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Abstract

Joint pushing and caching is recognized as an efficient remedy to the problem of spectrum scarcity

incurred by tremendous mobile data traffic. In this paper, by exploiting storage resources at end users

and predictability of user demand processes, we design the optimal joint pushing and caching policy

to maximize bandwidth utilization, which is of fundamental importance to mobile telecom carriers.

In particular, we formulate the stochastic optimization problem as an infinite horizon average cost

Markov Decision Process (MDP), for which there generally exist only numerical solutions without

many insights. By structural analysis, we show how the optimal policy achieves a balance between

the current transmission cost and the future average transmission cost. In addition, we show that the

optimal average transmission cost decreases with the cache size, revealing a tradeoff between the cache

size and the bandwidth utilization. Then, due to the fact that obtaining a numerical optimal solution

suffers the curse of dimensionality and implementing it requires a centralized controller and global

system information, we develop a decentralized policy with polynomial complexity w.r.t. the numbers

of users and files as well as cache size, by a linear approximation of the value function and optimization

relaxation techniques. Next, we propose an online decentralized algorithm to implement the proposed

low-complexity decentralized policy using the technique of Q-learning, when priori knowledge of user

demand processes is not available. Finally, using numerical results, we demonstrate the advantage of

the proposed solutions over some existing designs. The results in this paper offer useful guidelines for

designing practical cache-enabled content-centric wireless networks.

Index Terms

Pushing, caching, Markov Decision Process, Q-learning, bandwidth utilization.
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I. INTRODUCTION

The rapid proliferation of smart mobile devices has triggered an unprecedented growth of

global mobile data traffic [1], resulting in the spectrum crunch problem in wireless systems. In

order to improve the bandwidth utilization and support the sustainability of wireless systems,

researchers have primarily focused on increasing the access rate of wireless systems and the

density of network infrastructures, e.g., base stations (BSs). However, the expansive growth

of both the access rate and the density of network infrastructures entails prohibitive network

costs. On the other hand, modern data traffic exhibits a high degree of asynchronous content

reuse [2]. Thus, caching is gradually recognized as a promising approach to further improve the

bandwidth utilization by placing contents closer to users, e.g., at BSs or even at end users, for

future requests. Recent investigations show that caching can effectively reduce the traffic load

of wireless and backhaul links as well as user-perceived latency [3]–[8].

Based on whether content placement is updated, caching policies can be divided into two

categories, i.e., static caching policies and dynamic caching policies. Static caching policies

refer to the caching policies under which content placement remains unchanged over a relatively

long time. For example, [3]–[5] consider static caching policies at BSs to reduce the traffic

load of backhaul links. In addition, in [6], [7], static caching policies at end users are proposed

to not only alleviate the backhaul burden but also reduce the traffic load of wireless links.

However, all the static caching policies in [3]–[7] are designed based on content popularity,

e.g., the probability of each file being requested, which is assumed to be known in advance,

and cannot exploit temporal correlation of a demand process to further improve performance of

cache-assisted systems. Dynamic caching policies refer to the caching policies where content

placement may update from time to time by making use of instantaneous user request information.

In this way, dynamic caching policies can not only operate without priori knowledge of content

popularity but also capture the temporal correlation of a demand process. The least recently

used (LRU) policy and the least frequently used (LFU) policy [8] are two of the commonly

adopted dynamic caching policies, primarily due to ease of implementation. However, they are

both heuristic designs and may not guarantee promising performance in general.

Pure dynamic caching policies only focus on caching contents which have been requested and

delivered to the local cache, and hence have limitations in smoothing traffic load fluctuations

and enhancing bandwidth utilization. To address these limitations, joint pushing (i.e., proac-
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tively transmitting) and caching has been receiving more and more attention, as it can further

improve bandwidth utilization. Specifically, the underutilized bandwidth at low traffic time can

be exploited to proactively transmit contents for satisfying future user demands. Therefore, it is

essential to design intelligent joint pushing and caching policy based on the knowledge of user

demand processes.

For instance, [9] considers joint pushing and caching to minimize the energy consumption,

assuming complete knowledge of future content requests. In most cases, the assumption cannot be

satisfied, and hence the proposed joint design has limited applications. To address this problem,

[10]–[15] consider joint pushing and caching based on statistical information of content requests

(e.g., content popularity), while [16] considers online learning-aided joint design adaptive to

instantaneous content requests and without priori knowledge of statistical information of content

requests. Specifically, [10] optimizes joint pushing and caching to maximize the network capacity

in a push-based converged network with limited user storage. In [11], the authors maximize the

number of user requests served by small BSs (SBSs) via optimizing the pushing policy using

Markov decision process (MDP). Note that in [11], the cache size at each user is assumed to be

unlimited, and thus caching design is not considered. In [12] and [13], the optimal joint pushing

and caching policies are proposed to maximize the number of user requests served by the local

caches in the scenarios of a single user and multiple users, respectively. [14] studies the optimal

joint pushing and caching policy to minimize the transmission cost. However, the joint designs

in [12]–[14] do not take into account future reuse of requested files, and thus cannot be applied

to certain applications which involve reusable contents, such as music and video streaming.

Moreover, in [10]–[14], temporal correlation of a demand process is not captured, and hence the

potential of joint pushing and caching cannot be fully unleashed. In contrast, [15] and [16] exploit

temporal correlation in the joint designs. In particular, [15] investigates efficient transmission

power control and caching to minimize both the access delay and the transmission cost using

MDP. In [16], the authors maximize the average reward obtained by proactively serving user

demands and propose an online learning-aided control algorithm. However, in [15] and [16],

only a single user setup is considered without reflecting asynchronous demands for common

contents from multiple users, and hence the proposed joint designs may not be directly applied

to practical networks with multiple users. Moreover, the pushing policy in [16] can predownload

contents only one time slot ahead.

To further exploit the promises of joint pushing and caching in bandwidth utilization, in this
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paper, we investigate the optimal joint pushing and caching policy and reveal the fundamental

impact of storage resource on bandwidth utilization. Specifically, we consider a cache-enabled

content-centric wireless network consisting of a single server connected to multiple users via

a shared and errorless link. Each user is equipped with a cache of limited size and generates

inelastic file requests. We model the demand process of each user as a Markov chain, which cap-

tures both the asynchronous feature and temporal correlation of file requests. By the majorization

theory [18], we choose a nondecreasing and strictly convex function of the traffic load as the

per-stage cost and consider the time averaged transmission cost minimization. In particular, we

formulate the joint pushing and caching optimization problem as an infinite horizon average cost

MDP. Note that there generally exist only numerical solutions for MDPs, which suffer from the

curse of dimensionality and cannot offer many design insights. Hence, it is a great challenge

to design an efficient joint pushing and caching policy with acceptable complexity and offering

design insights. In this paper, our main contributions are summarized as below.

• First, we analyze structural properties of the optimal joint pushing and caching policy. In

particular, by deriving an equivalent Bellman equation, we show that the optimal pushing

policy balances the current transmission cost with the future average transmission cost,

while the optimal caching policy achieves the lowest future average transmission cost given

the optimal pushing policy. In addition, based on coupling and interchange arguments, we

prove that the optimal average transmission cost decreases with the cache size, revealing

the tradeoff between the cache size and the bandwidth utilization. Moreover, via relative

value iteration, we analyze the partial monotonicity of the value function, based on which

the sizes of both the state space and the caching action space are reduced, and thereby the

complexity of computing the optimal joint design is reduced.

• Then, considering that obtaining the optimal policy requires computational complexity

exponential with the number of users K and combinatorial with the number of files F

as well as the cache size C, and implementing it requires a centralized controller and

global system information, we develop a low-complexity (polynomial with K, F and C)

decentralized joint pushing and caching policy by using a linear approximation of the value

function [19], [20] and optimization relaxation techniques.

• Next, noting that our proposed low-complexity decentralized policy requires statistic infor-

mation of user demand processes, we propose an online decentralized algorithm (ODA) to
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Table I: Key Notations

Notation Meaning

F ,K, k, f set of all files, set of all users, user index, file index

F , K, C file number, user number, cache size

A = (Ak)k∈K, S = (Sk,f )k∈K,f∈F system demand process, system cache state

Xk = (Ak, Sk), X = (A, S) state of user k, system state

Qk =
(

q
(k)
i,j

)

i∈F̄,j∈F̄
transition matrix of demand process of user k

R = (Rf )f∈F , P = (Pf )f∈F , ∆S = (∆Sk)k∈K reactive transmission action, pushing action, caching action

U(X), µ = (µP , µ∆S) system action space under X, joint pushing and caching policy

θ, V (X) optimal average cost, value function of system state X

implement the low-complexity decentralized policy using the technique of Q-learning [21],

when priori knowledge of user demand processes is not available.

• Finally, by numerical results, we compare the performance of our proposed solutions with

some existing designs at different system parameters, including the user number, file number,

cache size and some key factors of user demand processes.

The key notations used in this paper are listed in Table I.

