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Abstract—The rise of third-party content providers and the
introduction of numerous applications has been driving the
growth of mobile data traffic in the past few years. The
applications’ various Quality of Service (QoS) requirements as
well as the use of multiple devices per user have increased the
traffic heterogeneity, pressing the telecommunications industry
to the deployment of dense Heterogeneous Networks (HetNets).
At the same time, the content providers’ rise has also led to the
decrease of the Mobile Network Operators’ (MNOs) revenues.
Under these circumstances, the MNOs need to guarantee the
users’ Quality of Experience (QoE) requirements, while ensur-
ing the sustainability of HetNet investments. To this end, we
consider a HetNet deployment where MNOs offer a multitude
of services with diverse pricing. We propose a heuristic, joint
QoE-aware resource allocation and dynamic pricing algorithm
with overall user satisfaction constraints to maximize the MNO
profit, while providing high QoE. Simulation results show that the
proposed algorithm can handle traffic heterogeneity by achieving
substantial profit and QoE gains, compared to a state of the art
algorithm. Moreover, we demonstrate the benefits of our dynamic
pricing scheme and its applicability on other resource allocation
algorithms.

Index Terms—Resource Allocation, Dynamic Pricing, Traffic
Heterogeneity, QoE.

I. INTRODUCTION

The emergence of numerous independent content provider
applications used by smart devices connected to mobile net-
works has been driving the ever-increasing rise in mobile data
traffic. Each application may have different Quality of Service
(QoS) requirements, which along with the use of multiple
devices per user [1] increase the heterogeneity of the traffic
demand. In order to address these challenges, Mobile Network
Operators (MNOs) invest in the densification of their networks
with Small Cell (SC) infrastructure, deploying Heterogeneous
Networks (HetNets). Although it may seem contradictory, the
described traffic boost has increased the content providers’
profits while, simultaneously, has diminished the MNOs’
revenues [2]. This occurs because the MNQO’s basic services
(voice and messaging) have been gradually replaced by their
third-party counterparts. Moreover, the MNO’s data service
prices have been decreasing over the years, due to the market
competition. Furthermore, the content providers only reap the
benefits of using the MNO infrastructure without cost, as
they do not subsidize its deployment and operation. However,
despite these conditions, the MNOs must provide seamless
connectivity and high Quality of Experience (QoE) to their

users, which is one of the key elements that has been attracting
the interest of the telecommunication market the past years [3].

Therefore, MNOs face a two-fold challenge: meet the QoE
requirements and maximize the profit. It has been proven
that the relation between QoS and QoE has a non-linear
nature [4]. This means that small degradations in the received
QoS can impact significantly the perception of QoE. Yet,
QoE is influenced by other factors such as pricing or device
characteristics [5]. In this context, it is necessary to design
network and economic functionalities adapted to the new re-
quirements, such as QoE-aware Radio Resource Management
and Dynamic Pricing (DP) strategies, and always trying to
maximize the profit (to compensate the diminished MNOs’
revenues and the increasing deployment investment).

The majority of works on Resource Allocation (RA) and
scheduling focus mainly on the provision of high QoS or QoE
and other network aspects (e.g. power allocation, fairness etc.),
without taking into account the impact of their proposals on
economic aspects [6], [7]. Two user-oriented joint subcarrier
and Power Allocation (PA) algorithms for OFDMA systems
are proposed in [6]. The first algorithm guarantees that all
users share the same QoE, whereas the second algorithm
provides the trade-off between the appropriate QoE level
and the system spectral efficiency. Similarly, a QoE-aware
joint RA and PA algorithm with a satisfaction factor that
determines the percentage of served users is proposed in
[7]. However, there is a limited number of works on RA or
scheduling that consider both network and economic aspects.
A downlink packet scheduling scheme for QoS provisioning in
wireless networks is proposed in [8]. The scheme’s objective
is the satisfaction of users with various QoS requirements
and priority classes, and the minimization of the network
operator’s revenue loss. A method for the simultaneous RA in
both licensed and unlicensed bands in the SCs of a HetNet is
proposed in [9]. The authors solve the concurrent RA problem
twice; first they maximize the SC users’ sum rate, and then
the MNO revenue, with constraints on the interference to the
macrocell tier, and the SC users’ rate requirements.

