PUFPUF

Devices
to be

authenticated

Trusted
Devices

Enrollment Key regeneration

Key Key

PUF

Encoder

Enrollment

Key

Verify

Challenge

Response

Server

Helper data

PUF

device

Authentication

Challenge

NX

Database

Decoder
Response

NY

Helper

data

PUF device

ˆHash()S
Hash

Hash()S
Hash

Key

S

Ŝ

PUF

Encoder

Enrollment

Key

Server

Helper data

PUF

Device

Authentication

NX

Database

DecoderNY

Helper

data

PUF Device

ˆHash()S

Hash

Hash()S
Hash

Key S

Ŝ

Hash()S

Verification

PUF

Encoder

Enrollment

Key

Challenge
Server

Helper data

PUF

Device

Authentication

Challenge

NX

Database

Decoder
Response

NY

Helper

data

PUF Device

ˆHash()S

Hash

Hash()S
Hash

KeyS

ˆS

Response

Hash()S

Verification

Fig. 1. Secret-generation system for PUFs

ing block for SRAM-PUFs key generation based on appli-
cation of polar codes in a syndrome-based secret-generation
scheme [20]. To guarantee the performance in terms of
reliability and security, and to decrease the required memory
size of this scheme, we (1) exploit the efficient decoding
algorithm based on successive cancellation and list decoding
to reliably regenerate the secret, (2) prove zero-leakage for the
proposed scheme, and (3) use a puncturing scheme to shorten
the code length and reduce the complexity. Our simulation
results show that 10−9 key regeneration failure probability can
be achieved with less SRAM-PUF and helper data bits than
before. Using puncturing for polar coding schemes results in
flexibility in getting the required code rates, which is crucial
since key sizes in practical applications are typically fixed.

II. SECRET GENERATION BASED ON SRAM-PUFS

SRAM-PUFs are a result of the read-outs of the power-
up state of an SRAM array. The cell values of SRAM array
after power up go into one of two states: 0 or 1. It has been
experimentally demonstrated [21] that due to the independent
random nature of process variations on each SRAM cell,
SRAM patterns demonstrates excellent PUF behavior, i.e.
empirical probability of number of cells that go in state
1 is close to 0.5. Therefore in this paper we assume that
SRAM-PUFs are binary-symmetric, hence for enrollment and
authentication PUF pairs (XN , Y N) it holds that

Pr{(XN , Y N) = (xN , yN)} =
N∏
n=1

Q(xn, yn), (1)

where Q(0, 1) = Q(1, 0) = p/2 and Q(0, 0) = Q(1, 1) =
(1− p)/2 and 0 ≤ p ≤ 1/2.

It is our goal to share a PUF-based secret key S between
a PUF-device and a server, see Fig. 1. During the enrollment
phase, the encoder observes SRAM-PUF measurement XN

and based on it generates a secret key S and helper data W,
as (S,W) = enc(XN). Here enc(·) is an encoder mapping.
Since the key is used for cryptographic purposes, it has to be
uniformly distributed. Moreover, the helper data is assumed to
be publicly available, and thus it should leak no information
about the key, i.e. I(S;W) = 0.

Next during the secret regeneration phase, the decoder
observes the authentication SRAM-PUF measurement Y N

and the corresponding helper data W. The decoder now forms

an estimate of the secret key as Ŝ = dec(Y N ,W), with
dec(·) being a decoder mapping. To make an authentication
decision the server compares the hash of the estimated secret
key, Hash(Ŝ) with Hash(S).1 The authentication decision
is positive only if the hashes are the same and thus the secret
reconstruction was successful. Hence to ensure the system
reliability, the error or failure probability Pr{Ŝ 6= S} should
be small.

The secret-generation problem is closely related to the
Slepian-Wolf coding problem and is often realized using
syndrome construction, where the helper data is the syndrome
of the enrollment observation. Due to high error rates in
SRAM-PUFs, 15%−25%, combined with demands of having
Pr{Ŝ 6= S} of 10−9 in practical application, powerful
codes are required for reliable key generation. In this paper
we explore the use of polar codes for SRAM-PUF secret
generation based on syndrome construction.