II. SYSTEM MODEL

A. Network Architecture

As in [22], we consider a cache-enabled content-centric wireless network with a single server

connected through a shared error-free link to K users,1 denoted as K , {1, 2, · · · , K}, as shown

in Fig. 1. The server is accessible to a database of F files, denoted as F , {1, 2, · · · , F}. All

the files are of the same size. Each user is equipped with a cache of size C (in files). The

system operates over an infinite time horizon and time is slotted, indexed by t = 0, 1, 2, · · · . At

the beginning of each time slot, each user submits at most one file request, which is assumed

to be delay intolerant and must be served before the end of the slot, either by its own cache

if the requested file has been stored locally, or by the server via the shared link. At each slot,

the server can not only reactively transmit a file requested by some users at the slot but also

push (i.e., proactively transmit) a file which has not been requested by any user at the slot. Each

1Note that the server can be a BS and each user can be a mobile device or a SBS.
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K Users

Server

Multicast

Size C

F Files

Figure 1: System model.

transmitted file can be received by all the users concurrently before the end of the time slot.2

After being received, a file can be stored into some user caches.

B. System State

1) Demand State: At the beginning of time slot t, each user k generates at most one file

request. Let Ak(t) ∈ F̄ , F ∪ {0} denote the demand state of user k at the beginning of time

slot t, where Ak(t) = 0 indicates that user k requests nothing, and Ak(t) = f ∈ F indicates

that user k requests file f . Here, F̄ denotes the demand state space of each user which is of

cardinality F + 1. Let A(t) , (Ak(t))k∈K ∈ F̄K denote the system demand state (of the K

users), where F̄K represents the system demand state space. Note that the cardinality of F̄K is

(F + 1)K , which increases exponentially with K.

For user k, we assume that Ak(t) evolves according to a first-order (F+1)-state Markov chain,

denoted as {Ak(t) : t = 0, 1, 2, · · · }, which captures temporal correlation of order one of user

k’s demand process and is a widely adopted traffic model [16]. Let Pr[Ak(t+1) = j|Ak(t) = i]

denote the transition probability of going to state j ∈ F̄ at time slot t + 1 given that the

demand state at time slot t is i ∈ F̄ for user k’s demand process. Assume that {Ak(t)} is

time-homogeneous and denote q
(k)
i,j , Pr[Ak(t + 1) = j|Ak(t) = i]. Furthermore, we restrict

our attention to an irreducible Markov chain. Denote with Qk ,
(

q
(k)
i,j

)

i∈F̄ ,j∈F̄
the transition

probability matrix of {Ak(t)}. We assume that the K time-homogeneous Markov chains, i.e.,

2We assume that the duration of each time slot is long enough to average the small-scale channel fading process, and hence

the ergodic capacity can be achieved using channel coding.

August 27, 2018 DRAFT



7

{Ak(t)}, k ∈ K, are independent of each other. Thus, we have Pr[A(t + 1) = j|A(t) = i] =
∏K

k=1 q
(k)
ik,jk

, where i , (ik)k∈K ∈ F̄K and j , (jk)k∈K ∈ F̄K .

2) Cache State: Let Sk,f(t) ∈ {0, 1} denote the cache state of file f in the storage of user k

at time slot t, where Sk,f(t) = 1 means that file f is cached in user k’s storage and Sk,f(t) = 0

otherwise. Under the cache size constraint, we have

∑

f∈F

Sk,f(t) ≤ C, k ∈ K. (1)

Let Sk(t) , (Sk,f(t))f∈F ∈ S denote the cache state of user k at time slot t, where S ,

{(Sf)f∈F ∈ {0, 1}F :
∑

f∈F Sf ≤ C} represents the cache state space of each user. Here,

the user index is suppressed considering that the cache state space is the same across all the

users. Let S(t) , (Sk,f(t))k∈K,f∈F ∈ S
K denote the system cache state at time slot t, where SK

represents the system cache state space. The cardinality of SK is
(

∑C
i=0

(

F

i

)

)K

, which increases

with the number of users K exponentially.

3) System State: At time slot t, denote with Xk(t) , (Ak(t),Sk(t)) ∈ F̄ ×S the state of user

k, where F̄ × S represents the state space of user k. The system state consists of the system

demand state and the system cache state, denoted as X(t) , (A(t), S(t)) ∈ F̄K × SK , where

F̄K × SK represents the system state space. Note that X(t) = (Xk(t))k∈K.

C. System Action

1) Pushing Action: A file transmission can be reactive or proactive at each time slot. Denote

with Rf (t) ∈ {0, 1} the reactive transmission action for file f at time slot t, where Rf (t) = 1

when there exists at least one user who requests file f but cannot find it in its local cache and

Rf (t) = 0 otherwise. Thus, we have

Rf (t) = max
k∈K:Ak(t)=f

(

1− Sk,f(t)
)

, f ∈ F , (2)

which is determined directly by X(t).3 Denote with R(t) , (Rf(t))f∈F the system reactive

transmission action at time slot t. Also, denote with Pf(t) ∈ {0, 1} the pushing action for file f

at time slot t, where Pf (t) = 1 denotes that file f is pushed (i.e., transmitted proactively) and

Pf(t) = 0 otherwise. Considering that file f is transmitted at most once at time slot t, we have

Pf (t) +Rf(t) ≤ 1, f ∈ F , (3)

3Note that we do not need to design the reactive transmission action.
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t
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x
(t

)
0

1

2

3

(a) Sequence {x(t)}. 1
5

∑5
t=1 x(t)= 1,

and 1
5

∑5
t=1 x

2(t)=2.2.

t
1 2 3 4 5

y
(t

)

0

1

2

3

(b) Sequence {y(t)}. 1
5

∑5
t=1 y(t)= 1,

and 1
5

∑5
t=1 y

2(t)=1.

Figure 2: An illustration of the relationship between the average cost and bandwidth utilization. Note that

1
5

∑5
t=1 x(t) =

1
5

∑5
t=1 y(t), while 1

5

∑5
t=1 x

2(t) > 1
5

∑5
t=1 y

2(t).

where Rf (t) is given by (2). Furthermore, if file f has already been cached in each user’s storage,

there is no need to push it. Hence, we have

Pf(t) ≤ 1−min
k∈K

Sk,f(t), f ∈ F . (4)

Denote with P(t) , (Pf(t))f∈F ∈ UP (X(t)) the system pushing action at time slot t, where

UP (X) , {(Pf)f∈F ∈ {0, 1}F : (3), (4)} represents the system pushing action space under X.

System pushing action P together with reactive transmission action R incurs a certain trans-

mission cost. We assume that the transmission cost is an increasing and continuously convex

function of the corresponding traffic load, i.e.,
∑

f∈F

(

Rf +Pf

)

, denoted by φ(·). In accordance

with practice, we further assume that φ(0) = 0. For example, we can choose φ(x) = ax − 1

with a > 1 or φ(x) = xd with d ≥ 2.4 Here, we note that the per-stage transmission cost

is bounded within set {0, φ(1), · · · , φ(min{F,KC})}. By the technique of majorization [18], a

small time-averaged transmission cost with such a per-stage cost function corresponds to a small

peak-to-average ratio of the bandwidth requirement, i.e., a high bandwidth utilization, which is

of fundamental importance to a mobile telecom carrier, as illustrated in Fig. 2.

2) Caching Action: After the transmitted files being received by all the users, the system

cache state can be updated. Let ∆Sk,f(t) ∈ {−1, 0, 1} denote the caching action for file f at

user k at the end of time slot t, where ∆Sk,f(t) = 1 means that file f is stored into the cache

of user k, ∆Sk,f(t) = 0 implies that the cache state of file f at user k does not change, and

4Note that by choosing φ(x) = 2x − 1, φ(
∑

f∈F
Rf (t) + Pf (t)) can represent the energy consumption at time slot t.

August 27, 2018 DRAFT



9

∆Sk,f(t) = −1 indicates that file f is removed from the cache of user k. Accordingly, the

caching action satisfies the following cache update constraint:

− Sk,f(t) ≤ ∆Sk,f(t) ≤ Rf (t) + Pf(t), f ∈ F , k ∈ K, (5)

where Rf(t) is given by (2). In (5), the first inequality is to guarantee that file f can be removed

from the cache of user k only when it has been stored at user k, and the second inequality is to

guarantee that file f can be stored into the cache of user k only when it has been transmitted

from the server. The cache state evolves according to:

Sk,f(t+ 1) = Sk,f(t) + ∆Sk,f(t), f ∈ F , k ∈ K. (6)

Since Sk,f(t+1) belongs to {0, 1} and also satisfies (1), we have the following two cache update

constraints:

Sk,f(t) + ∆Sk,f(t) ∈ {0, 1}, f ∈ F , k ∈ K, (7)

∑

f∈F

(

Sk,f(t) + ∆Sk,f(t)
)

≤ C, f ∈ F , k ∈ K. (8)

From (5), (7) and (8), we denote with ∆Sk(t) , (∆Sk,f(t))f∈F ∈U∆S,k(Xk(t),R(t) +P(t)) the

caching action of user k at the end of time slot t, where U∆S,k(Xk,R+P), {(∆Sk,f)f∈F ∈

{−1, 0, 1}F : (5), (7), (8)} represents the caching action space of user k under its state Xk,

system reactive transmission action R and pushing action P. Let ∆S(t), (∆Sk,f (t))k∈K,f∈F ∈

U∆S(X(t),P(t)) denote the system caching action at the end of time slot t, where U∆S(X,P),
∏

k∈KU∆S,k(Xk,R+P) represents the system caching action space under system state X and

pushing action P.