Regarding dynamic pricing, most schemes in the literature
are based on time or location-dependent pricing, aiming to
steer the traffic demand from peak to off-peak traffic hours and
locations [10], [11]. That is, DP is used as a tool to motivate
the users change their data consumption habits, thus avoiding
network congestion. However, such approaches cannot pro-



vide high customer satisfaction during inevitable congestion
periods. A different approach has been studied in [12] for
the scheduling of computational resources in cloud computing
data centers. In [12], the cloud provider discovers how much a
client is willing to pay for a particular service degradation, and
uses scheduling algorithms that combine partial degradation of
the computational power, and price reduction.

In this paper, we jointly study the RA and DP problems in
HetNets composed of macrocell and SC base stations (BSs),
dynamic traffic described by numerous QoS/QoE demands,
and diverse pricing (i.e. various service prices and different
types of pricing). In order to address the challenge of traffic
heterogeneity, we propose a joint RA-DP, heuristic algorithm
that exploits the QoE-awareness and the network’s economic
aspects. The proposed algorithm maximizes the MNO profit
under overall user satisfaction constraints in a real-time scale,
during congestion. Our proposal on DP provides immediate
results and can be applied on the RA and pricing type the
MNO already uses.

The rest of the paper is organized as follows. We present the
system model in Section II. Section III describes the MNQO’s
objectives. We formulate the profit optimization problem in
Section IV, and propose a QoE-aware profit maximizing joint
RA-DP algorithm in Section V. We validate our algorithm in
Section VI, and conclude the paper in Section VII.

II. SYSTEM MODEL

The considered network is composed of a set of macrocells
and a set of SCs, all of them deployed by a single MNO. We
denote this set of all the BSs as B = {1,2,..., Ng}, where
Np is the total number of BSs. The bandwidth allocated to
each BS ¢ € B is hereafter referred to as b; (in Hz).

The MNO serves a set of users U = {1,2,..., Ny}, where
Ny is the total number of users. It is assumed that users are not
served by more than a single BS simultaneously, and therefore
we define the set of users served by BS ¢ € 5 as U;, where Y =
Usesl; and Niepld; = (). MNOs have put the focus on the QoS
and QoE as the target Key Performance Indicators (KPIs) in
the design of networks [3]. Accordingly, in our model each
user has a contract with the MNO that specifies a desired QoE
for each service, denoted in the sequel as Service Profile (SP).
If we define the set of services as S = {s:s=1...5} and
the set of QoE classes as Q@ = {qg: ¢ =1...Q} (Q is assumed
to be a discrete and finite set), a generic SP can be defined as
7k = (Sk, qk, Pk ), Where py, is the price of the service (in €),
s € S and g € Q. Focusing on py, it is worth noting that
its definition depends on the service si. Thus, some services
are charged based on the amount of transmitted/received data
and some others are based on the connection time. Let us
define the price for a data-based charged service as 19,? (in
€/MB) and for a time-based charged service as 6, (in € /sec).
Moreover, we denote by U, U! C U; the sets of data-based
and time-based charged users served by BS ¢, respectively (i.e.
UP vu! =U; and UP NU} = 0). In order for the MNO to
apply DP on a real-time basis, the users’ service price must
be reduced during short time periods 7'. To that end, a BS 7
determines the percentage of py a user j € U; will pay at a

time period 7', which we denote by \;; € [0, 1]. The general
expression of p; for a time period T can be expressed as

T 0 If user j € U?
D = { Ik J (1

LN 08 1f user j € UP,
where r (in Mbps) is the user transmission rate. As for the
perceived QoE, in general any user with a service profile 7y
has a target QoE level, Q}Zg , and a minimum QOoE level below
which the session is dropped, QZMP (in the MOS scale [4]).

