
ar
X

iv
:1

70
9.

05
37

7v
1 

 [
cs

.N
I]

  1
5 

Se
p 

20
17

Dynamic Mobile Edge Caching with

Location Differentiation

Peng Yang∗, Ning Zhang†, Shan Zhang†, Li Yu∗, Junshan Zhang‡, and Xuemin (Sherman) Shen†

∗School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
†Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada

‡School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona, USA

Email: ∗{yangpeng, hustlyu}@hust.edu.cn, †{n35zhang, s372zhan, sshen}@uwaterloo.ca, ‡junshan.zhang@asu.edu

Abstract—Mobile edge caching enables content delivery di-
rectly within the radio access network, which effectively alleviates
the backhaul burden and reduces round-trip latency. To fully
exploit the edge resources, the most popular contents should be
identified and cached. Observing that content popularity varies
greatly at different locations, to maximize local hit rate, this paper
proposes an online learning algorithm that dynamically predicts
content hit rate, and makes location-differentiated caching deci-
sions. Specifically, a linear model is used to estimate the future
hit rate. Considering the variations in user demand, a pertur-
bation is added to the estimation to account for uncertainty.
The proposed learning algorithm requires no training phase,
and hence is adaptive to the time-varying content popularity
profile. Theoretical analysis indicates that the proposed algorithm
asymptotically approaches the optimal policy in the long term.
Extensive simulations based on real world traces show that,
the proposed algorithm achieves higher hit rate and better
adaptiveness to content popularity fluctuation, compared with
other schemes.

I. INTRODUCTION

The soaring mobile traffic has put high pressure on the

paradigm of Cloud-based service provisioning, because mov-

ing a large volume of data into and out of the Cloud wirelessly

consumes substantial spectrum resources, and meanwhile may

incur large latency. Mobile Edge Computing (MEC) emerges

as a new paradigm to alleviate the capacity concern of mobile

access networks [1]. Residing on the network edge, MEC

makes storage and computing resources available to mobile

users through one-hop wireless connections, facilitating a

number of mobile services, such as local content caching,

augmented reality, and cognitive assistance [2].

Among other services, content caching on the edge gains

increased attention [3]-[9]. In particular, with the prevalence

of social media, contents, such as high-resolution videos,

are spreading among mobile users in viral fashion, putting

tremendous pressure on the network backhaul [10], [11]. It is

forecast that, caching contents on network edge can reduce

up to 35% traffic demand on the backhaul [2]. Unfortunately,

compared with the ever-increasing content volume, the storage

on the edge node (EN) is always limited. It is impossible to

cache all the contents locally. Hence, it becomes crucial to

identify the optimal set of contents that maximizes the cache

utilization.

Content popularity is an effective measure for making

caching decisions, based on which influential contents can be

identified and cached proactively [12]. Yet, content popularity

is unknown a priori, it is hard to directly select and cache the

most popular ones. Blasco et al. developed an online algo-

rithm to learn the content popularity profile [6]. Specifically,

it predicts future content hit rate based on the number of

instantaneous requests of cached contents, and then makes

new caching decisions correspondingly. In practice, however,

the popularity profile of content is not only unknown, but also

varying since user’s interests are constantly changing [13], and

meanwhile new contents are being created. To maximize cache

utilization under the condition of varying and unknown popu-

larity profile, Müller et al. proposed a context-aware caching

algorithm based on user information, which includes users’

ages, genders or their preferences [9]. However, relying on

user information for context differentiation is risky since such

information is extremely sensitive and often unavailable. Alter-

natively, exploiting location features for context differentiation

is a feasible approach. Generally, locations can be classified

according to their social functions, such as residential area and

business district. Users in different areas have diverse interests

[13]. Hence, locational statistics, including the number of users

and regional content preferences, can be used for context

differentiation. Based on which fine-grained caching decisions

can be made to improve the cache utilization.

In this paper, we investigate the problem of mobile edge

caching with location differentiation. Since the ability of iden-

tifying popular contents is crucial, this problem is challenging

in the following ways. Firstly, the future hit rate of a content

at a certain location is unknown ahead. Secondly, though the

popularity diversity among different locations is evident, there

is no established model of how location features affect content

hit rate. Thirdly, content hit rate is varying continuously, so

the caching strategy should dynamically adjust to the changes.