3) System Action: At time slot t, the system action consists of both the pushing action

and caching action, denoted as (P(t),∆S(t)) ∈ U(X(t)), where U(X) , {(P,∆S) : ∆S ∈

U∆S(X,P), P ∈ UP (X)} represents the system action space under system state X.

III. PROBLEM FORMULATION

Given an observed system state X, the joint pushing and caching action, denoted as (P,∆S),

is determined according to a policy defined as below.

Definition 1 (Stationary Joint Pushing and Caching Policy). A stationary joint pushing and

caching policy µ , (µP , µ∆S) is a mapping from system state X to system action (P,∆S), i.e.,
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(P,∆S) = µ(X) ∈ U(X). Specifically, we have P = µP (X) ∈ UP (X) and ∆S = µ∆S(X,P) ∈

U∆S(X,P).

From the properties of {A(t)} and {S(t)}, we see that the induced system state process {X(t)}

under policy µ is a controlled Markov chain. The time averaged transmission cost under policy

µ is given by

φ̄(µ) , lim sup
T→∞

1

T

T−1
∑

t=0

E

[

φ

(

∑

f∈F

(

Rf (t) + Pf(t)
)

)]

, (9)

where Rf (t) is given by (2) and the expectation is taken w.r.t. the measure induced by the K

Markov chains. Note that φ̄(µ) can reflect the bandwidth utilization, as illustrated in Fig. 2.

In this paper, we aim to obtain an optimal joint pushing and caching policy µ to minimize the

time averaged transmission cost φ̄(µ) defined in (9), i.e., maximizing the bandwidth utilization.

Before formally introducing the problem, we first illustrate a simple example that highlights how

the joint pushing and caching policy affects the average cost, i.e., bandwidth utilization.

Motivating Example. Consider a scenario with K = 4, F = 4, C = 1 and φ(x) = x2. The

user demand model is illustrated in Fig. 3 (a). A sample path of the user demand processes is

shown in Fig. 3 (b). Note that at time slot 2, there is no file request, while at time slot 3, the

number of file requests achieves the maximum value, i.e., 4. Fig. 3 (c)-(h) illustrate the system

cache states and the multicast transmission actions over three time slots under the following

three policies: the most popular (MP) caching policy in which the C most popular files (i.e.,

the first C files with the maximum limiting probabilities) are cached at each user [4], the LRU

caching policy and a joint pushing and caching (JPC) policy. We can calculate the average cost

over the three time slots under the aforementioned three policies, i.e., φ̄1 , 12+02+32

3
= 10

3
,

φ̄2 ,
12+02+42

3
= 17

3
and φ̄3 ,

12+12+12

3
= 1. Note that φ̄3 < φ̄1 < φ̄2. From Fig. 3 (h), we learn

that under the joint pushing and caching policy, the bandwidth at low traffic time (e.g., time slot

2) can be exploited to proactively transmit contents for satisfying future user demands (e.g., at

time slot 3), thereby improving the bandwidth utilization.

Problem 1 (Joint Pushing and Caching Optimization).

φ̄∗ , min
µ

φ̄(µ)

s.t. (2), (3), (4), (5), (7), (8),

August 27, 2018 DRAFT
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where φ̄∗ denotes the minimum time averaged transmission cost under the optimal policy µ∗ ,

(µ∗
P , µ

∗
∆S), i.e., φ̄∗ = φ̄(µ∗).

File Set

0.25

0.25
0.25

0.25

0.25 0.25

0.75
0.75

0.75

0.25

0.25

0.75

0.2

0.05

0.08

0.35

0.32

Transition Graph Stationary Distribution

No Request

(a) Demand model for each user. Qk, k ∈ K

are the same.

4A (t)

3A (t)

2A (t)

1A (t)

1 2 3 t

(b) A sample path of {A(t)}.

1S (t)

2S (t)

3S (t)

4S (t)

1 2 3 t

(c) Cache state under MP.

(t)R

1 2 3 t

(d) Reactive transmission under MP. Average

cost φ̄1 , 12+02+32

3
= 10

3
.

1S (t)

2S (t)

3S (t)

4S (t)

1 2 3 t

(e) Cache state under LRU.

(t)R

1 2 3 t

(f) Reactive transmission under LRU. Average

cost φ̄2 , 12+02+42

3
= 17

3
.

1S (t)

2S (t)

3S (t)

4S (t)

1 2 3 t

(g) Cache state under JPC.

1 2 3 t

1 2 3 t

P(t)

(t)R

(h) Reactive transmission and pushing under

JPC. Average cost φ̄3 , 12+12+12

3
= 1.

Figure 3: Motivating Example. We consider K = 4, F = 4, C = 1 and φ(x) = x2. Note that the blank square

indicates that there is no file request.
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Problem 1 is an infinite horizon average cost MDP. According to Definition 4.2.2 and Propo-

sition 4.2.6 in [21], we know that there exists an optimal policy that is unichain. Hence, in this

paper, we restrict our attention to stationary unichain policies. Moreover, the MDP has finite state

and action spaces as well as a bounded per-stage cost. Thus, there always exists a deterministic

stationary unichain policy that is optimal and it is sufficient to focus on the deterministic

stationary unichain policy space. In the following, we use µ to refer to a deterministic stationary

unichain policy.

IV. OPTIMAL POLICY

A. Optimality Equation

We can obtain the optimal joint pushing and caching policy µ∗ through solving the following

Bellman equation.

Lemma 1 (Bellman equation). There exist a scalar θ and a value function V (·) satisfying

θ+ V (X)= min
(P,∆S)∈U(X)

{

φ
(

∑

f∈F

(Rf + Pf )
)

+
∑

A′∈F̄K

∏

k∈K

q
(k)
Ak,A

′
k
V (A′, S+∆S)

}

,

X∈F̄K × SK , (10)

where Rf is given by (2) and A′, (A′
k)k∈K. θ = φ̄∗ is the optimal value of Problem 1 for all

initial system states X(0)∈F̄K×SK , and the optimal policy µ∗ can be obtained from

µ∗(X) = arg min
(P,∆S)∈U(X)

{

φ
(

∑

f∈F

(Rf + Pf )
)

+
∑

A′∈F̄K

∏

k∈K

q
(k)
Ak,A

′
k
V (A′, S +∆S)

}

,

X ∈ F̄K × SK . (11)

Proof. Please see Appendix A.

From (11), we see that the optimal policy µ∗ achieves a balance between the current transmis-

sion cost (i.e., the first term in the objective function of (11)) and the future average transmission

cost (i.e., the second term in the objective function of (11)). Moreover, how µ∗ = (µ∗
P , µ

∗
∆S)

achieves the balance is illustrated in the following corollary.

Corollary 1. The optimal pushing policy µ∗
P is given by

µ∗
P (X) = arg min

P∈Up(X)

{

φ
(

∑

f∈F

(Rf + Pf )
)

+W (X,P)
}

, X ∈ F̄K × SK , (12)
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where W (X,P), min
∆S∈U∆S(X,P)

∑

A′∈F̄K

∏

k∈K q
(k)
Ak ,A

′
k
V (A′, S+∆S) is a nonincreasing function of

P. Furthermore, the optimal caching policy µ∗
∆S is given by

µ∗
∆S(X, µ

∗
P (X)) = arg min

∆S∈U∆S(X,µ
∗
P
(X))

∑

A′∈F̄K

∏

k∈K

q
(k)
Ak ,A

′
k
V (A′, S +∆S), X ∈ F̄K × SK , (13)

where µ∗
P is obtained from (12).

Proof. (12) and (13) follow directly from (11). In addition, if P1 � P2,5 U∆S(X,P1) ⊆

U∆S(X,P2), implying that W (X,P1) ≥W (X,P2). The proof ends.

Remark 1 (Balance between Current Transmission Cost and Future Average Transmission Cost).

Note that the current transmission cost φ
(
∑

f∈F (Rf + Pf )
)

increases with P and the future

average transmission cost W (X,P) decreases with P. Thus, the optimal pushing policy µ∗
P in

(12) achieves the perfect balance between the current transmission cost and the future average

transmission cost for all X. In addition, from (13), we learn that the optimal caching policy µ∗
∆S

achieves the lowest future average transmission cost under the optimal pushing policy µ∗
P .

From Lemma 1 and Corollary 1, we note that µ∗ depends on system state X via the value

function V (·). Obtaining V (·) involves solving the equivalent Bellman equation in (10) for all X,

and there generally exist only numerical results which cannot offer many design insights [21].

In addition, obtaining numerical solutions using value iteration or policy iteration is usually

infeasible for practical implementation, due to the curse of dimensionality [21]. Therefore, it

is desirable to study optimality properties of µ∗ and exploit these properties to design low-

complexity policies with promising performance.