Although the perceived QOoE is influenced by multiple
factors, as it will be detailed in Section III, we now focus on
the impact of the user device. Nowadays, a single user can get
connected to the network with different devices (tablet, laptop,
smartphone, etc), each one with specific characteristics. These
characteristics of the device, such as the screen quality or
screen size, are relevant since they may improve or worsen the
perceived QoE. For instance, to perceive similar QoE levels,
lower image resolution and hence lower transmission bit rate
(i.e. lower QoS) is required for a user using a video service in
a small-size screen smartphone than for the same user with a
large screen tablet [13]. Therefore, we define the set of devices
asD={d:d=1...D}, and the mapping function that links
the device-SP pair with the required transmission rate, 74, as
f i (mg,d) — rq. According to the definitions, the QoE
perceived by a user j € U with a SP 7, and using a device
d € D, namely Q*, will be higher than the target QoE @’
if the transmission rate from the serving BS to the user j is
higher than rj4. In other words, the target QoE is met at time
period t if r;(t) = w;;(t)ei;(t)bi > kg = f(mg,d), where
r;(t) is the actual transmission rate of user j € U; (in Mbps),
w;;(t) € [0,1] is the portion of BS ¢ € B radio resources
allocated to user j, and €;;(¢) is the spectral efficiency of the
link between user j and BS ¢ (in bps/Hz).

Note that the QoE classes differentiate the perceived quality
by offering different maximum rate values for the same service
(e.g. SD and HD video). That is, the user can opt between ()
quality levels for every service and create a user profile, since
each service may be of different importance to the user (e.g.
preference for high browsing speed but SD video).

Based on the definitions stated above, it is clear that the
satisfaction of users is tightly coupled with the perceived QoE.
Specifically, if the satisfaction of user j served by BS ¢, namely
0ij(t) is defined within the interval [0,1], when Q%%(t) =

zmp , the session is dropped and the satisfaction is equal to
0. Conversely, when Q?d(t) > ng , the satisfaction is equal
to 1. Thus, according to [5], the satisfaction can be defined as

(D

0 if Q(t) < QP
QM- d t
W if QF(t) € (@, Q)Y) (2
1 otherwise

0i5(t) =

III. MNO OBIJECTIVES

In order to propose a RA-DP scheme based on network
and economic functions, we first need to identify and analyse
the MNO’s objectives. It is true that MNOs have two-fold
objective. First, they must offer users the QoE agreed in the



SP. Second, the network must be managed so as to maximize
their economic profit. In the following, the analyses of the
QoE, overall user satisfaction and the profit are detailed.

A. User QoE and overall user satisfaction

Based on the analysis described in [5], the perceived QoE
Q%%(t) can be divided into two components: the QoS-based

component (@fd(t)) and the price-based component (Q, (pk)).

Q(t) = Q¥ (1) - Qulpr)- 3)

The QoS-based component, @?d(t) € [1,5] (in the MOS
scale), shows the effect of QoS level on QoE. In the literature,
the connection between QoE and QoS is usually modelled
according to the IQX hypothesis [4], which defines it as an
exponential relationship. Using the transmission rate r;(¢)
as the reference QoS metric, and according to the 1QX
hypothesis, we can express Q¥(t) as

@?d(t) = akjdjeiﬁkjdj Ars(t) + Vkjd;» (4)

where A’I“j(t) = Tkd — T‘j(t) , and Ak;d; > 0, Vk;d; >0
(both in the MOS scale), Bkjdj > 0 (in sec/bit) are SP-device
dependent constants. Regarding the price-based component, it
captures how the perception of the quality improves (worsens)
as the price falls (rises). As in [5], Qp(px) is modelled as

Qp(pr) =1 — vi, P, &)

where v, > 0 is an adjusting factor measured in € —1 We
assume that vy, and hence @Q,(py) can be different for each
user j, in order to capture the effect of p; on each user
individually. As it can be observed in (5), if the user does not
pay for the service (i.e. p = 0), the price-based component
will reach the maximum value, Qp(()) = 1, thereby increasing
the perceived QoE in (3). That is, the more a user pays for a
service, the higher her expectations on the received QoS are.
Overall User Satisfaction: We define the sum of the satis-
faction of all the users in a BS ¢ as the Overall User Satisfac-
tion (0S), OS; =5 jeu; Tij- Similarly, the OS in the system
is given by the satisfaction of all users, OS =}, 5 OS;.
Given a particular association of users in a BS 4 at time
period ¢, the corresponding maximum overall satisfaction
OS**(t) = max,,, {OS;(t)} depends on the users’ rate
requirements 4 and their current spectral efficiency e;;(¢).
Based on the definition, the OS achieved with a specific
RA can be expressed as a fraction of the maximum value.
Therefore, we define the relative overall user satisfaction
¢i(t) = 0S;(t)/OS™*(t) € [0,1] as a QoE-aware perfor-
mance metric. The objective of the MNO is then given by

¢i(t) > ¢™" Vi € B. (6)
where ¢™" is a minimum threshold defined by the MNO.