III. POLAR CODES

As a family of linear block codes, a binary polar code
can be specified by (N,K,F , uF), where N = 2n is the
block length, K is the number of information bits encoded
per codeword, F is a set of indices for the N −K frozen bits
positions from {1, 2, . . . , N} and uF is a vector of frozen
bits. The frozen bits are assigned by a fixed binary sequence,
which is known to both the encoder and the decoder.

A. Code Construction of Polar Codes

Polar codes are channel specific codes, which means that a
polar code designed for a particular channel might not have
an optimal performance for other channels. Therefore, calcu-
lation of channel reliability and selection of good channels
is a critical step for polar coding, which is often referred to
as polar code construction. The original construction of polar
codes is based on the Bhattacharyya bound approximation
[17]. Later works [22], [23] improve on this approximation,
however, at the cost of higher complexity.

B. Encoding of Polar Codes

For an (N,K,F) polar code, the encoding operation for a
vector of information bits, u, is performed using a generator
matrix,

GN = G⊗ logN
2 , (2)

where G2 =

[
1 0
1 1

]
and ⊗ denotes the Kronecker product.

Given the data sequence U , the codewords are generated as

V = UGN = UF
c

(GN)Fc + UF (GN)F , (3)

where Fc , {1, 2, . . . , N}\F corresponds to the non-frozen
bits indices. Then UF

c

is the data sequence, and UF are the
frozen bits, which are usually set to zero.

1A one-way cryptographic hash function is used to generate a hash value
of the key and verify whether the key is recovered exactly. The design and
security properties of such one-way cryptographic hash functions is beyond
the scope of this paper.

C. Decoding of Polar Codes

Polar codes achieve the channel capacity asymptotically in
code length, when decoding is done using the successive-
cancellation (SC) decoding algorithm, which sequentially
estimates the bits ûi, where 0 ≤ i ≤ N .

When polar decoder decodes the ith bit, ûi is estimated
based on the channel output yN and the previous bit decisions
û1, û2, . . . , ûi−1, denoted by ûi−11 . It uses the following rules:

ûi =


ui, if i ∈ F
0, if i ∈ Fc and L(yN1 , û

i−1
1) ≥ 1

1, if i ∈ Fc and L(yN1 , û
i−1
1) < 1

, (4)

where LiN (yN1 , û
i−1
1) =

Pr(0|yN1 ,u
i−1
1)

Pr(1|yN1 ,u
i−1
1)

is the ith likelihood
ratio (LR) at length N , which determines the probability of
a non-frozen bit. LRs can be computed recursively using two
formulas:

L2i−1
N (yN1 , û

2i−2
1)

=
LiN/2

(
y
N/2
1 , û2i−2o ⊕ û2i−2e

)
LiN/2

(
y
N/2+1
1 , û2i−2e

)
+ 1

LiN/2

(
y
N/2
1 , û2i−2o ⊕ û2i−2e

)
+ LiN/2

(
y
N/2+1
1 , û2i−2e

)
(5)

and

L2i
N (yN1 , û

2i−1
1) =

[
LiN/2

(
y
N/2
1 , û2i−2o ⊕ û2i−2e

)]1−2û2i−1

· LiN/2
(
y
N/2+1
1 , û2i−2e

)
, (6)

where û2i−2o and û2i−2e denote, respectively, the odd and even
indices part of û2i−2. Therefore, calculation of LRs at length
N can be reduced to calculation of two LRs at length N/2,
and then recursively broken down to block length 1. The initial
LRs can be directly calculated from the channel observation.

Since the cost of implementing these multiplications and
divisions operations in hardware is very high, they are usually
avoided and performed in the logarithm domain using the
following f and g functions:

f(L1, L2) = 2 tanh−1
(
tanh

(
L1

2

)
tanh

(
L2

2

))
(7)

≈ sign(L1 · L2) ·min (|L1|, |L2|) , (8)

g(L1, L2) = (−1)1−2û2i−1 · L1 + L2, (9)

where L1 = log
(
LiN/2

(
y
N/2
1 , û2i−2o ⊕ û2i−2e

))
and

L2 = log
(
LiN/2

(
y
N/2+1
1 , û2i−2e

))
are log-likelihood ratios

(LLRs). In practical implementations, the minimum function
can be used to approximate the f function, according to (8).