B. Optimality Properties

First, we analyze the impact of cache size C on the optimal average transmission cost θ.

For ease of exposition, we rewrite θ as a function of cache size C, i.e., θ(C), and obtain the

following lemma based on coupling and interchange arguments [15].

Lemma 2 (Impact of Cache Size). θ(C) decreases with C when C < F and θ(C) = 0 when

C≥F .

Proof. Please see Appendix B.

5The notion � indicates the component-wise ≤.
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Remark 2 (Tradeoff between Cache Size and Bandwidth Utilization). As illustrated in Fig. 2, a

lower average transmission cost always corresponds to a higher bandwidth utilization. Hence,

Lemma 2 reveals the tradeoff between the cache size and the bandwidth utilization.

In the following, we focus on the case of C < F . By analyzing the partial monotonicity of

value function V (·), we obtain the next lemma.

Lemma 3 (Transient System States). Any X = (A,S) with S /∈ ŠK is transient under µ∗, where

Š,
{

(Sf)f∈F :
∑F

f=1Sf =C
}

.

Proof. Please see Appendix C.

Remark 3 (Reduction of System State Space and Caching Action Space). Lemma 3 reveals that

the optimal policy µ∗ makes full use of available storage resources. Also, considering the expected

sum cost over the infinite horizon incurred by a transient state is finite and negligible in terms of

average cost, we restrict our attention to the reduced system state space F̄K × ŠK without loss

of optimality. Also, the cache update constraint in (7) is replaced with
∑

f∈F Sk,f +∆Sk,f = C,

and thus the caching action space can be further reduced.

Remark 4 (Computational Complexity and Implementation Requirement). To obtain the optimal

policy µ∗ from (11) under the reduced system state space given in Lemma 3, we need to compute

V (X), X∈ F̄K×ŠK , by solving a system of
(

(F + 1)
(

F

C

))K
equations in (10), the number of

which increases exponentially with the number of users K and combinatorially with the number

of files F as well as the cache size C. Moreover, given V (·), computing µ∗(X) for all X involves

brute-force search over the action space U(X), which requires complexity of O
(

K2F
(

F

C

))

. In

practice, K, F and C are relatively large, and hence the complexity of computing µ∗ is not

acceptable. Besides, the implementation of µ∗ requires a centralized controller and system state

information, resulting in large signaling overhead.

V. LOW-COMPLEXITY DECENTRALIZED POLICY

To reduce the computational complexity and achieve decentralized implementation without

much signaling overhead, we first approximate the value function V (·) in (10) by the sum of

per-user per-file value functions. Based on the approximate value function, we obtain a low-

complexity decentralized policy for practical implementation.
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A. Value Approximation

To alleviate the curse of dimensionality in computing V (·), for all X∈F̄K × ŠK , motivated

by [19], [20], we approximate V (X) in (10) as follows:

V (X) ≈ V̌ (X) =
∑

k∈K

∑

fk∈F :Sk,fk
=1

V̌ 1
k (X

1
k), (14)

where X1
k , (Ak, fk) ∈ F̄ × F and for all k ∈ K, V̌ 1

k (X
1
k), X

1
k ∈ F̄ × F satisfy:

θ1k + V̌ 1
k (X

1
k) = φ′(X1

k) + min
∆S1

k
∈U1

k
(X1

k
)

∑

A′
k
∈F̄

q
(k)
Ak ,A

′
k
V̌ 1
k (A

′
k, f

′
k), X1

k ∈ F̄ × F . (15)

Here, φ′(X1
k) ,

1
K

(

φ(1)
C
−φ
(

1(Ak = fk)
)

)

1(Ak 6= 0),6 U1
k (X

1
k) , {0,−1(Ak /∈ {0, fk})} and

f ′
k , (1 +∆S1

k)fk−∆S1
kAk. The equation in (15) corresponds to the Bellman equation of a

per-user per-file MDP for user k with unit cache size. θ1k and V̌ 1
k (·) denote the average cost and

value function of the per-user per-file MDP for user k, respectively. Specifically, at time slot t,

X1
k(t) = (Ak(t), fk(t)) denotes the system state, where Ak(t) ∈ F̄ denotes the demand state and

fk(t) ∈ F denotes the cached file; ∆S1
k(t) ∈ U1

k (X
1
k) denotes the caching action; the demand

state Ak(t) evolves according to the Markov chain {Ak(t)} and the cache state fk(t) evolves

according to fk(t + 1) = (1 + ∆S1
k(t))fk(t)−∆S1

k(t)Ak(t); φ′(X1
k(t)) denotes the per-stage

cost. The K per-user per-file MDPs are obtained from the original MDP by eliminating the

couplings among the K users and the C cache units of each user, which are due to the multicast

transmission and the cache size constraint, respectively.

In the following, we characterize the performance of the value approximation in (14) from the

perspectives of the average transmission cost and the complexity reduction, respectively. First,

by analyzing the relaxation from the original MDP to the K per-user per-file MDPs, we have

the following relationship between the average cost of the original MDP and the sum of the

average costs of the K per-user per-file MDPs.

Lemma 4. θ(C) and θ1k, k ∈ K satisfy that θ(C) ≥ C
∑

k∈K θ1k.

Proof. Please see Appendix D.

In addition, note that obtaining V (X), X ∈ F̄K× ŠK requires to solve a system of
(

(F +

1)
(

F

C

))K
equations given in (10), while obtaining V̌ 1

k (X
1
k), X

1
k ∈ F̄ × F , k ∈ K only requires

61(·) represents the indicator function throughout this paper.
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to solve a system of KF (F + 1) equations given in (15). Therefore, under the value function

approximation in (14), the non-polynomial computational complexity is eliminated.

Remark 5. The linear value function approximation adopted in (14) differs from most existing

approximation methods. Firstly, different from the traditional linear approximation in [23], our

approach is not based on specific basis functions. Secondly, compared with the randomized

approach proposed in [19], [20], our approach leads to a lower bound of the optimal average

cost as illustrated in Lemma 4.

B. Low-complexity Decentralized Policy

By replacing V (X) in (10) with V̌ (X) in (14), the minimization problem in (11) which

determines the optimal policy µ∗ is approximated by:

Problem 2 (Approximate Joint Pushing and Caching Optimization). For all X ∈ F̄K × ŠK ,

min
(P,∆S)

ϕ(P,∆S)

s.t. (2), (3), (4), (5), (7), (8),

where ϕ(P,∆S),φ
(
∑

f∈F (Rf+Pf)
)

+
∑

k∈K

∑

f∈S′
k
gk(Ak, f), S

′
k , {f ∈ F : Sk,f+∆Sk,f = 1}

and gk(Ak, f) ,
∑

A′
k
∈F̄ q

(k)
Ak,A

′
k
V̌ 1
k (A

′
k, f). Let µ̌∗(X) denote the corresponding optimal solution.

Note that due to the coupling among K users incurred by the multicast transmission, solving

Problem 2 still calls for complexity of O
(

K2F
(

F

C

))

and centralized implementation with system

state information, which motivates us to develop a low-complexity decentralized policy. Specif-

ically, given system state X, first ignore the multicast opportunities in pushing and separately

optimize the per-user pushing action of each user k under given state Xk and reactive transmission

R. Then, the server gathers the information of the per-user pushing actions of all the users and

multicasts the corresponding files. Next, each user optimizes its caching action given the files

obtained from the multicast transmissions. The details are mathematically illustrated as follows.

First, for all k ∈ K, replace Pf with Pk,f and by adding constraints Pf = Pk,f , we obtain an

equivalent problem of Problem 2. The constraint in (3) is rewritten as

Pk,f(t) ≤ 1−Rf (t), f ∈ F , k ∈ K, (16)
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which is to guarantee that each file f ∈ F is transmitted at most once to user k at each time

slot t. The constraints in (4) and (5) can be replaced by

Pk,f(t) ≤ 1− Sk,f(t), f ∈ F , k ∈ K, (17)

− Sk,f(t) ≤ ∆Sk,f(t) ≤ Rf (t) + Pk,f(t), f ∈ F , k ∈ K. (18)

Via omitting the constraints Pf = Pk,f , k ∈ K, we attain a relaxed optimization problem of

Problem 2. Given R, by (16) (17) and (18), the relaxed problem can be decomposed into K

separate subproblems, one for each user, as shown in Problem 3.

Problem 3 (Pushing Optimization for User k). For all state Xk and R,

ϕ∗
k , min

Pk

{φ
(
∑

f∈F(Rf+Pk,f)
)

K
+Wk(Xk,R+Pk)

}

s.t. (2), (7), (8), (16), (17), (18),

where Wk(Xk,R+Pk) ,min∆Sk∈U∆S,k(Xk ,R+Pk)

∑

f∈S′
k
gk(Ak, f). Let P∗

k denote the optimal

solution.

