
              

City, University of London Institutional Repository

Citation: Petroulakis, N. E., Spanoudakis, G. & Askoxylakis, Y. (2018). Fault Tolerance 

Using an SDN Pattern Framework. In: GLOBECOM 2017 - 2017 IEEE Global 
Communications Conference. . Institute of Electrical and Electronics Engineers. ISBN 978-
1-5090-5019-2 doi: 10.1109/GLOCOM.2017.8254082 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/17901/

Link to published version: https://doi.org/10.1109/GLOCOM.2017.8254082

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


              

City, University of London Institutional Repository

Citation: Petroulakis, N, Spanoudakis, G & Askoxylakis, Y (2017). Fault Tolerance Using 
an SDN Pattern Framework. Paper presented at the IEEE Global Communications 
Conference 2017, 4-8 Dec 2017, Singapore. 

This is the unspecified version of the paper. 

This version of the publication may differ from the final published 
version. 

Permanent repository link:  http://openaccess.city.ac.uk/18580/

Link to published version: 

Copyright and reuse: City Research Online aims to make research 
outputs of City, University of London available to a wider audience. 
Copyright and Moral Rights remain with the author(s) and/or copyright 
holders. URLs from City Research Online may be freely distributed and 
linked to.

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Fault Tolerance Using an SDN Pattern Framework
Nikolaos E. Petroulakis1,2, George Spanoudakis2 and Ioannis G. Askoxylakis1

1 Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Greece
2 Department of Computer Science, City University of London, London

Email: npetro@ics.forth.gr, g.e.spanoudakis@city.ac.uk, asko@ics.forth.gr

Abstract—Software Defined Networking (SDN) and Network
Function Virtualization (NFV) are a promising combination
for programmable connectivity, rapid service provisioning and
service chaining, as they offer the necessary end-to-end op-
timizations. However, with the actual exponential growth of
connected devices, future networks such as SDN/NFV require
an open-solutions architecture, facilitated by standards and a
strong ecosystem. Such networks need to support communication
services that offer guarantees about fault tolerance, redundancy,
resilience and security. The construction of complex networks
preserving Security and Dependability (S&D) properties is nec-
essary to avoid system vulnerabilities, which may occur in the
various layers of SDN architectures. In this work, we propose a
pattern framework built in an SDN controller able to import
design patterns in a rule-based language and provide fault
tolerance in SDN networks. To evaluate the importance and the
functionality of the SDN framework, abstract pattern instances
are proposed to provide network fault tolerance, detection and
restoration in SDN network infrastructures.

Index Terms—Software Defined Networking; SDN Pattern
Framework; Fault Tolerance; Design Patterns; Security; Drools.

I. INTRODUCTION

With the fast growth of Software Defined Networking
(SDN) together with Network Function Virtualization (NFV)
and their integration with 5G network architectures, the design
of networks enters in a new era. In addition, SDN and NFV
have been used as key networking technologies to tackle
the issue of connectivity and availability under heterogeneous
communication technologies. Since SDN allows network pro-
grammability and control to be decoupled from the forward-
ing plane, a dynamical reconfiguration of their resources, as
well as keeping network connectivity, can be directly repro-
grammed by the control plane. One of the challenges of SDN
is to drive the reconfiguration through specifications embedded
in critical infrastructures. Furthermore, applications running
on top of SDN architecture need to be resource and network-
aware, in order to take full advantage of underlying network
programmability and to become more agile. Moreover, the
usage of SDN may be also introduced to provide security in
the Internet of Things (IoT) as proposed in [1]. However, the
design of such networks effectively encounters difficulties that
stem from the widely distribution and heterogeneous nature of
SDN and the extent of intelligence, dependability and security
that they need to demonstrate during their operation.

SDN requires a careful investigation of new security and
dependability capabilities and risks, which have not been
necessary legacy systems. The network programmability intro-

duced by SDN is expected to allow a software-based operator
control of the network through a so-called network operating
system deployed on an external controller. The design and
implementation of SDN infrastructures can be based on an
architectural framework where the network elements are inte-
grated through design patterns which are re-usable solutions
to common problems and building blocks to architectures.
In order to design and operate SDN network architectures,
design patterns can be used to encode proven dependencies
between individual network components and corresponding
properties of orchestrations (composition) involving them.
They can define generic ways of composing (i.e., establishing
the connectivity between) and configuring the heterogeneous
network elements and software components that may exist
at all layers of the SDN implementation stack, including:
switches and hosts, services, cloud, IoT enabling platforms,
as well as software components at the SDN application layer.
In order to achieve this, patterns specify abstract and generic
interaction and orchestration protocols, enhanced (if neces-
sary) by transformations to ensure the semantic compatibility
of data.