IV. SECRET-GENERATION SCHEMES BASED ON POLAR
CODES

In this section we show how secrets and helper data can be
constructed using a polar code in PUF-based key generation
schemes. A generic secret-generation system is illustrated in
Fig. 1. There XN is a PUF measurement during enrollment
and Y N is a noisy PUF measurement at authentication, which
are observed by the encoder and decoder, respectively. First, in

Syndrome
encoder

Syndrome
decoder

Helper
data

storage

NX NY
N KW 

KS
K

S

Enrollment Key regeneration

PUFs protocol based on polar codes

Server

PUFPUF

To be
authenticated

Devices

Trust
Devices

N KW 

Polar
Encoder

Polar
Decoder

Hash

Polar
Encoder

KS Polar
Decoder

Hash

KS

NC

NX

NW NC

NY

NX

NY

N KW 

MZ

MZ

ˆ KS

ˆKS

Encoder Decoder

Helper
data

storage

NX NY

Server

PUFPUF

Devices
to be

authenticated

Trusted
Devices

Enrollment Key regeneration

Key Key

Polar
Encoder

Polar
Decoder

CRC

Polar
Encoder

KS Polar
Decoder

CRC

KS

NC

NX

NW NC

NY

NX

NY

N KW 

MZ

MZ

ˆ KS

ˆ KS

Fig. 2. Polar codes based syndrome coding scheme. Dashed line indicate the
extra operation for polar code with HA-SCL decoding.

Section IV-A, we present the secret-generation system based
on syndrome construction using the polar coding. Then, in
Section IV-B we discuss how the decoding for secret genera-
tion can be redesigned to optimize the system performance for
PUF applications. Finally, Section IV-C provides our security
analysis for the proposed construction.

A. Polar Codes based Syndrome Construction

Fig. 2 illustrates the polar code based syndrome coding
scheme that realizes an enrollment phase (encoder) and key
regeneration phase (decoder).

1) Enrollment phase: In the enrollment phase, a codeword
CN = XNG−1N is generated for each PUF observation XN .
Then, the syndrome encoder selects the secret key SK and
helper data WN−K based on the constructed codeword. Since
G−1N = GN , the helper data and the secret key are generated
during a polar encoding procedure by extracting the bits as2

WN−K ,
(
XNG−1N

)
F =

(
XNGN

)
F = CN [F],

SK ,
(
XNG−1N

)
Fc =

(
XNGN

)
Fc = CN [Fc],

(10)

where F and Fc are the index sets for the syndrome and the
secret key. These sets are defined as

F ,
{
i ∈ {1, 2, . . . , N} : H(Ci|Y N , Ci−11) ≥ δ

}
,

Fc , {1, 2, . . . , N} \F ,
(11)

where δ , 2−Nβ and β ∈ [0, 1/2].
An example of the syndrome encoding procedure for a

(8,3,{1,2,3,4,6}) polar codes is shown in Fig. 3, where the
data flows from right to left. Due to flexibility of the polar
code construction, an arbitrary code rate R = K/N can be
selected without re-constructing the code.

2) Key regeneration phase: In the key regeneration phase,
the syndrome decoder observes the authentication sequence
Y N and also receives the public helper data WN−K . The
decoder can compute ŜK using a modified version of the SC
decoding algorithm, given in Section III-C, i.e., as

ŜK = SCD(Y N ,WN−K), (12)

where the polar decoder SCD(·) is given by Algorithm 1.

2 The difference compared to conventional polar codes is that the helper
data specifies a coset of the linear polar code instead of fixed all-zeros.

1x

2x

3x

4x

5x

6x

7x

8x

1c

2c

3c

4c

5c

6c

7c

8c

N KW 

KS

Fig. 3. Encoding graph of (8, 3, {1, 2, 3, 4, 6}) polar codes

Algorithm 1 Decoding Algorithm for Syndrome construction
Input: The observations Y N from PUFs, the public helper

data WN−K .
Output: The estimated secret ŜK

1: for i = 1 to N do
2: Compute LLRi with the observed Y N from Eq. (7-9)

3: if i ∈ F then
4: Ĉi =Wj

5: else if i ∈ Fc and LLRi > 0 then
6: Ĉi = 0
7: else
8: Ĉi = 1
9: end if

10: ŜK ← ĈN [Fc]
11: end for
12: return ŜK

B. Decoder Optimization for PUF-based Secret Generation

Note that although the SC decoder could asymptotically
achieve channel capacity as N increases, the performance of
the SC decoder is still not good enough at short and moderate
block length size for error correction in PUFs due to the poor
polarization. Therefore, next we present hash-aided SC list
(HA-SCL) decoding that allows us to achieve good trade-off
between error-correction performance and complexity.