Then, we obtain P∗
k as follows. Denote with yk(pk) , (yk,f(pk))f∈F the optimal pushing

action for user k when the number of pushed files for user k is pk. From the definition of

Wk(Xk,R+Pk), we learn that user k always pushes the first pk files with the minimum values

of gk(Ak, f), f ∈{f ∈F : Sk,f+Rf =0}. Hence, we obtain yk(pk) as follows. Given Xk and R

in (2), sort the elements in Gk(Xk,R) , {gk(Ak, f) : Sk,f+ Rf = 0, f ∈F} in ascending order,

let fk,i denote the index of the file with the i-th minimum in Gk(Xk,R), and we have

yk,f(pk) =







1, f = fk,i, i ≤ pk,

0, otherwise,
f ∈ F , pk ∈ {0, 1, · · · , |Gk(Xk,R)|}. (19)

Based on (19), we can easily obtain P∗
k, as summarized below.

Optimal Solution to Problem 3: For all state Xk and R, P∗
k = (yk,f(p

∗
k))f∈F , where yk,f(p

∗
k)

is given by (19) and p∗k is given by

p∗k , arg min
pk

{

φ
(

∑

f∈F

Rf + pk
)

+Wk(Xk,R+yk(pk))
}

. (20)

Next, based on P∗
k, k ∈ K, we propose a low-complexity decentralized policy, denoted as

µ̌ , (µ̌P , µ̌∆S), which reconsiders the multicast opportunities in pushing. Specifically, for all

X∈F̄K×ŠK , we have µ̌P (X) , (P̌f )f∈F and µ̌∆S(X),(∆Šk)k∈K, where

P̌f , max
k∈K

P ∗
k,f , f ∈ F , (21)
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∆Šk , arg min
∆Sk∈Ǔ∆S(Xk ,R+µ̌P (X))

∑

f∈S′
k

gk(Ak, f), k ∈ K. (22)

Finally, we characterize the performance of µ̌. Lemma 5 illustrates the relationship among the

optimal values of Problem 2 and Problem 3 as well as the objective value of Problem 2 at µ̌.

Lemma 5. For all X ∈ F̄K × ŠK ,
∑

k∈K ϕ∗
k≤ϕ(µ̌∗(X))≤ϕ(µ̌(X)), where the equality holds if

and only if Xk1 =Xk2 and Qk1
=Qk2

for all k1∈K and k2∈K.

Proof. Due to the relaxation from Problem 2 to Problem 3, the action space becomes larger

and thus we can show the first inequality directly. Due to the suboptimality of µ̌, the second

inequality holds. Furthermore, when Xk1 = Xk2 and Qk1 = Qk2 for all k1 ∈ K and k2 ∈ K,

P∗
k1

= P∗
k2

= µ̌P (X) and thus the equality holds. We complete the proof.

Remark 6 (Computational Complexity and Implementation Requirement). Given V̌ 1
k (·), for all

X ∈ F̄K × ŠK , the complexity of computing µ̌(X) is O
(

KF log(F )
)

much lower than that

of computing µ∗(X), i.e., O
(

K2F
(

F

C

))

. Furthermore, we note that µ̌ can be implemented in a

decentralized manner. Specifically, first, each user submits its request Ak if Ak ∈ {f ∈ F : Sk,f =

0}. Then the server broadcasts the corresponding file indexes {f ∈ F : maxk∈K:Ak=f(1−Sk,f) =

1}, which implies R. Next, based on Xk and R, user k computes P∗
k and reports it to the server.

Finally, the server obtains µ̌(X) and transmits the files in {f ∈ F : Rf + P̌f ≥ 1}, based on

which user k obtains ∆Šk.

VI. ONLINE DECENTRALIZED ALGORITHM

To implement the low-complexity decentralized policy µ̌ proposed in Section V, we need

to compute gk(X
1
k) =

∑

A′
k
∈F̄ q

(k)
Ak,A

′
k
V̌ 1
k (A

′
k, fk), requiring priori knowledge of the transition

matrices of the K user demand processes, i.e., Qk, k∈K. In this section, we propose an online

decentralized algorithm (ODA) to implement µ̌ via Q-learning [21], when Qk is unknown.

First, introduce the Q-factor Qk(X
1
k ,∆S

1
k) of the per-user per-file state-action pair (X1

k ,∆S1
k) as

θ1k +Qk(X
1
k ,∆S1

k) , φ′(X1
k)+

∑

A′
k
∈F̄

q
(k)
Ak,A

′
k
V 1
k (A

′
k, f

′
k), X

1
k ∈F̄×F , ∆S1

k ∈ U1
k (X

1
k). (25)

By (15) and (25), we have

V̌ 1
k (X

1
k) = min

∆S1
k
∈U1

k
(X1

k
)
Qk(X

1
k ,∆S1

k), X1
k ∈ F̄ × F , (26)

August 27, 2018 DRAFT



19

Algorithm 1 Online Decentralized Algorithm (ODA)

1: Initialization. Set t = 0. Each user k initializes Qk,t(·).

2: Per-User Per-File Q-factor Update. At the beginning of the tth slot, t ≥ 1, each user k updates Qk(·)

according to

Qk,t(X
1
k ,∆S1

k)=Qk,t−1(X
1
k ,∆S1

k)+γ(vk,t−1(Ak))1(Ak(t−1) = Ak)
(

φ′(X1
k)+

min
∆S1′

k
∈U1

k
(X1′

k
)
Qk,t−1

(

X1′

k ,∆S1′

k )−Qk,t−1(X
1
k ,∆S1

k)− min
∆S1

k,0
∈U1

k
(X1

k,0
)
Qk,t−1(X

1
k,0,∆S1

k,0)
)

,

X1
k ∈ F̄ × F ,∆S1

k ∈ U1
k (X

1
k), (23)

where X1
k , (Ak, fk), X

1′

k , (Ak(t), f
′
k) and vk,t(Ak) denotes the number of times that Ak ∈ F̄ has been

requested by user k up to t, and then updates gk,t(X
1
k), X

1
k ∈F̄ × F according to

gk,t(X
1
k) = min

∆S1

k,0
∈U1

k
(X1

k,0
)
Qk,t(X

1
k,0,∆S1

k,0) +Qk,t(X
1
k , 0)− φ′(X1

k), X1
k ∈F̄ × F . (24)

3: Reactive Transmission Message. Each user k submits Ak(t) if Ak(t)∈{f ∈ F :Sk,f (t)=0}. Then the server

broadcasts the file indexes {f ∈ F : maxk∈K:Ak(t)=f (1− Sk,f (t)) = 1}.

4: Per-User Pushing Computation. Each user k constructs R(t). Given Xk(t), R(t) and gk,t(Ak(t), fk), fk ∈ F ,

user k computes P∗
k(t) and then reports it to the server.

5: Multicast Transmission at Server. The server obtains P̌f (t) in (21) and multicasts the files in {f ∈ F :

Rf (t) + P̌f (t) = 1}.

6: Per-User Caching. Each user k updates its own cache state Sk(t) according to ∆Šk(t) in (22).

7: Set t← t+ 1 and go back to Step 2.

θ1k +Qk(X
1
k ,∆S1

k) = φ′(X1
k) +

∑

A′
k
∈F̄

q
(k)

Ak,A
′
k

min
∆S1′

k
∈U1

k
(X1′

k
)
Qk((A

′
k, f

′
k),∆S1′

k ),

X1
k ∈ F̄ × F ,∆S1

k ∈ U1
k (X

1
k). (27)

Then, by (25) and (27), we can express gk(X
1
k) as a function of the Q-factor Qk(·), k ∈ K, i.e.,

gk(X
1
k) = θ1k +Qk(X

1
k , 0)− φ′(X1

k), X1
k ∈F̄ × F . (28)

Recall that µ̌ given in (21) and (22) is expressed in terms of gk(X
1
k), k ∈ K. From (28), we learn

that µ̌ can be determined by the Q-factor Qk(·), k ∈ K. Considering that µ̌ cannot be obtained

directly via minimizing the corresponding Q-factor, the standard Q-learning algorithm cannot be

used to implement µ̌ online. Next, we propose the ODA, as shown in Algorithm 1, to learn Qk(·)

and implement µ̌ online when Qk, k ∈ K are unknown. In particular, the stepsize γ(·) in the ODA

satisfies that 0<γ(n) < ∞,
∑∞

n=1γ(n) =∞ and
∑∞

n=1 γ
2(n)<∞. Based on the convergence
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results of Q-learning in [21], we can easily show that limn→∞Qk,n(X
1
k ,∆S1

k) =Qk(X
1
k ,∆S

1
k)

almost surely.

Remark 7 (Illustration of the ODA). The proposed ODA differs from the standard Q-learning

algorithm in the following two facets. Firstly, for each per-user per-file MDP, at each time

slot, instead of updating the Q-factor at the currently sampled state-action pair, it updates

the Q-factors at a set of state-action pairs with the current demand state, thereby speeding

up the convergence. Secondly, when learning the Q-factors of the K per-user per-file MDPs,

it implements a policy which cannot be directly obtained from the optimal policies of the K

per-user per-file MDPs.