B. MNO Profit

The objective of the MNO is the maximization of the profit
while satisfying the QoE required by the users. Specifically,
the total profit P(t) is the sum of the individual profits of each

BS Pi(t), i.e. P(t) = 3,5 Pi(t). In [14], P;(t) is expressed
as the revenue obtained from the traffic served at time ¢, R;(t),
minus the cost incurred when serving the traffic, which depicts
the bandwidth utilization cost, C' B;(t). Therefore,

P(t)=) Fi(t)=) (Ri(t) - CBi(1), [€]. (D
ieB icB

The revenue of BS 4, R;(t), is usually the price of the services
paid by the users in ¢f;. That is, R;(t) = >, Rij(t), where
R;;(t) = py is the revenue paid by user j when connected to
BS 7 at time period ¢, for a duration of T" seconds. With regard
to CB;(t), it is a convex and increasing exponential function
of the total resources used by BS i, w;(t) = >, wij(t)
[14], and for a duration of 71" seconds it can be written as

CBi(t) = cie" T, ®)

where ¢; (in €/sec) and h; (in MHz ") are adjusting factors
that capture the differences in the operational cost of the
different BSs (e.g. macrocells and SCs have different transmit
power, maintenance cost, site rent, etc). Substituting (8) into
(7), and denoting the SP of a generic user j as g, the profit
of BS i at time period ¢, with a duration of 7" seconds when
QY () € (Q7, Q7] is given by

Pi(t) =Y prl(oi(t) > 0) — e Zoeus Oy (9)
JEU;

where 1(-) is the binary indicator function, which is equal to
1 if the condition is true and O otherwise. We use the binary
indicator function in order to emphasize that a BS 7 will not
receive revenue if the allocated resources to user j, w;; (t), do
not suffice for a satisfactory service with o;;(¢) > 0. It can be
seen in (9) that the profit is impacted by multifarious factors,
such as the perceived QoE (which in turn depends on multiple
factors), the cost, the radio resources usage, etc.

IV. PROFIT OPTIMIZATION

As explained in the previous Section, the MNO aims to
maximize the profit P(¢) while satisfying the required QoE
of all users. However, when not all users can be served with
the required QoE due to network congestion, the MNO must
provide the highest possible OS. Let us define the association
of user j to BS i at time period ¢ as x;;(t), where z;;(t) = 1
if user j is served by BS i and x;;(t) = 0 otherwise. The
profit maximization problem at time ¢ is formulated as

max P(t) = Z(Z zij (t)py, — cielibi Zseu i Owi (O

ieB jeu
(10)
s.t. oy <L VieB Vjel, (10a)
ieB
€ [0,1], Vi € B, (10b)
Gi(t) > @™ (10c)

In the optimization problem, users cannot be connected to
more than a single BS (10a), the maximum bandwidth al-
located by BS i is b;, that is ZVj:wij(t)zl wii(t) = w;(t) <1
(10b), and the relative overall user satisfaction must be higher



than the minimum threshold ¢™™ (10c). Since we use the
binary indicator function in P;(t), the optimization problem
in (10) is a Mixed-Integer Non-linear Programming (MINLP)
problem, whose computational complexity is NP-hard [15].

V. PROFIT MAXIMIZING RESOURCE ALLOCATION &
DYNAMIC PRICING

As explained in Section III-A, the service price is one
of the key factors that affects the users’ QoE perception.
Particularly, by observing expressions (3), (4) and (5), we
notice that when py, is lowered (increased), the QoE’s price-
based component ((),,(pr)) increases (decreases). For instance,
when the charging is lowered to pj, < pi, @, increases
(.e. Qp(p,) > Qp(pr)). Thus, a particular target QoE level
ng can be achieved by offering the same service with lower
price and rate r;- < Tkq, that is, Q};g = @?d(rkd)Qp(pk) =
@?d(r;-)Qp(p;C). Conversely, when pj is raised, it is not
possible to achieve the highest QoE levels, even when the
QoS reaches its peak (i.e. r; = rgq).