Security and Dependability (S&D) patterns can be used for
the definition of optimal paths which are able to guarantee
S&D properties in deployed networks. Since SDN controllers
can support management, monitoring and self-healing mecha-
nisms of networks, the design of suitable patterns requires ser-
vices to reconfigure the network to provide security, depend-
ability, traffic engineering, load balancing, and fault tolerance
mechanisms such as replication, diversity and redundancy. A
first definition of our pattern-based approach for designing
reliable cyber-physical systems was given in [2]. Furthermore,
in [3], we extended the original approach by proposing a
pattern framework as an SDN application outside the SDN
controller. In this work, we present the implementation of a
prototype SDN Pattern Framework built in an SDN controller
able to provide monitoring and management capabilities of
SDN network architectures with respect also to S&D based
on executable patterns.

The remainder of this paper is organized as follows. In
Section II, an overview of related work is presented. In Section
III, we present the proposed SDN Pattern Framework. The
framework consists of the definition of the pattern schema
and the development of a pattern engine module and a pattern
graphical user interface (GUI) built in an SDN controller
that enable the interaction between core functionalities of
the controller and the SDN network architectures. It can be



used by developers or administrators of SDN systems, not
necessarily experts in SDN controllers to (a) create designs of
their systems in ways guaranteed to satisfy S&D properties
such as network connectivity, fault detection, restoration and
tolerance, (b) verify if existing designs systems satisfy required
properties and (c) monitor and manage SDN network at
runtime. In Section IV, we evaluate the pattern framework
proposing abstract specification instances of SDN patterns able
to handle network component as retrieved by the inventory of
the controller and provide connectivity and fault tolerance on
SDN. The patterns are able to install flows and decrease the
failover time in case of faults and network failures providing
fault tolerance in SDN network architecture. Finally, Section
V provides conclusions and future work.

II. RELATED WORK

The design of a system has been simplified and facilitated
by the modelling of design patterns. With the softwarization
of networks in SDN, design patterns can be applied in all
the different layers of SDN architectures. Fault tolerance
patterns have been proposed in works such as [4] and [5].
Although authors in [6] and [7] present fault tolerant patterns
for software, the proposed architectural, detection, mitigation
and recovery patterns can be also applied on SDN networks.
Flow policy patterns as expressed by Frenetic languages such
as Pyretic, can generate flow rules able to be installed in
programmable switches of SDN networks [8]. In our approach,
we also provide paths as flow rules based on the security and
dependability requirements. Moreover, design patterns have
been also proposed for the graph algorithms in works such
as [9] and [10].

Network fault tolerance appears to be a critical topic for
research [11]. Suitable fault tolerance mechanisms have been
developed in SDN that intend to guarantee fault tolerance.
FatTire [12] is a language for writing fault-tolerant SDN pro-
grams in terms of paths through the network and explicit fault-
tolerance requirements. The main features of FatTire include
fast-failover OpenFlow mechanisms, and correct behaviour
during periods of failure recovery. It focuses on data plane
including the fault tolerance between the path between the
source and destination and intermediate functions such as
IDS and firewall. Compared to our fault tolerance framework,
FatTire is based on Netcore compiler and it is not compatible
with controllers such as OpenDaylight(ODL)1. Coronet [13]
on the other hand proposes a fault tolerant system for NOX
SDN controller able to protect data plane link/switch failures
and is based on Dijkstra’s shortest path algorithm. Ravana [14]
is a fault tolerant SDN controller platform evaluated in the Ryu
controller that supports fault tolerance for both controller and
switches. SMaRtLight [15] is a practical fault-tolerant SDN
controller supporting primary and backup controllers (master
slave) are used to replicate SDN controllers. LegoSDN [16]
is able to tolerate SDN application failures, while AFRO [17]

1http://www.opendaylight.org

proposes an automatic failure recovery for POX SDN con-
troller based on behalf of simpler, failure-agnostic controller
modules.