To address those issues, we propose a novel learning algo-

rithm that estimates future content hit rate based on a linear

prediction model. This model incorporates content feature

and location characteristics, with well-balanced stability and

estimation accuracy. Considering the impact of random noise,

a subtly designed perturbation is added to the prediction of the

linear model to account for uncertainty. Theoretical analysis

indicates that the proposed algorithm achieves sublinear regret,

i.e., it asymptotically approaches the optimal strategy in the

long term. Extensive simulations based on real world traces
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Fig. 1. Network model of mobile edge caching.
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Fig. 2. The daily view amount and popularity curves of a YouTube video since
uploaded. Note that the popularity score is calculate based on the statistics of
a set of randomly crawled videos.

show that the proposed caching algorithm achieves better

accuracy on hit rate prediction, and meanwhile adapts steadily

to the popularity dynamics.

The remainder of the paper is organized as follows. Section

II describes the system model and the caching problem formu-

lation. Section III presents the proposed location differentiated

caching algorithm, followed by the theoretical regret analysis

in Section IV. Simulation results are shown in Section V and

concluding remarks are given in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

Capacity-augmented base stations, WiFi access points and

other devices with excess capacity can be exploited for EN

deployment [1]. In this paper, the storage resources on ENs are

harnessed for content caching services. Specifically, consider

the mobile edge caching model illustrated in Fig. 1, a set of

ENs N = {1, 2, . . . , N} is deployed with separated backhaul

links connecting to the mobile core network. Each EN n is

associated with a distinct location and has different charac-

teristics in terms of content requests compared with others.

Online contents are dynamically pushed to ENs so that user’s

content requests can be processed with reduced latency. Each

EN serves a disjoint set of mobile users.

B. Content Popularity with Location Differentiation

A simple yet effective caching strategy is pushing the most

popular contents to the network edge. Hence, local content hit

rate is maximized and user requests are served with reduced

latency and improved quality of experience. Extensive works

have been done on the popularity of contents, especially video

files [10], [13], [14]. According to the statistics we crawled

from YouTube, as illustrated in Fig. 2, the popularity profile

of a video file varies in two-fold. On one hand, the daily

view amount is varying. On the other hand, as other videos’

daily view amounts are also varying and new videos are

being uploaded, the popularity score of a video file is con-

stantly fluctuating. Moreover, location-related characteristics

also affect the content popularity. As a result, general caching

strategies that based on fixed popularity profile are not optimal

in practice.

Consider a set of files F = {1, 2, . . . , F} that can be cached

at ENs, and let c < F be the caching size of each EN. We

assume that all contents are of equal size1 and the size is

normalized to 1, i.e., each EN can cache up to c contents. We

focus on those files’ popularity dynamics in a sequence of time

slots T = {1, 2, . . . , T }. Let xf,n,t ∈ R
d be a d-dimensional

feature vector of file f associated with EN n observed before

time slot t. For a certain EN n, the hit rate2 of file f during

time slot t, denoted by df,n,t, is statistically linear with respect

to its feature vector xf,n,t, i.e.,

E[df,n,t|xf,n,t] = x⊤
f,n,tθ

∗
n, (1)

where θ∗
n ∈ R

d is the unknown true parameter vector associ-

ated with EN n. The vector xf,n,t between file f and EN n
may contain feature information like the frequency of file f
being cached at EN n up to time t, the hit rate of f at EN n
during the last 5 time slots, 30 time slots etc. The parameter

vector θ∗
n represents the specific location characteristics at

EN n and determines the particular combination of different

features on the expected hit rate. In this way, a certain content

is expected to have different hit rates at different ENs. This

linear prediction model is widely used in other areas like signal

processing and financial engineering [15], [16]. It provides

a method to predict content hit rate, which is essential to

proactive content caching.