Therefore, reducing pi (i.e. A;; € [0,1)) allows for the
reduction of a user’s rate r;(¢) without lowering her satis-
faction, which in turn reduces her resource utilization w;;(t).
The released resources can be then used on other users to
improve the OS during congestion. Moreover, DP can be used
to increase P;(t). When we use DP, we decrease both R;;(t)
and C'B;(t). Hence, when the cost reduction is higher than the
revenue loss, P;(t) becomes higher. Finally, this form of DP
can be applied on the existing pricing schemes a MNO uses
along with the employed RA scheme.

To this end, we propose a low complexity algorithm O(n?),
presented in Algorithm 1, which takes as input the BS i’s
users’ SP-device pair (pg;,d;), to maximize the MNO profit
for a minimum relative OS level ™" through RA and DP.
The rationale is to initially determine the RA that maximizes
BS i’s OS;(t). Subsequently, using as input this allocation, the
algorithm determines the RA and pricing (i.e. );;) that maxi-
mize P; for the required OS constraint (i.e. ¢;(t) > @),

Initially, Algorithm 1 calculates the w;;(t) needed to serve
each user with the maximum o;(¢) (step 1). Subsequently,
it allocates resources starting from the user with the least
resource requirements towards the user with the highest (steps
3-11). Finally, either all users are satisfied (i.e. OS; =
Ny) or the resources are depleted. Next, the algorithm sets
OS™Me=(t) = OS;i(t), ¢:(t) = 1, and the discrete set A =
{0,0.1,...,1} of X;; values that BS ¢ can use for pricing.

In the following iterative procedure (steps 13-28), each
user’s satisfaction is decreased (step 15) and increased (step
16) with ogep (the RA w;;(t) is calculated from (2) and (3)).
For both satisfaction values, we reduce py, for the A;; values in
A, and calculate the corresponding profit (steps 14-21). Only
0;(t) values that increase the profit are considered as feasible
results. This procedure is repeated iteratively for each user
and for different values of o4, as long as the relative overall
user satisfaction is above the minimum threshold. The RA and
pricing are updated with the distribution of resources and the
A;; values that provide the maximum profit for a relative user
satisfaction level above ¢™".

Algorithm 1: Profit Maximizing RA-DP Algorithm

1 Calculate w;;(t) < 1 for maximum o;;(¢),Vj € U;

3 forall j € U, in ascending order of w;;(t) do

4 if Wi (t) < 1— 'LUZ(t) then

5 ‘ wi(t) = wi(t) + Wij (t)

6 else if 0;;(t) > o™ for w;;(t) =1 — w;(t) then

7 ‘ wij(t) =1- wz(t) and w7(t) =1

8 else

9 ‘ Wi (t) =0

10 end

11 end

12 Set OS**(t) = O8;i(t), ¢i(t) = 1, ostep = o4te,y and
A=1{0,01,...,1}

13 while ¢;(t) > ¢™" and ogep > 07fin do

14 for j €U, do
15 ai_' (t) = max (Uij (t) — Osteps O)
16 oﬁ(t) = min (0, (t) + Tstep, 1)
ij ij steps
17 for \;; € A do
18 Calculate the total profit P;(¢) and ¢;(t) with
0ij(t) = oy;(t) and o(t) = o7/ (t)
19 Store the maximum profit P;(¢) s.t.
(bz(t) 2 ¢min and wl(t) S 1in Pi/j(t’ /\Z])
and the corresponding ¢;(t) and o;;(t) in
i3 (8 Aij) and o7 (£, Aij)
20 end
21 end
22 (%, \j;) = arg max (Pi’j(t, )\Z-j))
Dy Aij
23 | if P (t,\];) > P;(t) then
24 Pi(t) = Pz'/j*@a)‘;:kj)’ ¢i(t) = gj*(tv)\:j)’
i+ (t) = 0}« (t, A};) and the corresponding
w;;(t), Ai;(t) values are updated
25 else
26 | Reduce otep
27 end
28 end

VI. PERFORMANCE EVALUATION

The scenario used for the performance evaluation consists
of a cluster with 6 SCs deployed in the coverage area of a
macrocell sector. The cluster is circular shaped and centred at
location ¢ = (z.,0), as shown in the layout depicted in Fig.
1. Along simulations, x. is randomly selected according to
a uniform distribution with z. € [100,190]m. The Inter-Site
Distance (ISD) between SC equals R;ysp = 50m.