SDN Pattern Framework

Control Layer

Infrastructure Layer

       

NBI (REST)

SBI(OpenFlow)

  

Fig. 1: Architecture of the SDN Pattern Framework

III. SDN PATTERN FRAMEWORK ARCHITECTURE

One the core part of this work is the presentation of the de-
veloped SDN Pattern Framework. The building blocks which
constitute the framework are (i) the Pattern Schema describing
the structure of the pattern, (ii) the Pattern Engine module
and the Pattern Graphical User Interface (GUI) module which
are implemented in the SDN Controller, and (iii) the network
elements in the Network Infrastructure which the controller is
able to interact and apply the imported SDN patterns. The ar-
chitecture of the framework and the interaction between blocks
are presented in the Figure 1. The analysis of the blocks on the
implemented framework and specifically the technology which
are used during the design, the implementation integration
and deployment of pattern framework are described in the
following subsections.

A. Pattern Schema

The pattern schema includes the specification and language
of SDN patterns and can be used as an instrument for design-
ing, verifying and modifying the topology of SDN networks, at
design time or runtime. At design time, the procedure includes
the definition of a design problem and the required S&D
property that must be guaranteed by the SDN. In verification,
an existing SDN network design (topology) and the required
S&D properties are provided, and patterns are applied to
analyze the former and ensure that the latter is satisfied. The
analysis is based on checking if the topology of the pattern
matches totally or partly the network design and on the fact
that the individual components that constitute the network



with the particular topology have certain properties that can
guarantee end-to-end network level S&D properties. Finally,
at runtime patterns are applied to alter the topology and the
forwarding rules of an operational network in order to ensure
the satisfaction of S&D properties.

1) Pattern Specification: The pattern specification is de-
fined as follows:

i) Name: should include a clear statement of the role and
the definition of the pattern.

ii) Problem: should analyze the problem that the pattern
should solve.

iii) Existing solutions: should describe the current state of
the art solutions for the problem.

iv) Our solution: should describe the pattern, emphasizing
the key technical points of solution.

v) Evaluation: should provide an evaluation of the pattern
either experimentally or formally.

vi) Contributions: should define the contributions and ad-
vances of the proposed pattern over state of the art
existing solutions.

2) Pattern Language: SDN patterns can be expressed as
production rules to enable reasoning. In implementing our
approach, we have selected Drools rule engine to express SDN
patterns as rules, as this supports backward and forward chain-
ing inference and verification by implementing and extending
the Rete algorithm [18]. Drools rules can encode the topology
of a pattern and the process of finding suitable component
compositions in order to guarantee the required property.
Drools production rules are being stored in the production
memory and are used to process data inserted in the working
memory (Knowledge Base) as facts by pattern matching. Each
rule consists of two parts: the when condition and the then
actions. When a network that matches the topology of an SDN
pattern does not satisfy the required property, the pattern may
be used to substitute, add or remove components in order
to satisfy the property. A Drools rule that encodes an SDN
pattern includes the inputs of the pattern’s components, the
type of composition and the required property in Left Hand
Side (LHS). When the conditions in the LHS are satisfied, then
the rule is fired to execute the actions as described in its Right
Hand Side (RHS). In the RHS, the new requirements of the
compositions or atomic components can be inserted, updated
or deleted.

In order to specify and express SDN patterns, the semantics
of the pattern language should be defined. In Table I the
most useful semantics are presented. In the LHS, the network
components which constitute the topology of the pattern are
defined. Different network topology facts such as Nodes, Links
and Flows are included in the list. Moreover, the Requirement
represents the constraints of the topology and the required
property. In the RHS, the pattern provides the solution by
inserting, modifying, updating or retracting facts from the
knowledge base which will also update the inventory list in the
controller. Each component is converted through the respective
Java class to an understandable format to the SDN controller.
Finally, the semantics of Drools language give the potentiality

to represent more complex patterns by adding more variables
and pattern properties.