C. Problem Formulation

As indicated by Fig. 2, the popularity of a content is

varying constantly. Hence, we intend to perform dynamic

content caching that constantly updates the files on ENs to

achieve higher long-term hit rate. To this end, contents with

higher popularity at different locations should be proactively

identified and cached respectively, and meanwhile the less

popular ones should be evicted. Let Fn,t denote the set of

contents cached at EN n during time slot t, then the dynamic

caching problem can be formulated as the following long-term

hit rate maximization (LHRM) problem:

(LHRM):max
∑

t∈T

∑

n∈N

∑

f∈Fn,t
df,n,t

Subject to: |Fn,t| ≤ c, ∀n ∈ N , t ∈ T .
(2)

1In case contents are of different sizes, they can be split into smaller ones of
equal size. For example, the widely used DASH (Dynamic Adaptive Streaming
over HTTP) protocol breaks content into small segments before transmission.

2We define hit rate as the number of content requests rather than a ratio.



However, the popularity profile, i.e., the hit rate of contents at

each EN, is unknown a priori. Hence the decision variables

Fn,t in above optimization problem is intractable directly. For

convenience, denote the optimal caching strategy F∗
n,t for EN

n at time t. We have that

F∗
n,t = argmax

|Fn,t|≤c

∑

f∈Fn,t

df,n,t, ∀n ∈ N , t ∈ T . (3)

Define the long-term regret of a solution respect to the optimal

caching strategy as

R(T ) , E





∑

t∈T

∑

n∈N





∑

f∈F∗

n,t

df,n,t −
∑

f∈Fn,t

df,n,t







 . (4)

Then, the LHRM problem can be reformulate as a long-term

regret minimization (LRM) problem:

(LRM):min R(T )
Subject to: |Fn,t| ≤ c, ∀n ∈ N , t ∈ T .

(5)

In the long term, if an algorithm can continuously identify the

optimal set F∗
n,t and cache those files at the corresponding

ENs, the algorithm achieves zero-regret. Since F∗
n,t is un-

known a priori, our goal is to develop a caching algorithm

that makes good estimation on future content hit rate, and

hence better identifies the popular ones. To this end, we

propose an online learning algorithm that dynamically adjusts

the estimation of location parameter vectors. The estimation

error is carefully bounded so that the proposed algorithm

asymptotically approaches the optimal caching policy.

III. LOCATION DIFFERENTIATED CONTENT

CACHING ALGORITHM

To better characterize different locations and make accurate

prediction on future content hit rate, we resort to the linear

model given by Eq. (1). It can be interpreted that, at time slot

t, given the feature vector xf,n,t, the hit rate of file f at EN n
is predicted to be the linear combination of the features, which

gives a feasible way to predict the content hit rate. However,

the parameter vector for combination is unknown a priori.

Therefore, a good estimation of the true parameter vector θ∗
n

will lead to accurate prediction of the content hit rate.

In this section, we first present a regression-based method

to estimate the parameter vector of each EN. Then we present

an online caching algorithm that predicts future content hit

rate based on the continually evolving parameter vector.

A. Predicting Content Hit Rate

Consider a specific file f and EN n, the estimation of

parameter vector θ∗
n can be performed in an online fashion

based on file f ’s historical data. Let Φf,n ∈ R
m×d be the

historical feature vectors of file f , where m is the frequency of

file f being cached at EN n up to time slot t, and the m-th row

of Φf,n is the corresponding feature vector xf,n,m. Denote

yf,n ∈ R
m the m-time empirical hit rate of file f at EN n. By

applying the standard ordinary least square linear regression,

i.e., θ∗
n = argmin

θn
||yf,n − Φf,nθn||, the closed-form

estimation of θ∗
n can be derived as (Φ⊤

f,nΦf,n)
−1

Φ
⊤
f,nyf,n.

However, considering that feature vectors may be correlated,

and hence the matrix Φ
⊤
f,nΦf,n could be singular, rendering

the estimation of θ∗
n fluctuate significantly. Instead of the

unbiased estimation made by ordinary least square linear re-

gression, ridge regression makes biased estimation by adding a

control parameter that restricts the magnitude of the parameter

vector, which helps to improve the estimation stability. By

ridge regression, the estimation of θ∗
n can be explicitly given

as

θ̃n = (Φ⊤
f,nΦf,n + λId)

−1
Φ

⊤
f,nyf,n, (6)

where Id ∈ R
d×d is the identity matrix and λ > 0 is the

control parameter that guarantees the stability of estimation.