Users are uniformly distributed within a radius of 75m from
¢, and the SP of each user is selected with equal probability
among the SPs defined in Table I. As it can be observed
in Table I, three services are considered, each one with two
QoE classes Q@ = {Basic, Premium}: Service 1 is a data-
based charged service, and Services 2 and 3 are time-based
charged services. Likewise, 3 different devices are considered,
and the corresponding transmission rates associated to each
SP, r4, are also included in Table I. Note that for each SP,
r,q 1s the transmission rate required to perceive a QoE equal
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Fig. 1: Simulation scenario topology

TABLE I: Service Profiles’ parameters

Service | QoE class | {rii,rk2,ria} (Mbps) | 6% or 0B
Service 1 Basic 7 1.5€/GB
(Data Based) Premium 9 2€/GB
Service 2 Basic {4.5,5,6.5} 4€/h
(Time Based) | Premium {5,6,7} 7€/
Service 3 Basic {6,7,7.5} 4€/h
(Time Based) | Premium {6.5,7.5,8.5} 7€ /h

TABLE II: BS parameters

Parameter [ Macrocell [ Small cell
ci (€) 5.107° 5.10~ 7
h; (MHzT) 0.3 0.295
b; (MHz) 20 20
Transmission Power (dBm) 43 30

to ng In the simulations, the transmission rate that results
in a perceived QoE equal to Qdmp is set to rd”’p = 0.7rq
for all SPs. Moreover, vy, is selected randomly so as to have
Qp(pk) € 10.8,0.9] in (5), and

tg

(11a)

—VkdQp (Pk)
—YkdQp (Pr) )7 (11b)

_ QY
Opd = Q, (%) Ykd
drop

Bra = — In ( >
Ar drop Zg

d n
where Aré"™? = rpq— rk;op’ and vpq = 1, for all g,

d e D and (QY,Q%"°P)=(3.5,2.5) for Basic QoE class and
QY. Zmp )= (4.5, 3.5) for Premium QoE class of all services.

Parameters used for the BSs, both eNBs and SCs, are listed
in Table II. We assume dedicated spectrum allocation per tier,
adopted 3GPP LTE-A’s channel models described in [16], and
set the Antenna gains to O dB. For the cell selection, we
associate the users to the BS with the highest SINR, as it
is common practice in mobile networks [17].

The following results were acquired through Monte-Carlo
simulations. We compare our proposed algorithm (referred to
as PM) with a QoE maximizing algorithm, referred to as
OSM [7]. OSM is a RA algorithm that maximizes the user
QoE through an iterative procedure, which in each iteration
allocates enough resources to satisfy a single user, starting
from the user with the highest spectral efficiency towards the
user with the lowest. In order to show the benefits of our
DP scheme, we provide results for both algorithms with and
without applying DP (the symbol * refers to the algorithms
with DP applied). For PM, when DP is not applied, it is

BS number

1 2 3 4 5 6 7
By & - : e 07
osh® el G 0.06
075 L. //f;ﬁw 777777 005

‘ TwpMm’ 0.04 <
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Fig. 2: System Bandwidth Utilization W and w; reduction

A = {1}. For PM, the values for the change in user satisfaction
are ogep = {0.01,0.05}. Moreover, the minimum acceptable
satisfaction level for all algorithms is 07;”" = 0.01. It should
be noted that we provide results for PM with ¢™" = 1, aiming

to offer the users the service agreed in their SPs.