TABLE I: Pattern Language Semantics

Type Syntax Description

rule rule ”name” name of the rule

Left Hand Side (LSH)

when

Network Pattern Elements (Facts)

Node (address, ports, txPack-
ets, rxPackets)

match network nodes such as
switches and hosts

Link (srcId, srcPort, destId,
destPort)

match links between source and
destination nodes

Path (srcId, destId) match paths between source
node intermediate links and des-
tination node

Flow (switchId, inPort, out-
Port, priority)

match flow rules between nodes

Requirement (src, dest, pro,
satisfied )

match requirements of pattern
such as source, destination and
property and satisfied

Conditional Elements

== match conditions

contains contains object (logical)

not not match (logical)

!= not match (arithmetic)

Right Hand Side (RSH)

then

Actions

modify ($fact){pro=pro’} modify knowledge base fact

retract ($fact) retract knowledge base fact

insert (new Fact ()) insert knowledge base fact

update ($fact) update knowledge base fact

Java commands other Java language syntax

B. SDN Controller

The SDN Pattern Framework is based on the ODL SDN
controller as it provides a wide range of abstractions and
functionalities that facilitate controller application develop-
ment and a numerous built-in modules that can be either reused
or even extended. ODL is selected as an open source controller
which has attracted a lot of attention in the networking
area with more active contributors compared to other open-
source solutions. The controller is based on Apache Karaf
and uses Apache Maven2 for building projects. To implement
functionalities in ODL, certain purpose-built modules as well
as enhancements to existing SDN controller modules need to
be installed and set up properly. Finally, for the evaluation and
testing of the SDN Pattern Framework different software tools
such as Eclipse3, Git4, and Postman5 are necessary for the

2https://karaf.apache.org, https://maven.apache.org
3http://www.eclipse.org
4https://git-scm.com/
5https://www.getpostman.com



development of the Pattern Engine and Pattern GUI modules
ODL modules as is described below.

1) Pattern Engine Module: This module has been created
to enable the capability to insert, modify, execute and retract
patterns at design or at runtime in the SDN controller. Since
Drools rule engine is based on Maven, one core part of this
framework is the integration of all the dependencies in the
ODL controller, as well as the integration of the entities that
interact with the controller to run Drools at design and at
runtime. As ODL does not support Drools Maven libraries
by default, some modifications must be done in order to
import the required packages (knowledge-api, drools-core,
drools-compiler, drools-templates, drools-decisiontables). Fur-
thermore, to support insertion, modification and deletion of
facts and rules by administrators or users, suitable northbound
interfaces (YANG APIs and the respective REST APIs) are
also implemented. Finally, appropriate YANG interfaces are
also implemented to retrieve network components such as
switches, service functions and end-hosts, active links and
statistics from the controller as required by the Drools patterns.

2) Pattern GUI Module: This module has been developed
as an additional module on the ODL controller to monitor,
manage and assess the proof of concept implementation of the
SDN Pattern Framework. Patterns can be inserted as Drools
rule as a plain text or as an external file in Json format. Suitable
javascripts and html files have been implemented in order to
support the insertion of patterns either at design or at run-
time. More precisely, angularJS6 is used as a javascript-based
library for front-end web application. The use of predefined
pattern/rule templates is also considered to be enhanced in a
following version as a more convenient way to manage pat-
terns. The imported patterns are also previewed automatically
in an interactive table as presented in the Figure 2. Appropriate
APIs have been implemented in order an administrator to be
able to insert, modify, delete and enable/disable imported rules
using the implemented controls.

Fig. 2: OpenDaylight SDN Pattern Framework GUI

6https://angularjs.org

C. Network Infrastructure

The last part of the SDN Pattern Framework includes the
infrastructure of the network. The framework is able to interact
with SDN architectures to provide security and dependability
in SDN networks. Apart from the SDN controller, which
is the core part of SDN infrastructure, end hosts such as
clients, servers, service functions together with programmable
switches are also required. Since ODL supports a number
of south-bound protocols such as OpenFlow, this capability
enables the interaction with infrastructures as provided by
physical networks including hardware switches, hosts, virtual
infrastructures such as OpenStack7 or network emulators such
as Mininet8 platform suitable for testing and emulation.

IV. FAULT TOLERANCE SDN PATTERNS

In this section, SDN fault tolerance patterns are presented
based on the pattern schema and evaluated in the proposed
SDN pattern framework.

A. Name

The family of the fault tolerance SDN patterns includes (i)
the Fault Tolerance Flow Pattern and (ii) the Fault Detection
and Restoration Pattern.

B. Problem

The use of SDN networks imposes the necessity to provide
higher fault and intrusion tolerance compared to legacy net-
works as new threats are being introduced. More specifically,
the ability to control networks by means of software and
centralization of network control makes SDN vulnerable to
failures or attacks. Fault tolerance in network architectures
requires the design of a network able to guarantee avoidance of
single or multiple link failures, faulty end-hosts and switches,
or attacks.