In order to optimize the error-correction performance, we
would like to track multiple possible decision paths instead
of only one as the SC decoder does. However, considering
the all 2K possible paths is impractical and too complex. The
SCL decoding algorithm [19] uses a breadth search method to
explore the possible decoding paths efficiently while saving
L most reliable paths as candidates at each level. Thus this
technique also allows us to restrict the decoding complexity.

Next note that in the SCL decoding process, the correct
codewords are on the decoding list but they are not always the
most likely ones, which leads to decoding errors. This issue
can be solved by combining the SCL algorithm with a cyclic
redundancy check (CRC) code, which could further improve
the error correction performance [18]. For security purposes,
we replace the CRC function by a more secure hash function,
which is already part of the authentication system. This hash

is used to detect and select the valid path from the output
of list decoder. In this way, our HA-SCL decoder outputs L
candidate sequences and selects the hash-valid sequence.

By using the HA-SCL decoder, M bits hash value ZM =
H(SK) is produced by the hash function at the encoder and
is used at the decoder. Since the decoder knows WN−K and
ZM in advance, it could recover the secret key by performing
the polar decoding, as shown in Fig. 2, using

ŜK = SCLD(Y N ,WN−K , ZM), (13)

where SCLD(·) is the polar decoder with the SCL decoding
algorithm of [19].

C. Security Analysis

In this section, we analyze the secrecy for the proposed
syndrome based polar coding scheme. Note that security of
our construction is characterized by the information that the
helper data leaks about the generated secret key. Therefore
we must show that I(SK ;WN−K) = 0. We re-write (10) as

WN−K = (XNG)F = XNGF ,

SK = (XNG)Fc = XNGFc ,
(14)

where generator matrix GF for frozen bits (helper data)
and generator matrix GFc for information bits (key) with
dimensions N×(N−K) and N×K are obtained by selecting
the corresponding columns of GN . Then, we obtain

I(SK ;WN−K) = H(SK) +H(WN−K)−H(SK ,WN−K)

= H(XNGFc) +H(XNGF)−H(XNG)
a
= rank(GFc) + rank(GF)− rank(G)
b
= K + (N −K)−N = 0,

where in (a) we use the uniformity of the SRAM-PUF
observations; in (b) the fact that the generator matrices are
linearly independent, as GF and GFc are non-overlapping,
since Fc ∩ F = φ. Thus we prove that the proposed polar
syndrome coding scheme has zero-leakage.

V. PERFORMANCE AND COMPLEXITY COMPARISONS

In this section, we present the performance results of the
polar code based error correction schemes for SRAM-PUFs
with average bit error probability between 15% and 30%.
Inputs to the polar decoder, including the information set,
frozen bit vector and channel output vector, determine the
error correction ability and computational complexity. In order
to create reliable PUF-based secret generation systems, we
focus on the scheme with 128-bit keys and failure probabilities
in the range of 10−6 to 10−9.

We construct polar codes with block length N = 1024. In
order to provide a flexible code rate and use less SRAM-PUFs
bits in PUF-based secret generation with fixed size key, arbi-
trary block-length polar codes can be obtained by puncturing.
For any puncturing pattern, N ′ = N −m PUFs bits and m
random bits used as punctured bits are the input to the polar
encoder. At the decoder, m zero-valued LLRs for decoding are
assigned to the corresponding punctured bits. In the following
sections, both SC and HA-SCL decoding algorithms for polar

0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
Error probability p

10-10

10-8

10-6

10-4

10-2

100

F
ai

lu
re

 p
ro

b
ab

ili
ty

Polar codes (1024, 128), SC
Polar codes (1024, 128), HA-SCL, L=2
Polar codes (1024, 128), HA-SCL, L=4
Polar codes (1024, 128), HA-SCL, L=8
Punctured polar codes (896, 128), HA-SCL, L=2
Punctured polar codes (800, 128), HA-SCL, L=4
Punctured polar codes (974, 128), HA-SCL, L=4

Fig. 4. Failure rate performance comparison of the different decoding
schemes.

codes and punctured polar codes are simulated to compare the
resulting error correction performance and complexity.