VII. NUMERICAL RESULTS

In this section, we first evaluate the convergence of our proposed ODA and then compare

it with five baselines. Specifically, we consider three baselines which operate based on priori

knowledge of Qk, k ∈ K: the aforementioned MP caching policy in Section III, local most

popular (LMP) caching policy in which at each time slot t, each user k stores the C files in {f ∈

F : Rf (t)+Sk,f(t) = 1} with the largest transition probabilities given current demand state Ak(t)

[24], as well as joint threshold-based pushing [25] and local most popular caching policy (TLMP)

where at each time slot t, the server pushes the file f ∗(t) , argmaxf∈F
∑

k∈K:Sk,f (t)=0q
(k)
Ak(t),f

if and only if
∑

f∈FRf (t) is below a threshold T , and each user implements the LMP caching

policy. Note that MP and LMP are of the same complexity order, i.e., O
(

KF log(F )
)

, while

the complexity order of TLMP is O
(

KF 2log(F )
)

. In addition, we consider two other baselines

which operate without priori knowledge of Qk, k ∈ K, and make caching decisions based on

instantaneous user demand information, i.e., LRU and LFU. They are of the same complexity

order, i.e., O
(

KF
)

. In the simulation, we consider Qk = Q for all k ∈ K and adopt Q ,

(qi,j)i∈F̄ ,j∈F̄ similar to the demand model in [24], where qi,j is given by

qi,j ,































Q0, i ∈ F̄ , j = 0,

(1−Q0)
1
jγ

∑F
j′=1

1
j′γ

, i = 0, j ∈ F ,

(1−Q0)
1
N
, i ∈ F , j = (i+ q) mod (F + 1), q ∈ {1, 2, · · · , N},

0, otherwise.

(29)

Note that Q is parameterized by {Q0, γ, N}. Specifically, Q0 denotes the transition probability

of requesting nothing given any current file request. The transition probability of requesting
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any file f ∈ F given no current file request, i.e., i = 0, is modeled by a Zipf distribution

parameterized by γ. For any i ∈ F , we assign a set of neighboring files, i.e., Ni , {f ∈ F :

f = (i + q) mod (F + 1), q = 1, 2, · · · , N}, where N represents the number of neighbors.

Then, the transition probability of requesting any file f ∈ Ni given the current file request i ∈ F

is modeled by the uniform distribution. The transition probability of requesting any file f /∈ Ni

given current file request i ∈ F is zero. In the simulation, we set F = 100, T = 1, N = 2,

Q0=0.2 and γ=0.5 unless otherwise stated.

Fig. 4 (a) shows that the proposed ODA converges quite fast. Fig. 4 (b)-(f) illustrate the average

cost versus several system parameters. We observe that LMP behaves better than MP, LRU and

LFU, mainly due to the fact that LMP considers the temporal correlation of each user demand

process. The performance of TLMP is almost the same as that of LMP as its pushing and caching

policies are not intelligently designed. The last not the least, our proposed ODA significantly

outperforms the five baselines, primarily due to the fact that ODA takes into account both the

asynchronous feature and temporal correlation of file requests and jointly designs both pushing

and caching. Additionally, ODA achieves a good balance between the current transmission cost

and the future average transmission cost.

Specifically, Fig. 4 (b) illustrates the average cost versus the cache size. Intuitively, the

average cost monotonically decreases with the cache size. We can also see that our proposed

ODA achieves good performance gains over the five baselines even at a small cache size.

Fig. 4 (c) illustrates the average cost versus the number of users K. As expected, the average

cost monotonically increases with the number of users, since the traffic load increases with the

number of users. Furthermore, we can see that the performance gains of our proposed ODA over

the five baselines increase with the number of users. Therefore, ODA behaves much robuster

against the change of the number of users than the five baselines. Fig. 4 (d)-(g) illustrate the

average cost versus the parameters of the transition matrix of the user demand process, i.e., N ,

γ and Q0. Specifically, Fig. 4 (d) illustrates the average cost versus the number of neighbors N .

We can see that the average cost monotonically increases with the number of neighbors. This

is because the user demand processes become less predictable as N becomes larger. Fig. 4 (e)

illustrates the average cost versus the Zipf exponent γ. We see that the average cost monotonically

decreases with γ. This is because as γ grows, the probability that a requested file is popular

and is cached becomes larger. Fig. 4 (f) illustrates the average cost versus Q0. The average cost

decreases with Q0, mainly due to the fact that the traffic load becomes lighter. As Q0 decreases,
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(b) Cache size at K = 10.
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(c) Number of users at C = 10.
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(d) N at C= 10, K=10, γ = 1.
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(f) Q0 at C= 10, K=10, N = 15.

Figure 4: Convergence and average cost versus cache size C and number of users K .
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the performance gains of ODA over the five baselines become larger, which again indicates that

ODA is much robuster against the change of the traffic load than the five baselines.

VIII. CONCLUSIONS

In this paper, we formulate the bandwidth utilization maximization problem via joint pushing

and caching as an infinite horizon average cost MDP. By structural analysis, we show how the

optimal policy balances the current transmission cost with the future average transmission cost.

In addition, we show that the optimal policy achieves a tradeoff between the cache size and the

bandwidth utilization. By a linear approximation of the value function and relaxation techniques,

we develop a decentralized policy with polynomial complexity. Moreover, we propose an online

decentralized algorithm to implement the proposed low-complexity decentralized policy when

priori knowledge of user demand processes is unknown. Finally, using numerical results, we

demonstrate the advantage of the proposed solutions over some existing designs.

APPENDIX A: PROOF OF LEMMA 1

First, we show that the Weak Accessibility (WA) condition holds for our system. Consider

any two system states X1 , (A1,S1) ∈ F̄K × SK and X2 , (A2,S2) ∈ F̄K × SK . Recall that

for any k ∈ K, {Ak(t)} is an irreducible Markov chain. Thus, there exists an integer t′ ≥ 1

such that Pr[Ak(t
′) = A2

k|Ak(0) = A1
k] ≥ 0. In addition, there exists a policy µ̄ , (µ̄P , µ̄∆S)

such that µ̄∆S(A,S1) = S2 and µ̄∆S(A,S2) = S2 for all A ∈ F̄ . Hence, Pr[X(t′) = X2|X(0) =

X1, µ̄] = Pr[A(t′) = A2|A(0) = A1] ≥ 0, i.e., X2 is accessible from X1 under policy µ̄. By

Definition 4.2.2 in [21], we conclude that WA holds for the MDP. Thus, by Proposition 4.2.3

and Proposition 4.2.1 in [21], the optimal average costs of the MDP in Problem 1 for all initial

system states are the same and the solution (θ, V (·)) to the following Bellman equation exists:

θ + V (X) = min
(P,∆S)∈U(X)

{

φ(
∑

f∈F

(Rf + Pf)) +
∑

X′∈F̄K×SK

Pr[X′|X, (P,∆S)]V (X′)
}

, ∀ X, (30)

where X′ , (A′,S′) and Rf is given by (2). Furthermore, the optimal policy µ∗ is given by

µ∗(X) = arg min
(P,∆S)∈U(X)

{

φ
(

∑

f∈F

(Rf + Pf )
)

+
∑

X′∈F̄K×SK

Pr[X′|X, (P,∆S)]V (X′)
}

, ∀ X. (31)

Note that the transition probability of the system state is given by:

Pr[X′|X, (P,∆S)] = Pr[(A′, S′)|(A, S), (P,∆S)] = Pr[A′|A] Pr[S′|S,∆S]

August 27, 2018 DRAFT



24

=











∏

k∈K q
(k)
Ak,A

′
k
, S′ = S +∆S,

0, S′ 6= S +∆S.
(32)

By substituting (32) into (30) and (31), we obtain the Bellman equation in (10) and the optimal

policy in (11), respectively. Therefore, we complete the proof.

APPENDIX B: PROOF OF LEMMA 2

First, for any C1 and C2 such that C1 < C2 < F , we show θ(C1) > θ(C2) based on the

coupling and interchange arguments [15]. Consider two independent MDP systems, i.e., System 1

and System 2, which have the same transition matrix of user demand processes, i.e., (Qk)k∈K,

and numbers of files and users, i.e., F and K, but have different cache sizes, denoted as C1 and

C2, where C1 < C2 < F . Suppose A1(t) = A2(t) for all time slot t. That is, the two systems are

under the same sample paths of the user demand processes. In addition, both systems adopt the

same pushing action at each time slot t, denoted as P1∗(t), which is the optimal pushing action

for System 1 and a feasible pushing action for System 2 (due to C1 < C2). On the other hand, the

two systems may have different caching actions at each time slot t. Consider any S1(0) ∈ S1 ,

{(Sk,f)k∈K,f∈F :
∑

f∈F Sk,f = C1} and S2(0) ∈ S2 , {(Sk,f)k∈K,f∈F :
∑

f∈F Sk,f = C2} such

that S1(0) � S2(0). The cache state of System 1 evolves according to S1(t+1) = S1(t)+∆S1∗(t),

where ∆S1∗(t) denotes the optimal caching action for System 1 at each time slot t. System 2

implements a caching policy such that at each time slot t, S2(t) ∈ S2 and S1(t) � S2(t).

