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Piggybacking Codes for Network Coding:

The High/Low SNR Regime
Samah A. M. Ghanem, Senior Member, IEEE

Abstract—We propose a piggybacking scheme for network
coding where strong source inputs piggyback the weaker ones,
a scheme necessary and sufficient to achieve the cut-set upper
bound at high/low-snr regime, a new asymptotically optimal
operational regime for the multihop Amplify and Forward (AF)
networks.

I. INTRODUCTION

Capacity of multicast linear networks is achievable by

utilizing linear network coding [1]. The linear construction

of network codes that achieves capacity [2], [3] in noisy

wireless networks, or in noisy wired networks, might neces-

sitate precoding and decoding designs that capitalize on con-

nections between information flow measures and information

reconstruction or estimation measures. Additionally, the use of

different relaying protocols is at the heart of such goal.

In [4], Reznik et al. derive the optimal power distribution

strategy among the transmitter and the relays that achieves

capacity of a degraded Gaussian relay channel. In [5], Sankar

et al. showed that Decode and Forward (DF) achieves the sum-

capacity of degraded Gaussian Multiple Access (MAC) relay

Channel. They showed that the MAC from source to relay is

the bottleneck. One means to mitigate the MAC bottleneck is

by the exploitation of Multiple Input Multiple Output (MIMO)

techniques. In [6], Ekrem et al. proved the outer bound achiev-

ability for the capacity region of the degraded Gaussian MIMO

broadcast channel utilizing tools that connects information to

estimation measures [7].

In [8], Cover et al. showed that in a wireless network

with single source-destination, compress-and-forward protocol

achieves the cut-set bound, within a constant gap [9]. The

claim was that this gap does not depend on channel gains,

but it increases with the number of network nodes. In [10],

Kramer showed that at high-snr regime, DF protocol exhibits

a good scaling performance where the gap from the cut-set

bound increases logarithmically with the number of nodes.

To have a linear network coding scheme that allows for

closing the gap or mitigating the bottleneck in a wireless

network with interference and noise, relays usually exploit the

interference by forwarding it through the network to certain

destination(s). Therefore, a natural and less complex strategy,

is to amplify and forward the received sum of the noisy

received signals, the so called analog network coding [11].

Gastpar et al. showed that uncoded transmission over two-hop

amplify and forward can achieve the constant gap from the

cut-set bound as the number of relays tends to infinity [12].

In [13], Maric et al. provided high-snr conditions under

which multihop amplify and forward approaches capacity in a

layered relay network. They showed that there exist a gap

between the sum rate and the cut-set upper bound that is

independent of channel gains.

In [14] and [15], Ghanem provided a generalized rela-

tionship that bridges connections between information flow

measures or the mutual information (I) to estimation measures

or the Minimum Mean Squared Error (MMSE), in a so called,

”Multiuser I-MMSE”, a relation that applies to multiuser

Gaussian channels. In the same works, Ghanem provided a

characterization of the derivative of the conditional and non-

conditional parts of the mutual information. This included a

characterization of the gap from the cut-set upper bound with

respect to the channel, precoding and inputs estimates.

In principle, a user can be a source/sink terminal, and a

multiple set of transmitting/receiving users correspond to mul-

tiple sources/sinks. Therefore, such relations open avenues1 to

address precoding strategies and operational regimes that are

beyond ones limited to the high-snr asymptotically optimal

regime for AF in multihop networks [13].

Therefore, using a similar framework of layered networks

as in [13], and capitalizing on the multiuser/multiterminal I-

MMSE [14], we provide an optimal transmit scheme adapted

to the network level that provides a new asymptotically optimal

operational regime of the AF, namely the high/low- mixed-snr

regime.

The contributions of this paper are:

First, the proposal of a piggybacking scheme for the mut-

literminal multihop AF network. This scheme is capacity

achieving, energy efficient, bandwidth efficient, and provides

relaxation on the synchrony between inputs. In particular, the

scheme suggests, piggybacking low-snr inputs over high-snr

ones, which can lead to having AF provide capacity for both.