The accuracy of estimation depends on the amount of data

and λ. For convenience, let V f,n = Φ
⊤
f,nΦf,n + λId for all

f ∈ F and n ∈ N . The following lemma, which is slightly

manipulated from [16], gives an upper bound on the estimation

error of ridge regression.

Lemma 1. If ||θ∗
n|| ≤ ζ for all n ∈ N , where || · || denotes the

Euclidean norm. Then, ∀δ > 0, the estimation error of ridge

regression can be upper bounded as

|x⊤
f,nθ̃n − x⊤

f,nθ
∗
n| ≤ (δ + ζλ)

√

x⊤
f,nV

−1
f,nxf,n (7)

with probability at least 1− 2e−2δ2 .

Please refer to Appendix for the proof. The upper bound

of estimation error provided in Lemma 1 can be interpreted

that, the true hit rate falls into the confidence interval around

the estimation with high probability. Based on Lemma 1, we

propose a dynamic content hit rate prediction and caching

algorithm.

B. Caching Algorithm

The location differentiated EN caching algorithm is

sketched in Algorithm 1. During each time slot, the algorithm

first updates the estimated parameter vector θ̃n,t. With the

accumulation of historical data, θ̃n,t will finally converge to

the true parameter vector θ∗
n. Then, based on the instantaneous

content feature vector xf,n,t, the predicted hit rate d̃f,n,t
is obtained according to the linear model. Furthermore, a

perturbation term pf,n,t is added to the linear prediction, where

pf,n,t = αt

√

x⊤
f,n,tV

−1
f,nxf,n,t, (8)

and αt =
[

ln(tF
1

2 )
]

1

2 + ζλ. The rationale of the perturbation

is that Eq. (1) only gives an expectation value of the hit rate

while omitting the potential random noises. The perturbation

specified by Eq. (8) is inline with Lemma 1 and can be

regarded as the optimism in face of uncertainty, or equiva-

lently, the upper confidence of the predicted hit rate. With the

above setting of αt, we have δ =
[

ln(tF
1

2 )
]

1

2 in Lemma 1.

Hence, as t increases, the upper confidence bound holds with

high probability (at least 1 − 2F−1t−2). Based on the upper

confidence d̂f,n,t of predicted hit rate, a set of file Fn,t that is

predicted to maximize the content hit rate at EN n is cached



Algorithm 1 Location Differentiated Edge Caching Algorithm

Input: λ > 0.

Output: Set of files to be cached in each EN.

1: Initialization: Cache files in all ENs and get the initial

feature vectors xf,n,0 of all file-EN pairs.

2: V n ← λId, hn ← 0d, ∀n ∈ N
3: for t = 1, 2, . . . , T do

4: for each EN n ∈ N do

5: θ̃n,t ← V −1
n hn

6: for each file f ∈ F do

7: Obtain feature vectors xf,n,t

8: d̃f,n,t ← x⊤
f,n,tθ̃n,t, d̂f,n,t ← d̃f,n,t + pf,n,t

9: end for

10: Fn,t = argmaxFn⊆F , |Fn|≤c

∑

f∈Fn
d̂f,n,t

11: Cache all the files in set Fn,t on EN n
12: Observe the empirical hit rate df,n,t of cached files

13: Update V n and hn based on xf,n,t and df,n,t of all

cached files:

V n ← V n + xf,n,tx
⊤
f,n,t

hn ← hn + xf,n,tdf,n,t
14: end for

15: end for

respectively. Afterwards, the empirical hit rate information

of all cached files is recorded, which is used to update the

database for subsequent estimation and prediction. Note that,

a file may be simultaneously cached in multiple ENs.

IV. REGRET ANALYSIS

The long-term hit rate of the proposed algorithm highly

depends on the accuracy of prediction. This section gives a

theoretical upper bound on the regret of long-term hit rate of

the proposed algorithm.

In mobile edge caching, let c be the caching size of each

EN, and F be the size of ground file set. Suppose content hit

rate satisfies the linear model, and feature vectors are bounded

by ||xf,n,t|| ≤ η for all f ∈ F , n ∈ N and t ∈ T , where || · ||
denotes the Euclidean norm. We have the following theorem.