A. Failure Probability

The most important performance criterion for PUF-based
secret generation is the error or failure probability of the
key regeneration. Fig. 4 shows the performance of polar code
based syndrome coding schemes with the SC and HA-SCL
decoding algorithms.

We can see that the failure rate for polar codes with SC
decoding is close to 10−6 at 15% and HA-SCL decoding
can further reduce the failure rate to less than 10−9 at 15%
as list size L increases. However, the latter comes at the
cost of extra computational complexity and memory. We can
also observe that punctured polar codes with block lengths
not being a power of two achieve similar failure rates as
conventional polar codes by using larger L for performance
compensation. For strong reliability applications, the proposed
polar code (1024, 128) with L = 2 and the punctured polar
code (974, 128) with L = 4 can be used to achieve an error
rate of 10−9 at error probability of 15%.

B. Complexity and Memory Requirements

The number of required SRAM-PUF bits and helper data
size is another important performance criterion closely related
to implementation complexity. The proposed polar code based
syndrome coding scheme requires 1024 SRAM-PUF bits and
896 helper data bits, if we implement the SC decoding
algorithm. The corresponding decoding computational com-
plexity is given by O(N logN) for this case. Since a list
decoder outputs a group of L reliable candidates, the decoding
computational complexity of the HA-SCL algorithm increases
to O(LN logN).

Table I summarizes performance properties for the pro-
posed polar codes and reference designs, including the achiev-
able key regeneration failure rate, the required SRAM-PUF
size, helper data size and error probability p of the SRAM-
PUFs. An SRAM-PUF with an error probability of 15%
or lower and failure rates 10−6 and 10−9 are targeted for
different use cases. From Table I, we can clearly see that our
polar code based schemes outperform the previous designs

0.150.20.30.35 0.25

Error probability p

104

105

A
ve

ra
g

e
n

u
m

b
er

 o
f

m
et

ri
c

u
p

d
at

e
o

p
er

at
io

n
s SC decoder

SCL decoder, L=2
SCL decoder, L=4
SCL decoder, L=8
Adaptive decoder, L

max
=8

Fig. 5. Complexity comparison of the different polar decoding schemes.

in terms of the error correction performance, SRAM-PUF
bits and helper data bits requirements. Note that the required
SRAM-PUF size could be further reduced by using punctured
polar codes and increasing the list size L, but at the cost of
computational and memory complexity for decoder.
C. Adaptive Decoder

The HA-SCL decoding algorithm achieves a good per-
formance but has higher complexity O(LN logN) than SC
decoding, as L and N increase, and as a consequence rela-
tively high latency. The complexity issue of the SCL can be
improved by using an adaptive decoder, which consists of two
components, SC and SCL decoders. This adaptive decoder,
only implements the SCL decoder and increases the value of
L, when the SC decoder output has an invalid hash vector.

Fig. 5 shows the comparison of complexity between the
adaptive decoder, single SC decoder and single HA-SCL
decoder with different L. Computational complexity is defined
in terms of the average number of metric update operations
f(·) and g(·) in (7) and (9). The maximum Lmax is set to 8
to ensure the reliability and security. As expected, the SC
decoder has the lowest complexity with poor performance
with respect to the failure rate; and the SCL decoder has
higher complexity in terms of L. Furthermore, we see that
the average number of computations of the adaptive decoder
is drastically reduced as the error probability p decreases.

The adaptive decoder also reduce the effect of decoding
latency, since there is very little chance to use the complex
SCL decoder. Therefore, the adaptive decoder could achieve
the same reliability with a single SCL decoder and provide
similar computational complexity and decoding latency with
a single SC decoder when p is small.