Therefore, the piggybacking scheme establishes piggybacking

codes for network coding;

Second, we extend the optimality of AF protocol from

being asymptotically optimal not only at the high-snr regime

[13], but also optimal at a new interesting regime of high/low

mixed-snr, getting around the necessity to use DF. Thus, the

nodes will not necessarily decode then re-encode, but they

can piggyback weaker inputs over strong ones, a strategy that

achieves cut-set upper bound in the high-, and high/low-snr

regimes;

Third, we shed light on the importance of the order of the

estimation of inputs with different distribution than the Gaus-

sian on the piggybacking scheme performance. In particular,

1The benefits of the ”Multiuser I-MMSE” in [14] and [15] relation goes
further beyond, to finding the capacity of interference channels, addressing
the capacity of wireless networks, and to design interference-aware schemes,
etc.
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Figure 1. A two source two sink network. Sources 1 and 2 multicast
independent data to nodes 5 and 6. Intermediate relays at nodes 3 and 4.

the piggybacking optimality is not affected by such order when

inputs are Gaussian distributed;

Forth, the proposed piggybacking scheme provides an im-

provement on the snr of inputs facing low-snr conditions.

Therefore, such strategy provides an energy efficient approach

for networks where not all the power need to be used.

II. MULTIHOP AMPLIFY AND FORWARD

Consider the wireless network with two source two sink pair

and two relays, with a deterministic network topology shown

in Figure 1, that has a MAC channel output at node 5, given

as follows,

y5 =
√
snrh1,eqx1 +

√
snrh2,eqx2 + zeq (1)

where xj ∼ N (0,E[x2j ] = Pj), j = {1, 2} is the channel

input at node j, hj,eq = h35hj3β3 + h45hj4β4 correspond

to the channel gains of the network of the MAC at node 5,

zeq = h35β3z3+h45β4z4+z5 is the noise due to amplified and

forwarded noise plus the noise component at node 5 with zi ∼
N (0, 1), β3, β4 are the amplification gains such that, xi(t) =
βiyi(t− 1), at intermediate nodes i 3 and 4 respectively and t
is a timing index dropped from the rest of the paper. Similarly,

we can write the channel output of the MAC at node 6.

To address AF schemes that can achieve the upper bounds

of the MAC capacity at high- and high/low-snr regimes, we

first state the achievable rates at node 5 as,

R1 ≤ I(x1; y5|h1,eq, h2,eq) (2)

R2 ≤ I(x2; y5|x1, h1,eq, h2,eq) (3)

R1 +R2 ≤ I(x1, x2; y5|h1,eq, h2,eq) (4)

Then, we will introduce the tool that allows for understanding

how such proposed scheme achieves the rates above with

equality. In particular, to understand how the proposed piggy-

backing scheme works, we will utilize connections between in-

formation measures and estimation measures for the multiuser

case. Such connections characterize changes on conditional

and non-conditional mutual information rates as well as the

joint rate of the MAC.

The optimization of key elements at the source nodes to

maximize the joint mutual information will require joint esti-

mation of the inputs. Therefore, of more practical relevance is

to utilize a successive estimation process at the sink given the

exploitation of conditional and non-conditional rate changes

within those connections is feasible now [14]. The type of

estimation of the inputs - linear/nonlinear - is driven by the

inputs distribution.

First, we state the multiuser I-MMSE in [14], a fundamental

relation between the derivative of the multiuser joint mutual

information and the linear/non-linear MMSE with respect to

the snr,
dI(snr)

dsnr
= mmse(snr) + ψ(snr) (5)

Where the total mmse(snr) at node 5 is given by,

mmse(snr) = mmse1(snr) +mmse2(snr) (6)

with per-input MMSE is given by,

mmsej(snr) = E

[

‖hj,eq(xj − E[xj |y5])‖2
]

, (7)

and the conditional mean estimator is defined as,

E(xj |y5) =
∑

xj

xjpy5|xj,xk
(y5|xj , xk)pxj

(xj)pxk
(xk)

py5
(y5)

(8)

The conditioning on xk can be dropped if the estimation of

xj is done considering the power of xk as noise2.

We manipulate the multiuser/multiterminal I-MMSE to be

suitable to the AF scheme where the noise variance rescales

the snr evenly or unevenly according to the estimation of each

input. Therefore, for the network in Figure 1 with AF we can

rewrite (5) as,

dI(snr)

dsnr
= mmse(σ−1

zeq
snr) + ψ(σ−1

zeq
snr) (9)

where,

mmse(σ−1

zeq
snr) = h2

1,eqP1E1 + h2
2,eqP2E2 (10)

ψ(σ−1

zeq
snr) =

− h1,eqh2,eq
√

P1

√

P2Ey5
[Ex1|y5

[x1|y5]Ex2|y5
[x2|y5]†]