Theorem 1. Mobile edge caching Algorithm 1 achieves sub-

linear long-term regret. Specifically, the long-term regret R(T )
is at most of order O(cN

√

dT (lnT ) ln(λ+ Tη2/d)).

Proof. The total regret depends on the algorithm’s accuracy of

estimation on content hit rate, which is elaborated in Lemma

1. According to this lemma, the true hit rate of file f at EN

n lies in the confidence interval around the predicted hit rate

If,n,t = [x⊤
f,n,tθ̃n,t − pf,n,t, x

⊤
f,n,tθ̃n,t + pf,n,t] (9)

with high probability.

Let Xn,t = {∃f ∈ F : |df,n,t−d̃f,n,t| ≥ pf,n,t} be the event

that there exists at least one file whose true hit rate lies outside

its confidence interval. Let X̄n,t be the complementary event

of Xn,t, i.e., all files’ true hit rates fall into their confidence

interval. Let rn,t be the instant regret of a caching algorithm

in EN n at time slot t. According to Eq. (4), the total regret

depends on the difference between the set of files chosen by

the Algorithm and the optimum set, i.e., Fn,t and F∗
n,t, thus

rn,t =
∑

f∈F∗

n,t
df,n,t −

∑

f∈Fn,t
df,n,t, (10)

and the long-term regret can be rewritten as

R(T ) =
∑

t∈T

∑

n∈N

rn,t

=
∑

t∈T

∑

n∈N

1{Xn,t}rn,t +
∑

t∈T

∑

n∈N

1{X̄n,t}rn,t, (11)

where 1{Xn,t} is an indicator variable that equals to 1 if event

Xn,t happens and equals to 0 otherwise. To bound the long-

term regret, the two terms in Eq. (11) are bounded respectively.

Firstly, consider the case when event Xn,t happens. With

the setting of αt in Eq. (8), for a file f and EN n at time t,
we have P{|df,n,t− d̃f,n,t| ≥ pf,n,t} ≤ 2F−1t−2. As a result,

the frequency of event Xn,t happens in all ENs across the time

span can be bounded as:
∑

t∈T

∑

n∈N

1{Xn,t} ≤
∑

t∈T

∑

n∈N

∑

f∈F

P
{

|df,n,t − d̃f,n,t| ≥ pf,n,t
}

≤
∑

t∈T

∑

n∈N

∑

f∈F

2F−1t−2 = 2N
∑

t∈T

t−2

≤ 2N

∞
∑

t=1

t−2 ≤
π2

3
N. (12)

Without loss of generality, let the content hit rate df,n,t ≤
γ, ∀f ∈ F , n ∈ N and t ∈ T . According to Eq. (10), a coarse

upper bound of the instant regret is rn,t ≤ cγ. Therefore, the

first term of Eq. (11) can be bound as

∑

t∈T

∑

n∈N 1{Xn,t}rn,t ≤ π2cγN/3. (13)

Then, consider the case when event X̄n,t happens, all files’

true hit rates falls in to the confidence interval around their

estimation d̃f,n,t. Hence, |df,n,t − d̃f,n,t| ≤ pf,n,t, ∀f ∈ F .

With d̂f,n,t = d̃f,n,t + pf,n,t, we have

0 ≤ d̂f,n,t − df,n,t ≤ 2pf,n,t. (14)

By Eq. (10) and (14), when event X̄n,t happens, the instant

regret rn,t can be bounded as

rn,t|X̄n,t
=

∑

f∈F∗

n,t\Fn,t

df,n,t −
∑

f∈Fn,t\F∗

n,t

df,n,t

≤
∑

f∈F∗

n,t\Fn,t

d̂f,n,t −
∑

f∈Fn,t\F∗

n,t

df,n,t

≤
∑

f∈Fn,t\F∗

n,t

(

d̂f,n,t − df,n,t

)

(15)

≤ 2
∑

f∈Fn,t\F∗

n,t

pf,n,t. (16)

where inequality (15) is due to fact that since the algo-

rithm selects files in Fn,t \ F∗
n,t rather than F∗

n,t \ Fn,t,

hence the collective upper confidence bound hit rate satisfies
∑

f∈Fn,t\F∗

n,t
d̂f,n,t ≥

∑

f∈F∗

n,t\Fn,t
d̂f,n,t.
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Fig. 3. The content hit rate comparison between the proposed algorithm and other benchmarks with varying caching size, where the total number of videos
is 100. (a) EN caching size c = 10, (b) EN caching size c = 30 and c) EN caching size c = 70.