C. Existing solutions in SDN

The most common solutions to guarantee fault tolerance and
avoid single point of failure in SDN, include the replication of
paths forwarding traffic in parallel, the use of redundant paths
and the ability to switch in case of failure (failover) and traffic
diversity. As described in Section II, data plane fault tolerance
solutions exist in the bibliography such as FatTire and Coronet.
However, existing data plane fault tolerance solutions do not
provide the required open and flexible design as our proposed
approach.

D. Our solution

The key technical solutions of the problem include the
creation of fault tolerance SDN patterns based on the defined
pattern schema. The abstract forms of the fault tolerance
patterns, as expressed by Drools rules, can establish a fault
tolerance mechanism for the detection and restoration of
network faults or attacks and can be applied first locally and
then globally as presented below.

7https://www.openstack.org
8https://www.mininet.org



1) Fault Tolerance Flow Pattern: This pattern is able to
provide proactively connectivity and path protection solutions
for fast failure recovery against faults by identifying the
shortest path and installing the respective flows to preplan and
reserve paths, which is extremely valuable for large-scale SDN
systems.
Pattern Topology: The discovery of suitable interconnected
nodes such as hosts and switches on existing network in-
frastructures can be done by pattern matching. This includes
the identification of all the available paths and choose the
most appropriate ones in order to define the degree of the
redundancy of the network topology.
Pattern Requirement: The pattern constraints are defined
as requirements which represent the property that the pattern
guarantee such as fault tolerance.. This is based on the Dijkstra
algorith which adapts breadth-first algorithm to find single
source shortest path.
Pattern Action: When the pattern identifies the shorted path
between source and destination, the actions of the pattern
includes the installation of suitable flow rules in the openflow-
enabled switches. The describe pattern as Drools rule is
presented in the Rule 1.

Rule 1: Fault Tolerance Pattern Rule
1 r u l e ” F a u l t T o l e r a n c e P a t t e r n ”
2 when
3 $n1 : Node ( )
4 $n2 : Node ( )
5 $n3 : Node ( $ p o r t 3 : p o r t , $n1 != $n3 )
6 $ l i n k 1 : Link ( s r c I d ==$n1 . id , d e s t I d ==$n2 . i d )
7 $ l i n k 2 : Link ( s r c I d ==$n2 . id , d e s t I d ==$n3 . i d )
8 $ req : Requ i remen t (
9 pro . name ==” F a u l t T o l e r a n c e ” ,
10 pro . s r c != $n1 , p ro . d e s t != $n3 ,
11 $ v i s i t e d : p ro . v i s i t e d ,
12 $queue : p ro . queue ,
13 $ v i s i t e d c o n t a i n s $n2 ,
14 $queue not c o n t a i n s $n2 ,
15 $ v i s i t e d not c o n t a i n s $n3 )
16 then
17 $queue . remove ( $n2 ) ;
18 $queue . add ( $n3 ) ;
19 $ v i s i t e d . add ( $n3 ) ;
20 u p d a t e ( $queue ) ;
21 u p d a t e ( $ v i s i t e d ) ;
22 Flow f low = new Flow (
23 $n2 . id , $ l i n k 1 . d e s t P o r t , $ l i n k 2 . s r c P o r t ) ;
24 i n s e r t ( f low ) ;
25 end

2) Fault Detection and Restoration Pattern: Apart from
the proactive definition of the respective flows, this pattern
provides a reactive mechanism to dynamically allocate path
flows for fast fault detection and restoration, which is required
to detect link failures and packet losses in order to restore
network availability.
Pattern Topology: The pattern topology includes the source
node, the destination nodes and the active path for data
transmission.

Pattern Requirement: When there are dropped packets be-
tween the two nodes or the link is down, the pattern detects
it as failure.
Pattern Action: After the detection of such failure, the flow
rules is removed from the inventory list and a new requirement
is inserted in the knowledge base which activates the fault
tolerance flow pattern which is able to restore the link by
finding alternative paths. In Rule 2, an abstract overview of
the pattern rule can be found.