VI. DISCUSSION

Note that another way to realize PUF-based authentication
is using the code-offset construction. In this construction, a
selected error correction codes is used to encode a key chosen
during the enrollment phase into codeword CN = SG. The
helper data WN is defined as the offset WN = CN ⊕XN .
During the key regeneration phase, the helper data WN is
added to a PUF authentication sequence Y N . The decoder
observe a codeword corrupted with the measurement noise

TABLE I
COMPARISON OF FAILURE RATE, PUF AND HELPER DATA SIZE FOR POLAR CODES AND REFERENCE DESIGNS.

Code construction Failure probability PUF (bit) Helper Data (bit) p

Code-Offset RM-GMC [11] 10−6 1536 13952 15%
Compressed DSC [14] 10−6 974 1108 15%
Polar SC 10−6 1024 896 15%
Punctured polar HA-SCL, L=2 10−6 896 896 15%
Punctured polar HA-SCL, L=4 10−6 800 896 15%

BCH Rep. [12] 10−9 2226 2052 13%
GC RM [13] 5.37 · 10−10 2048 2048 14%
GC RS [13] 3.47 · 10−10 1024 1024 14%
Polar HA-SCL, L=2 10−9 1024 896 15%
Punctured polar HA-SCL, L=4 10−9 974 896 15%

eN , i.e., C̃N =WN⊕Y N = CN⊕eN . Therefore, polar codes
based code-offset construction can also be directly applied to
realize a secret-sharing system with chosen secret keys.

By designing the same polar code construction, the two
secret key generation schemes with the syndrome construction
and code-offset construction are equivalent in terms of error
correction performance but they differ in their helper data
storage requirements. In particular, the syndrome construc-
tion requires less storage for the helper data. Moreover, the
proposed polar codes based syndrome coding construction
potentially has more applications, since the secret keys need
not be known to the manufacturer, while the code-offset
construction requires the key to be assigned to the PUF
devices during the manufacturing process.

VII. CONCLUSION

In this paper, we investigated practical secret-generation
schemes based on polar code with syndrome construction that
treat the SRAM-PUF observations as a codeword of a polar
code and generate helper data as a syndrome of SRAM-PUFs
using frozen bits of the polar code. Our simulation results
show that with this approach high secret generation reliability
can be achieved together with high security. Furthermore, the
proposed scheme requires less SRAM-PUF bits and helper
data bits compared to existing schemes, which leads to the
reduction in memory requirements.

The proposed scheme has higher complexity requirements
on hardware than simple algebraic codes used in the previous
schemes. Therefore it can be used in the scenarios for secret
key generation between small IoT devices and servers, which
have sufficient resources for decoding. For future work, we
intend to investigate the techniques for encoder and decoder
optimization to further reduces the complexity of decoding
thus making it also suitable for small IoT devices.

ACKNOWLEDGMENT

This work was funded by Eurostars-2 joint programme with
co-funding from the EU Horizon 2020 programme under the
E! 9629 PATRIOT project.

REFERENCES

[1] G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in 2007 44th ACM/IEEE
Design Automation Conference, June 2007, pp. 9–14.

[2] S. U. Hussain, M. Majzoobi, and F. Koushanfar, “A built-in-self-test
scheme for online evaluation of physical unclonable functions and true
random number generators,” IEEE Trans. on Multi-Scale Computing
Systems, vol. 2, no. 1, pp. 2–16, Jan 2016.

[3] R. Maes, P. Tuyls, and I. Verbauwhede, “Intrinsic PUFs from flip-flops
on reconfigurable devices,” in 3rd Benelux workshop on information
and system security, vol. 17, 2008, p. 2008.

[4] S. S. Kumar, J. Guajardo, R. Maes, G. J. Schrijen, and P. Tuyls, “The
butterfly PUF protecting IP on every FPGA,” in IEEE Int. Workshop
on Hardware-Oriented Security and Trust, June 2008, pp. 67–70.

[5] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physical
random functions,” in 9th ACM Conference on Computer and Commu-
nications Security, Washington, DC, USA, 2002, pp. 148–160.

[6] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “FPGA intrinsic
PUFs and their sse for ip protection,” in Cryptographic Hardware and
Embedded Systems (CHES), Vienna, Austria, 2007, pp. 63–80.