This holds because that C1 < C2, S1(0) � S2(0) and P2(t) = P1∗(t). Based on the facts that

A1(t) = A2(t) and S1(t) � S2(t), by (2) we have R2(t) � R1(t), i.e., R2
f ≤ R1

f , f ∈ F ,

implying φ
(

∑

f∈F R2
f (t)+P 1∗

f (t)
)

≤ φ
(

∑

f∈F R1
f (t)+P 1∗

f (t)
)

at each time slot t. Considering

that C1 < C2 < F and S1(t) � S2(t), for each user k, there exists at least a file fk ∈ F such

that S1
k,fk

(t) = 0 < S2
k,fk

(t) = 1. For each k ∈ K, since {Ak} is irreducible, fk can be requested

by user k within a finite average number of transitions. Therefore, there exists at least a time

slot t such that Ak(t) = fk for all k ∈ K. By (2), R1
fk
(t) > R2

fk
(t) holds for all k ∈ K and

thus φ
(

∑

f∈F R2
f (t)+P 1∗

f (t)
)

< φ
(

∑

f∈F R1
f (t)+P 1∗

f (t)
)

. Thus, θ(C1) > θ′(C2), where θ′(C2)

denotes the average cost for System 2 under the aforementioned policy for System 2. Hence,

θ(C1) > θ(C2). Secondly, when C ≥ F , intuitively, at each time slot,
∑

f∈F Rf = 0 can be

satisfied. Hence, θ(C) = 0. The proof ends.
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APPENDIX C: PROOF OF LEMMA 3

We prove Lemma 3 based on the partial monotonicity of value function V (·) w.r.t. the system

cache state S shown using relative value iteration algorithm (RVIA) and mathematical induction.

First, we introduce RVIA [21]. For all X ∈ F̄K × SK , let Vn(X) denote the value function

in the nth iteration, where n = 0, 1, · · · . Define

Jn+1(X, un) , φ

(

F
∑

f=1

Rn,f + Pn,f

)

+
∑

A′∈F̄K

∏

k∈K

q
(k)
Ak,A

′
k
Vn(A

′, S +∆Sn), (33)

where un , (Pn,∆Sn) denotes the system action under state X in the nth iteration. Note that

Jn+1(X, un) corresponds to the R.H.S of the Bellman equation in (10). We refer to Jn+1(X, un)

as the state-action cost function in the nth iteration. Under RVIA, Vn(X) evolves according to

Vn+1(X) = min
un

Jn+1(X, un)−min
un

Jn+1(X
§, un)

= Jn+1(X, µ∗
n(X))− Jn+1(X

§, µ∗
n(X

§)), X ∈ F̄K × SK (34)

where Jn+1(X, un) is given by (33), µ∗
n denotes the optimal policy that attains the minimum of

the first term in (34) in the nth iteration and X§ ∈ F̄K ×SK is some fixed state. By Proposition

4.3.2 in [21], for all X ∈ F̄K ×SK , the generated sequence {Vn(X)} converges to V (X) given

in the Bellman equation in (10) under any initialization of V0(X), i.e.,

lim
n→∞

Vn(X) = V (X), X ∈ F̄K × SK , (35)

where V (X) satisfies the Bellman equation in (10).

Next, we prove the partial nonincreasing monotonicity of V (·) w.r.t. the system cache state

S, i.e., for all S1, S2 ∈ SK such that S1 � S2, V (A, S1) ≥ V (A, S2) for all A ∈ F̄K . Based on

RVIA, it is equivalent to show that for all S1, S2 ∈ SK such that S1 � S2,

Vn(A, S1) ≥ Vn(A, S2), (36)

holds for all n = 0, 1, · · · . We now prove (36) based on mathematical induction. First, we

initialize V0(X) = 0 for all X ∈ F̄K ×SK . Thus, we have V0(A, S1) ≥ V0(A, S2), meaning (36)

holds for n = 0. Then, assume (36) holds for some n ≥ 0. Denote with (P1
n,∆S1

n) the optimal

action under (A,S1), i.e., µ∗
n(A,S1) = (P1

n,∆S1
n), and denote with (P2

n,∆S2
n) the optimal action

under (A,S2), i.e., µ∗
n(A,S2) = (P2

n,∆S2
n). Define ∆S′

n , (∆S ′
n,k,f)k∈K,f∈F where

∆S ′
n,k,f ,











∆S1
n,k,f , S2

k,f +∆S1
n,k,f ≤ 1,

0, S2
k,f +∆S1

n,k,f > 1,
k ∈ K, f ∈ F . (37)
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From (37), (P1
n,∆S′

n) is a feasible action under (A,S2). From (34), we have

Vn+1(A, S2) = Jn+1((A, S2), µ∗
n(A,S2))−min

un

Jn+1(X
§, un)

(a)

≤ Jn+1((A, S2), (P1
n,∆S′

n))−min
un

Jn+1(X
§, un)

= φ(
∑

f∈F

R2
n,f + P 1

n,f) +
∑

A′∈F̄K

∏

k∈K

q
(k)
Ak ,A

′
k
Vn(A

′, S2 +∆S′
n)−min

un

Jn+1(X
§, un)

(b)

≤ φ(
∑

f∈F

R1
n,f + P 1

n,f) +
∑

A′∈F̄K

∏

k∈K

q
(k)

Ak,A
′
k
Vn(A

′, S2 +∆S′
n)−min

un

Jn+1(X
§, un)

(c)

≤ φ(
∑

f∈F

R1
n,f + P 1

n,f) +
∑

A′∈F̄K

∏

k∈K

q
(k)
Ak,A

′
k
Vn(A

′, S1 +∆S1
n)−min

un

Jn+1(X
§, un)

(d)
= Vn+1(A, S1), (38)

where (a) follows from the optimality of µ∗
n(A,S2) under (A,S2) and the feasibility of (P1

n,∆S′
n)

under (A,S2) in the nth iteration. (b) follows from the fact that R 2 � R 1 according to (2) since

S1 � S2. (c) follows from S1 + ∆S1
n � S2 + ∆S′

n (due to S1 � S2 and (37)) and (36). (d)

follows from (33) and (34). Hence, (36) holds in the (n + 1)th iteration. By induction, we

show that Vn(A, S1) ≥ Vn(A, S2) holds for all n = 0, 1, · · · . Thus, by RVIA, we conclude that

V (A, S1)≥ V (A, S2). Similarly, we can show that for all S1, S2∈ SK such that S1� S2, if there

exists at least a pair of k and f satisfying that S1
k,f < S2

k,f , V (A, S1)> V (A, S2) for all A ∈ F̄K .

Finally, based on the partial nonincreasing monotonicity of the value function, we prove

Lemma 3. For all state (A,S) ∈ F̄K × ŠK , denote with G(A, S+∆S) ,
∑

A′∈F̄K

∏

k∈K q
(k)
Ak,A

′
k

V (A′, S+∆S) the objective function in (13) for all ∆S ∈ U∆S(X, µ∗
P (X)) and ∆S∗ = µ∗

∆S(A, S)

the optimal caching action given in (13). Since for all S1, S2 ∈ SK such that S1 � S2, V (A, S1) ≥

V (A, S2) for all A ∈ F̄K , we have G(A, S+∆S1) ≥ G(A, S+∆S2) for all ∆S1, ∆S2 such that

∆S1 � ∆S2. Furthermore, if there exists at least a pair of k and f satisfying that S1
k,f < S2

k,f ,

G(A, S +∆S1) > G(A, S +∆S2). In the sequel, we consider two cases:

• Case i: S /∈ ŠK . First, we show that ∆S∗ � 0 by contradiction. Suppose that there exist k′

and f ′ such that ∆S∗
k′,f ′ < 0. Denote ∆S , (∆Sk,f)k∈K,f∈F where

∆Sk,f ,











0, k = k′, f = f ′,

∆S∗
k,f , otherwise.

(39)

Then, ∆S � ∆S∗ with ∆Sk′,f ′ > ∆S∗
k′,f ′ . Hence, G(A, S + ∆S) < G(A, S + ∆S∗)

which contradicts the optimality of ∆S∗. Thus, we have ∆S∗ � 0. Furthermore, since
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S /∈ ŠK and C < F , there always exists a demand state A such that
∑

f∈F Rf =
∑

f∈F maxk∈K:Ak=f

(

1− Sk,f

)

> 0. By contradiction, we can show that for a state (A,S)

such that S /∈ ŠK and
∑

f∈F Rf > 0, there exists at least a pair of k ∈ K and f ∈ F

such that Sk,f = 0 and ∆S∗
k,f = 1. Recall that for all k ∈ K, {Ak} is irreducible, i.e., any

demand state Ak ∈ F̄ can be visited within a finite average number of transitions. Thus,

under the optimal policy µ∗, if the system state starts from any state (A,S) where S /∈ ŠK ,

the cache state S will transit into the set ŠK and never move back.