Rule 2: Fault Detection and Restoration Pattern Rule
1 r u l e ” F a u l t D e t e c t i o n and R e s t o r a t i o n P a t t e r n ”
2 when
3 $n1 : Node ( $ t x : t x P a c k e t )
4 $n2 : Node ( $rx : r x P a c k e t )
5 $ p a t h : Pa th ( s r c ==$n1 . id , d e s t i n a t i o n ==$n2 . i d )
6 $ req : Requ i remen t (
7 pro . name ==” F a u l t D e t e c t i o n ” , $tx>$rx )
8 then
9 r e t r a c t ( $ p a t h ) ;
10 i n s e r t ( new Requ i remen t ( $n1 , $n2 ,
11 ” F a u l t T o l e r a n c e ” ) ) ;
12 end

TABLE II: Flow Configuration Experiments

Topo Hosts Switches Links Config
Time

Degree Topology

1 2 1 2 0.1sec 1

2 2 2 4 0.3sec 2

3 2 3 5 0.4sec 2

4 2 4 6 0.6sec 2

5 2 5 8 1.1sec 3

6 2 6 9 1.3sec 3

E. Evaluation
To evaluate the fault tolerance patterns in the SDN Pattern

framework, we conducted different types of preliminary exper-
iments in the Mininet emulator. The first set of experiments
evaluates the fault tolerance pattern as for the needed time
needed for the installation of the required flows for differ-
ent custom topologies including different number of hosts,
switches and links as presented in Table II. The second set
includes the evaluation on the time needed to detect and restore
path, if possible, in case of link failures. The purpose of this
experiments is to send 10 packets from source to destination
for the different network topologies as were defined in the
previous experiments. Since the fault tolerance pattern defines
the shortest path between source and destination, the purpose
of the experiment is to measure the detection and restoration
time in case of a failure. The results of the experiments can
be found in Figure 3.



0 2 4 6 8 10
0

2

4

6

8

10

12

Fault

Fault

Fault

Fault

Fault

time (sec)

Pa
ck

et
N

um
be

r

Topo 1
Topo 3
Topo 6
Topo 1

Topo 3 - 1 drop
Topo 6 - 2 drops

Fig. 3: Fault Detection and Restoration Experiments

F. Contributions

The contributions of our proposed proposed patterns in the
SDN pattern framework can be summarized as follows:

• Fault tolerance patterns can create a proactive and reactive
mechanism able to handle failures and faults.

• Other proposed fault tolerance mechanisms (FatTire,
Pyretic) are not implemented for the ODL controller but
for other controllers such as POX and NOX.

• The proposed pattern language can be used by experts
and non experts programmers as it offers a interface for
fast interaction with the controller.

• The open architecture of our proposed patterns can be
strengthened by the addition of more S&D patterns.

• The proven capability of the pattern framework through
the patterns at runtime gives great potentiality for further
development.

V. CONCLUSIONS AND FUTURE WORK

This work presented the development of an SDN Pattern
Framework able to handle faults and failures in SDN network
infrastructures. The flexibility of the framework to insert
patterns as Drools rules in the controller, shows the capability
of the controller to guarantee properties and handle incidents.
Moreover, the proposed pattern language, is easily under-
standable and open to modifications based on the required
need of administrators and users. There is also no need to
modify internal controller modules since the interaction is
applied through pattern rules. Thus, the framework can be
easily extended to interact with multiple controller capabilities
and functionalities. Finally, as future work we intend to use
and extend the automated reactiveness of the framework, ant
to also evaluate for Byzantine Fault Tolerance and Service
Function Chaining (SFC) as proposed in our work [19] via
the development of the associated S&D patterns.

ACKNOWLEDGEMENT

This work has received funding from the European Unions
Horizon2020 research and innovation programme under the
Marie Skodowska-Curie grant agreement No734815 (Cyber-
Sure).

REFERENCES

[1] Ricard Vilalta, Raluca Ciungu, Arturo Mayoral, Ramon Casellas, Ri-
cardo Martinez, David Pubill, Jordi Serra, Raul Munoz, and Christos
Verikoukis. Improving security in internet of things with software
defined networking. In Global Communications Conference (GLOBE-
COM), 2016 IEEE, pages 1–6. IEEE, 2016.

[2] Nikolaos E Petroulakis, George Spanoudakis, Ioannis G Askoxylakis,
Andreas Miaoudakis, and Apostolos Traganitis. A pattern-based ap-
proach for designing reliable cyber-physical systems. In Global Com-
munications Conference (GLOBECOM), 2015 IEEE, pages 1–6. IEEE,
2015.