Based on two lemmas from [17] (Lemma 10 and 11), the

second term in Eq. (11) can be bounded as
∑

t∈T

∑

n∈N

rn,t|X̄n,t
≤ 2

∑

t∈T

∑

n∈N

∑

f∈Fn,t\F∗

n,t

pf,n,t

≤ 2cαT

∑

n∈N

∑

t∈T

√

x⊤
f,n,tV

−1
f,nxf,n,t (17)

≤ 2cαT

∑

n∈N

√

T
∑

t∈T

x⊤
f,n,tV

−1
f,nxf,n,t (18)

≤ 2cαTN

√

2T ln
(λ + Tη2/d)d

λ
, (19)

where Eq. (17) is due the fact that αt increases with t, Eq.

(18) holds because the arithmetic mean of a set of values is

smaller than their root-mean square and Eq. (19) is based on

the lemmas from [17]. By substituting Eq. (19) and (13) into

Eq. (11), and together with αT =
√

ln(TF
1

2 ) + ζλ, we have

R(T ) ≤ 2cαTN

√

2T ln
(λ+ Tη2/d)d

λ
+

π2

3
cγN

= O
(

cN
√

dT (lnT ) ln(λ+ Tη2/d)
)

, (20)

which concludes the proof.

Basically, the regret consists of two parts: estimation error

and perturbation. In particular, the estimation error consists of

the ridge regression model error and the intended bias incur

with λ > 0. The perturbation term is well managed by the

varying control parameter αt. Theorem 1 indicates that the

proposed algorithm achieves sublinear long-term regret, i.e.,
R(T )
T
→ 0 when T →∞, which means that the accumulative

content hit rate asymptotically approaches the optimal caching

scheme in the long term.

V. PERFORMANCE EVALUATION

To evaluate the proposed algorithm, we conduct a study on

a dataset crawled from YouTube. On YouTube, some video

owners made their video view statistics open to public. Among

others, the view amount information is recorded on a daily

basis. We randomly crawled 100 videos that were uploaded

before January of 2013, with full view history till January

of 2017. The most popular video has been watched tens of

thousands of times everyday since it was uploaded, while the

least popular one has been rarely viewed across the time span.

A. Simulation Setup

Note that YouTube videos are being watched globally, and

we do not have access to the statistics of videos at different lo-

cations. To emulate the video view process in different places,

we shift the statistics of each video backward and forward

on the time span. In this way, we are able to characterize

the location-related features based on different view statistics

and meanwhile, maintain the temporal feature of each video

record. Specifically, we consider the content library containing

those 100 videos. Each video can be cached on 3 ENs, each

with caching size c. Content refreshing is performed upon the

network status. For example, network traffic presents regular

peak and valley every day. Hence, content refreshing can be

performed during the off-peak period with minimized impact

on the normal network activity. Meanwhile, we use the view

amount in the past 5 days as the feature vector, i.e., d = 5.

We compare the proposed algorithm with the following

benchmarks. 1) Hindsight optimal. Based on the full view

record across the time span, the most popular videos are

always selected and cached. Note that this benchmark requires

future information and cannot be implemented in practice.

2) Ridge regression. As a degraded version of our proposed

algorithm, the ridge regression does not account for the

random noise of user demand. 3) Random. A random set of

videos is selected to update the EN cache at each time slot.

B. Simulation Result

Figure 3 shows the results of different algorithms in terms

of long-term content hit rate with different EN caching sizes.