Fig. 2 shows the expected total utilization of the spectrum
(in the black-coloured, separate axes), which is defined as
W= E[W(t) = Zgenqit
Nir. We observe that PM and OSM consume the same portion
of the bandwidth whether DP is applied or not. Regarding
the gain from DP, we see that both PM* and OSM* use
[4.46,4.92]% less of their total resources compared to PM
and OSM respectively.

] versus the number of users

Fig. 2 also depicts (in the grey-coloured markers and
separate dashed axes) the bandwidth utilization reduction of
each BS i (w] ed), when DP is used, where ¢ = 1 denotes
the macrocell BS. In order to produce the presented results,
we averaged w!®? of each BS i for all simulated Ny; values.
We observe that both algorithms share similar W and w?!®?
gains, when DP is applied. This occurs because the reductlon
in wij(t) depends on the users’ individual parameters, that is,
her current spectral efficiency ¢,;(t), her rate requirement 7,
and the impact that the service price has on her QoE perception
Qp. We further notice that there is a high deviation in wred
among the BSs. Particularly, w!®? at BSs 5 and 6 is almost
zero. This is a result of low load in these two BSs. Due to the
use of the SINR-based cell selection scheme, the SCs closer to
the eNB are associated with a small number of users. Hence,
they have low spectrum requirements, and if DP is applied,
the revenue loss will be higher than the cost reduction.

Fig. 3 shows the algorithms’ performance on the MNO
profit P and the overall user performance OS. We see
that our proposal outperforms OSM in terms of profit, and
shows a slight gain over OS as well ([1.65,2.83]% gain).
As mentioned earlier, OSM sorts the users according to their
spectral efficiency ¢, (¢), and then allocates the resources until
they are exhausted. This means that OSM will first serve
the users with the highest ¢;;(t) regardless of their service’s
requirements. Conversely, PM sorts the users according to
their resource requirements w;; () for serving them with their
maximum o;;(t). OSM performs well when there is a single
rate requirement. However, in a scenario with heterogeneous
traffic as well as diverse pricing, a more elaborate algorithm
such as PM is required in order to serve the users with even
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higher satisfaction, while gaining large MNO profit.

Regarding the effect of DP, we observe that both PM* and
OSM* perform the same as PM and OSM respectively, in
terms of OS. Conversely, PM* and OSM* provide substantial
gains in the MNO profit P ([9.7,26.6]% gain for PM* and
[325,1835]% gain for OSM*!). For PM, this is explained by
the fact that the decisions on RA and DP are made in order
to maximize the BS profit while achieving a minimum OS
performance (refer to Alg. 1’s steps 32-34). Therefore, PM*
provides the same OS as PM, however for lower W and
cost. As for OSM, we applied our DP scheme on the RA
determined by the original algorithm. Hence, we obtain the
same O.S, but for a higher profit owing to the cost reduction.
If DP was applied within the original OSM algorithm, the
BS revenue would be significantly low (even zero), as the
algorithm would always reduce the service price (i.e. low A;;)
in order to maximize OS.

Our proposed algorithm manages to offer significantly
higher profit for a similar network performance compared
to the reference algorithm, because it bases its decisions on
both technological (i.e. QoS/QoE requirements) and economic
(i.e. pricing and profit) context of the network. Moreover, our
proposal on DP has been proven to complement RA schemes
in order to increase substantially the MNO profit. Additionally,
in a different application of DP the released resources can be
used to increase the QoE of the users, while maintaining high
MNO profits.

VII. CONCLUSIONS

In this paper, we studied the joint resource allocation and
dynamic pricing problem in a single MNO’s HetNet described
by traffic heterogeneity, and diverse pricing. Our objective was
the maximization of the MNOQO’s profit, while providing high
QoE to the users. Thus, we proposed a heuristic, joint RA-DP
algorithm, which bases its decisions on profit maximization,
while satisfying a constraint on overall user satisfaction. We
evaluated the performance of the proposed algorithm with and
without applying DP by comparing it with a state of the art RA
algorithm. Our results verify the adaptability of the proposed
algorithm to traffic heterogeneity, by providing higher OS and
profit than the algorithm in comparison. Finally, we show that

'The high gains observed for OSM* are explained by the fact that OSM’s
profit is significantly low and close to 0.

our proposal on DP can be applied on different algorithms,
allowing them to improve either the MNO profit or the OS
performance.
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