• Case ii: S ∈ ŠK . First, we show that S + ∆S∗ ∈ ŠK by contradiction. Suppose that

S + ∆S∗ /∈ ŠK , then there exists ∆S such that S + ∆S∗ � S + ∆S ∈ ŠK , implying

that there exists at least a pair of k and f satisfying S1
k,f = 0 and S2

k,f = 1. Hence,

G(A,S+∆S∗) < G(A,S+∆S) which contradicts the optimality of ∆S∗. Thus, under the

optimal policy µ∗, if started at all state (A,S) where S ∈ ŠK , the system state shall never

come to a state (A,S) where S /∈ ŠK .

The proof ends.

APPENDIX D: PROOF OF LEMMA 4

We prove Lemma 4 by illustrating the relationship between the K per-user per-file MDPs and

the original MDP. First, we relax the action space U(X) via ignoring the multicast opportunities

(i.e., considering unicast transmissions) in both reactive transmission and pushing. Specifically,

let Rk , (Rk,f)f∈F ∈ {0, 1}F denote the reactive transmission action of user k, where

Rk,f , 1{Ak = f}(1− Sk,f), f ∈F , k∈K. (40)

Denote with Pk , (Pk,f)f∈F ∈ {0, 1}
F the pushing action of user k. The per-user pushing action

constraints are as follows:

Pk,f(t) ≤ 1−Rk,f(t), f ∈ F , k ∈ K, (41)

Pk,f(t) ≤ 1− Sk,f(t), f ∈ F , k ∈ K, (42)

where (41) is to guarantee that each file f ∈ F is not transmitted more than once to user k

at each time slot t and (42) is to guarantee that a file f which has already been cached in

the storage of user k is not pushed again at each time slot t. By omitting the coupling among
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users incurred by the multicast transmission, i.e., Rf = maxk∈KRk,f and Pf = maxk∈K Pk,f , we

rewrite the cache update constraint in (5) as:

− Sk,f(t) ≤ ∆Sk,f(t) ≤ Rk,f(t) + Pk,f(t), f ∈ F , k ∈ K. (43)

In this way, we construct action space Ǔ(X) , {(P,∆S) : ∆S ∈ Ǔ∆S(X,P), P ∈ ǓP (X)}.

Specifically, Ǔ∆S(X,P) ,
∏

k∈K Ǔ∆S,k(Xk,Rk+Pk) where Ǔ∆S,k(Xk,Rk+Pk) , {(∆Sk,f)f∈F :

(7)(8)(43)} denotes the caching action space of user k and ǓP (X) ,
∏

k∈K ǓP (Xk) where

ǓP (Xk) , {(Pk,f)f∈F : (41)(42)} denotes the pushing action space of user k. Thus, Ǔ(X) =
∏

k∈K Ǔk(Xk), where Ǔk(Xk) , {(Pk,∆Sk) : ∆Sk ∈ Ǔ∆S,k(Xk,Rk +Pk),Pk ∈ ǓP,k(Xk)}.

Then, we establish an MDP under the unicast transmission, named as unicast MDP. For the

unicast MDP, the per-stage cost is 1
K

∑

k∈K φ
(
∑

f∈F(Rk,f+Pk,f)
)

and the action space is Ǔ(X).

By Proposition 4.2.2 in [21] and the proof of Lemma 1, for the unicast MDP, we learn that there

exist (θ̌, V̌ (·)) satisfying:

θ̌+V̌ (X)= min
(P,∆S)∈Ǔ(X)

{ 1

K

∑

k∈K

φ
(

∑

f∈F

(Rk,f + Pk,f)
)

+
∑

A′∈F̄K

∏

k∈K

q
(k)
Ak,A

′
k
V̌ (A′, S+∆S)

}

, ∀X, (44)

where θ̌ and V̌ (·) represent the average cost and value function of the unicast MDP, respectively.

Considering that the optimal policy µ∗ in (11) is a feasible policy for the unicast MDP and

φ
(
∑

f∈F (Rf + Pf)
)

= 1
K

∑

k∈K φ
(
∑

f∈F(Rk,f + Pk,f)
)

when Rk,f = Rf and Pk,f = Pf , we

have θ ≥ θ̌. Note that the per-stage cost of the unicast MDP is additively separable and the action

space Ǔ(X) can be decoupled into K local action spaces, i.e., Ǔ(X) =
∏

k∈K Ǔk(Xk). Hence,

(θ̌, V̌ (X)) of the unicast MDP can be expressed as V̌ (X) =
∑

k∈K V̌k(Xk) and θ̌ =
∑

k∈K θ̌k,

respectively, where (θ̌k, V̌k(Xk)) satisfy:

θ̌k+V̌k(Xk)= min
(Pk,∆Sk)∈Ǔk(Xk)

{1

K
φ
(

∑

f∈F

(Rk,f+Pk,f)
)

+
∑

A′
k
∈F̄

q
(k)
Ak ,A

′
k
V̌k(A

′
k, Sk+∆Sk)

}

, ∀Xk. (45)

The Bellman equation in (45) corresponds to a per-user MDP for user k. θ̌k and V̌k(Xk)

denote the per-user average cost and value function for user k, respectively. Specifically, for

the per-user MDP of user k, at each time slot t, Xk(t) = (Ak(t),Sk(t)) denotes the system

state; Rk(t) and Pk(t) denote the reactive transmission action and pushing action, respectively;

∆Sk(t) ∈ U∆S,k(Xk(t),Rk(t) + Pk(t)) denotes the caching action; the demand state Ak(t)

evolves according to the Markov chain {Ak(t)} and the cache state Sk(t) evolves according to

Sk(t+ 1) = Sk(t) + ∆Sk(t);
1
K
φ
(
∑

f∈F(Rk,f(t) + Pk,f(t))
)

denotes its per-stage cost.
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Next, we establish K per-user per-file MDPs via omitting the coupling among the cache units

for each user of the K per-user MDPs. Specifically, for each per-user MDP, considering that at

each time slot, the transmission cost is either φ(1) or 0, there is no need to push and hence each

user only has to decide whether to cache the received (i.e., requested) file and evict the cached

file in its storage or not. Given user state Xk = (Ak,Sk), we have ∆Sk,f ∈ {0,−1(Ak /∈ {0, f})}

for all f ∈ {f ∈ F : Sk,f = 1} and ∆Sk,f = 0 for all f ∈ {f ∈ F : Sk,f = 0}. By omitting

the constraint
∑

f∈F Sk,f + ∆Sk,f = 0 and treating each cache unit independently, we relax

U∆S,k(Xk,R+P) into U ′
∆S,k(Xk,R+P) ,

∏

fk∈F :Sk,fk
=1 U

1
k (X

1
k), where X1

k ,(Ak, fk) denotes

the per-user per-file state and U1
k (X

1
k) , {0,−1(Ak /∈ {0, fk})}. Similarly, by Proposition 4.2.2

in [21] and the proof of Lemma 1, there exist (θ̌′k, V̌
′
k(·)) satisfying:

θ̌′k+V̌ ′
k(Ak, Sk) =

1

K
φ
(

∑

f∈F

Rk,f

)

+ min
∆Sk∈Ǔ

′
∆S,k

(Xk)

∑

A′
k
∈F̄

q
(k)
Ak,A

′
k
V̌ ′
k(A

′
k, Sk +∆Sk), ∀Xk, (46)

where Rk,f is given by (40). For any Xk ∈ F̄×Š, based on the fact that Ǔ∆S,k(Xk) ⊆ Ǔ ′
∆S,k(Xk),

the optimal policy for the original per-user MDP, denoted as µ̌∗
k, is feasible to the relaxed per-user

MDP. Denote with θ̌′k(µ) the average cost of the relaxed per-user MDP under policy µ and then

we have θ̌′k ≤ θ̌′k(µ̌
∗
k) = θ̌k. Note that for per-user state (Ak, Sk),

1
K
φ
(
∑

f∈F Rk,f

)

= 1
K
φ
(

1 −

Sk,Ak

)

1(Ak 6= 0) =
∑

fk∈F :Sk,fk
=1 φ

′(X1
k), where φ′(X1

k) ,
1
K

(

φ(1)
C
−φ
(

1(Ak = fk)
))

1(Ak 6= 0),

and Ǔ′
∆S,k(Xk) =

∏

fk∈F :Sk,fk
=1 U

1
k (X

1
k). Thus, we have that V̌ ′

k(Ak, Sk) and θ̌′k in (46) can

be expressed as V̌ ′
k(Ak, Sk) =

∑

f∈F :Sk,f=1 V̌
1
k (Ak, f) and θ̌′k = Cθ1k, respectively, where for

all k ∈ K, X1
k ∈ F̄ × F , (θ1k, V̌

1
k (X

1
k)) satisfy (15). Here, (15) corresponds to the Bellman

equation of the aforementioned per-user per-file MDP for user k with unit cache size and θ1k

and V̌ 1
k (X

1
k)) represent the per-user per-file average cost and value function, respectively. Since

C
∑

k∈K θ1k =
∑

k∈K θ̌′k ≤
∑

k∈K θ̌k ≤ θ(C), we have θ(C) ≥ C
∑

k∈K θ1k. The proof ends.
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