[7] R. Maes and I. Verbauwhede, Physically unclonable functions: a study
on the state of the art and future research directions, 2010, pp. 3–37.

[8] U. M. Maurer, “Secret key agreement by public discussion from
common information,” IEEE Trans. on Inf. Theory, vol. 39, no. 3, pp.
733–742, May 1993.

[9] R. Ahlswede and I. Csiszar, “Common randomness in information
theory and cryptography. i. secret sharing,” IEEE Trans. Inf. Theory,
vol. 39, no. 4, pp. 1121–1132, Jul 1993.

[10] Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data,” in Int. Conf. on
the Theory and Applications of Cryptographic Techniques, Interlaken,
Switzerland, 2004, pp. 523–540.

[11] R. Maes, P. Tuyls, and I. Verbauwhede, “Low-overhead implementa-
tion of a soft decision helper data algorithm for SRAM PUFs,” in
Cryptographic Hardware and Embedded Systems (CHES), Lausanne,
Switzerland, 2009, pp. 332–347.

[12] R. Maes, A. Van Herrewege, and I. Verbauwhede, “PUFKY: A fully
functional PUF-based cryptographic key generator,” in Cryptographic
Hardware and Embedded Systems (CHES), Leuven, 2012, pp. 302–319.

[13] S. Puchinger, S. Müelich, M. M.Bossert, M. Hiller, and G. Sigl, “On
error correction for physical unclonable functions,” in Int. ITG Conf.
on Systems, Communications and Coding, 2015, pp. 1–6.

[14] M. Hiller, M. D. Yu, and G. Sigl, “Cherry-picking reliable PUF bits
with differential sequence coding,” IEEE Trans. on Inf. Forens. and
Sec., vol. 11, no. 9, pp. 2065–2076, Sept 2016.

[15] S. B. Korada and R. Urbanke, “Polar codes for Slepian-Wolf, Wyner-
Ziv, and Gelfand-Pinsker,” in IEEE Information Theory Workshop on
Information Theory (ITW), Cairo,Egypt, Jan 2010, pp. 1–5.

[16] R. A. Chou, M. R. Bloch, and E. Abbe, “Polar coding for secret-key
generation,” IEEE Trans. on Inf. Theory, vol. 61, no. 11, pp. 6213–6237,
Nov 2015.

[17] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,”
IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, July 2009.

[18] K. Niu and K. Chen, “CRC-aided decoding of polar codes,” IEEE
Communications Letters, vol. 16, no. 10, pp. 1668–1671, October 2012.

[19] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf.
Theory, vol. 61, no. 5, pp. 2213–2226, May 2015.

[20] S. C. Draper, A. Khisti, E. Martinian, A. Vetro, and J. S. Yedidia, “Using
distributed source coding to secure fingerprint biometrics,” in IEEE Int.
Conf. on Acoustics, Speech and Signal Processing (ICASSP), vol. 2,
April 2007, pp. 129–132.

[21] G.-J. Schrijen and V. van der Leest, “Comparative analysis of SRAM
memories used as PUF primitives,” in Conf. on Design, Automation and
Test in Europe, San Jose, CA, USA, 2012, pp. 1319–1324.

[22] R. Mori and T. Tanaka, “Performance and construction of polar codes

on symmetric binary-input memoryless channels,” in IEEE Int. Symp.
Inf. Theory, June 2009, pp. 1496–1500.

[23] I. Tal and A. Vardy, “How to construct polar codes,” IEEE Trans. Inf.
Theory, vol. 59, no. 10, pp. 6562–6582, Oct 2013.

	I Introduction
	II Secret Generation based on SRAM-PUFs
	III Polar Codes
	III-A Code Construction of Polar Codes
	III-B Encoding of Polar Codes
	III-C Decoding of Polar Codes

	IV Secret-Generation Schemes based on Polar Codes
	IV-A Polar Codes based Syndrome Construction
	IV-A1 Enrollment phase
	IV-A2 Key regeneration phase

	IV-B Decoder Optimization for PUF-based Secret Generation
	IV-C Security Analysis

	V Performance and Complexity Comparisons
	V-A Failure Probability
	V-B Complexity and Memory Requirements
	V-C Adaptive Decoder

	VI Discussion
	VII Conclusion
	References