It can be seen that the proposed algorithm outperforms other

schemes under all caching schemes. This is because our

algorithm chooses to be optimism in face of uncertainty, which

helps to better identify the popular contents even under varying

popularity profile. As it was found in [14], YouTube video

requests are highly skewed, indicating that a small portion of

popular contents are attracting the majority of requests. This



is confirmed by Fig. 3 since the content hit rate does not

grow linearly with the cache size. The performance gain of

our algorithm can be higher if content popularity profile is less

skewed, since contents with highly skewed popular profile can

also be easily identified by other algorithms. Also note that,

hit rate of the optimum stays almost the same from c = 30 to

c = 70. This is due to the fact that content popularity is long-

tailed [14], namely, the less popular contents attract almost

vanishing requests compared to the popular ones.

VI. CONCLUSION

This paper proposes an online learning algorithm for dy-

namic mobile edge caching, by exploiting location related

features. The algorithm first estimates the hit rate of a content

at a specific location based on a linear model. Noticing that

the accuracy may be affected by random noises, a perturbation

is added to the estimation to account for uncertainty. Then,

according to estimation results, contents that are predicted

to maximize hit rate at a certain location are cached re-

spectively. Theoretical analysis indicates that the proposed

algorithm achieves sublinear long-term regret when compared

to the optimal caching policy. Simulations on real world

traces demonstrate the advantage of the proposed algorithm.

For future work, we will investigate the impact of location

differentiation on coded caching schemes.

APPENDIX

PROOF OF LEMMA 1

Let hf,n = Φ
⊤
f,nyf,n, based on Eq. (6), the estimation error

can be rewritten as

|x⊤
f,nθ̃n − x⊤

f,nθ
∗
n|

= |x⊤
f,nV

−1
f,nhf,n − x⊤

f,nV
−1
f,n(Φ

⊤
f,nΦf,n + λId)θ

∗
n|

= |x⊤
f,nV

−1
f,nΦ

⊤
f,n(yf,n −Φf,nθ

∗
n)− λx⊤

f,nV
−1
f,nθ

∗
n|.

Since ||θ∗
n|| ≤ ζ, according to Hölder’s inequality,

|x⊤
f,nθ̃n − x⊤

f,nθ
∗
n| ≤ |x

⊤
f,nV

−1
f,nΦ

⊤
f,n(yf,n −Φf,nθ

∗
n)|

+ ζλ||x⊤
f,nV

−1
f,n||. (21)

The right-hand side of above inequality decomposes the es-

timation error into two parts, with the first (variance term)

specifies the error caused by linear model, and the second

(bias term) is the bias incurred by ridge regression parameter

λ. According to Eq. (1), we have E[yf,n−Φf,nθ
∗
n] = 0. The

Azuma’s inequality gives an probabilistic upper bound of the

variance term of Eq. (21):

P

{

|x⊤
f,nV

−1
f,nΦ

⊤
f,n(yf,n −Φf,nθ

∗
n)| > δ

√

x⊤
f,nV

−1
f,nxf,n

}

≤ 2 exp
(

−
2δ2x⊤

f,nV
−1
f,nxf,n

||x⊤
f,nV

−1
f,nΦ

⊤
f,n||

2

)

≤ 2e−2δ2 , (22)

where the last inequality is due to the fact that

x⊤
f,nV

−1
f,nxf,n = x⊤

f,nV
−1
f,n(Φ

⊤
f,nΦf,n + λId)V

−1
f,nxf,n

≥ x⊤
f,nV

−1
f,nΦ

⊤
f,nΦf,nV

−1
f,nxf,n

= ||x⊤
f,nV

−1
f,nΦ

⊤
f,n||

2. (23)

Hence, the variance term of Eq. (21) can be bounded by

δ
√

x⊤
f,nV

−1
f,nxf,n with probability at least 1−2e−2δ2 . Further,

The bias term of Eq. (21) can be bounded as

||x⊤
f,nV

−1
f,n|| =

√

x⊤
f,nV

−1
f,nIdV

−1
f,nxf,n

≤
√

x⊤
f,nV

−1
f,n(λId +Φ

⊤
f,nΦf,n)V

−1
f,nxf,n

=
√

x⊤
f,nV

−1
f,nxf,n. (24)

By substituting Eq. (22) and (24) into Eq. (21), the probabilis-

tic bound in Eq. (7) directly follows.
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