[3] Nikolaos E Petroulakis, George Spanoudakis, and Ioannis G Askoxy-
lakis. Patterns for the design of secure and dependable software defined
networks. Computer Networks, 109:39–49, 2016.

[4] Matthias Tichy, Daniela Schilling, and Holger Giese. Design of self-
managing dependable systems with uml and fault tolerance patterns.
In Proceedings of the 1st ACM SIGSOFT workshop on Self-managed
systems, pages 105–109. ACM, 2004.

[5] Titos Saridakis. A system of patterns for fault tolerance. In EuroPLoP,
pages 535–582, 2002.

[6] Robert Hanmer. Patterns for fault tolerant software. John Wiley &
Sons, 2013.

[7] Ferran Adelantado and Christos Verikoukis. Detection of malicious
users in cognitive radio ad hoc networks: A non-parametric statistical
approach. Ad Hoc Networks, 11(8):2367–2380, 2013.

[8] Joshua Reich, Christopher Monsanto, Nate Foster, Jennifer Rexford, and
David Walker. Modular sdn programming with pyretic. Technical Report
of USENIX, 2013.

[9] Dietmar Kühl. Design patterns for the implementation of graph algo-
rithms. In Master’s thesis, Techinische Universität. Citeseer, 1996.

[10] Wenfei Fan, Xin Wang, Yinghui Wu, and Jingbo Xu. Association rules
with graph patterns. Proceedings of the VLDB Endowment, 8(12):1502–
1513, 2015.

[11] Jue Chen, Jinbang Chen, Fei Xu, Min Yin, and Wei Zhang. When
Software Defined Networks Meet Fault Tolerance: A Survey, pages 351–
368. Springer International Publishing, Cham, 2015.

[12] Mark Reitblatt, Marco Canini, Arjun Guha, and Nate Foster. Fattire:
Declarative fault tolerance for software-defined networks. In Proceed-
ings of the second ACM SIGCOMM workshop on Hot topics in software
defined networking, pages 109–114. ACM, 2013.

[13] Hyojoon Kim, Mike Schlansker, Jose Renato Santos, Jean Tourrilhes,
Yoshio Turner, and Nick Feamster. Coronet: Fault tolerance for software
defined networks. In 2012 20th IEEE International Conference on
Network Protocols (ICNP), pages 1–2. IEEE, 2012.

[14] Naga Katta, Haoyu Zhang, Michael Freedman, and Jennifer Rexford.
Ravana: Controller fault-tolerance in software-defined networking. In
Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined
Networking Research, page 4. ACM, 2015.

[15] Fábio Botelho, Alysson Bessani, Fernando MV Ramos, and Paulo
Ferreira. On the design of practical fault-tolerant sdn controllers. pages
73–78, 2014.

[16] Balakrishnan Chandrasekaran and Theophilus Benson. Tolerating sdn
application failures with legosdn. In Proceedings of the 13th ACM
Workshop on Hot Topics in Networks, page 22. ACM, 2014.

[17] Maciej Kuźniar, Peter Perešı́ni, Nedeljko Vasić, Marco Canini, and
Dejan Kostić. Automatic failure recovery for software-defined networks.
In Proceedings of the second ACM SIGCOMM workshop on Hot topics
in software defined networking, pages 159–160. ACM, 2013.

[18] Drools. Business rules gement system solution. www.drools.org.
[19] Konstantinos Fysarakis, Nikolaos E. Petroulakis, Andreas Roos, Khawar

Abbasi, Petra Vizaretta, George Petropoulos, Ermin Sakic, George
Spanoudakis, and Ioannis Askoxylakis. A Reactive Security Framework
for Operational Wind Parks Using Service Function Chaining. In 22nd
IEEE Symposium on Computers and Communications, 2017.

www.drools.org

	Introduction
	Related Work
	SDN Pattern Framework Architecture
	Pattern Schema
	Pattern Specification
	Pattern Language

	SDN Controller
	Pattern Engine Module
	Pattern GUI Module

	Network Infrastructure

	Fault Tolerance SDN Patterns
	Name
	Problem
	Existing solutions in SDN
	Our solution
	Fault Tolerance Flow Pattern
	Fault Detection and Restoration Pattern

	Evaluation
	Contributions

	Conclusions and Future Work
	References