− h1,eqh2,eq
√

P1

√

P2Ey5
[Ex2|y5

[x2|y5]Ex1|y5
[x1|y5]†]

and σ−1
zeq

is the inverse of the network noise variance which

scales the snr of the input’s estimates. The per-source network

input Mean Squared Error (MSE) is given respectively as

follows,

Ej = Ey5
[(xj − Exj |y5

[xj |y5])(xj − Exj |y5
[xj |y5])†] (11)

Therefore, taking the integral of both parts of (5),

I(snr) =

∫

mmse(σ−1

zeq
snr)dsnr+

∫

ψ(σ−1

zeq
snr)dsnr (12)

The non-conditional and conditional components of the deriva-

tive of the mutual information, (see (14) and (15) in [14]) for

the network of Figure 1 with AF, are given respectively as,

dI(x1; y5)

dsnr
= mmse1(σ

−1

eq snr) (13)

and,

dI(x2; y5|x1)
dsnr

= mmse2(σ
−1

zeq
snr) + ψ(σ−1

zeq
snr) (14)

Where σeq = 1 + (h35β3)
2 + (h45β4)

2 + snrh2
2,eqP2 and

σzeq = 1 + (h35β3)
2 + (h45β4)

2.

2The conditioning on the channel is dropped, since the channel is considered
deterministic and time invariant.



We define our optimization problems subject to per-source

input power constraint as follows,

max I(x1; y5) (15)

Subject to:

Ex[x1x
†
1
] ≤ P1 (16)

and,

max I(x2; y5|x1) (17)

Subject to:

Ex[x2x
†
2
] ≤ P2 (18)

The optimization problems in (15) and (17) can be solved,

applying the (Karush-Kuhn-Tucker) KKT conditions and cap-

italizing on the multiuser/multiterminal I-MMSE.

A. Main Result: The high/low mixed-snr regime

We are interested in the regime in which one node transmits

with high enough power so that the noise propagated by analog

network coding is low. While the other input transmits with

low enough power, so that it does not cause destructive but

constructive interference3, thus, the received snr is increased.

Definition: A wireless network is in the high/low- mixed-

snr regime, if one node k has, 1

Pk
≥ δk, with δk → 0, and

another node j has, 1

Pj
≤ δj , with δj → ∞. This implies that

the received snr at the sink node ℓ, has a high-snr snrℓ =
(h2jeqPjsnr + h2keq

Pksnr)/σzeq .

Thus, such snr hits asymptotically the one for the MAC

cut-set bound. At high/low-snr regime, since P1 → ∞, and

P2 → 0, we avoid the bottleneck on the MAC that would be

experienced if both inputs were at high-snr [13]. Therefore,

if the first input with δ1 → 0, at high-snr is scaled with σeq ,

while the second estimated input with δ2 → ∞ at low-snr

is scaled with σzeq . This implies that, the transmit power of

each input shall be different due to different scaling, and it is

asymptotically expressed as a mixed regime of high/low-snr.

More clearly, to establish the operational asymptotic

regime of ”high/low mixed-snr” of the proposed piggybacking

scheme: if one input at high-snr and another input at low-

snr, the strong one could in effect piggyback off the other,

thus getting around the necessity to decode and forward. It is

instrumental to recall that such approach will allow for closing

the gap between AF and the cut-set upper bound, i.e. achieves

capacity as will be shown in the following section.

III. PIGGYBACKING SCHEME

The proposed piggybacking scheme states that: if the

strongest input piggybacks the other input, capacity can be

achieved for both. The piggybacking strong input and the other

input piggybacked are used as a code. Therefore, we refer to

such codes as piggybacking codes for network coding.

More clearly, piggybacking is a pre-coding scheme that

allows for joint access to the network equivalent MAC channel

3Constructive interference refers to the mutual interference introduced
via cooperation to allow for canceling the effect of destructive non-mutual
interference by increasing the SNR. An example on constructive interference
introduced to interference channels is the MIMO channels or the cooperative
interference channels.

mitigating its bottleneck by creating constructively interfering

signals in one signal with increased snr. Such increased snr

signal convolves the strongest input with the other weaker

input. This cooperative process is referred to as piggybacking

where ”The strong holds the weak” thus both are conveyed

with no time-sharing.

Lets consider that both inputs to the multihop AF network

x1 and x2 are Gaussian with zero mean and power constraints

E[x2
1
] = P1 and E[x2

2
] = P2, respectively, contaminated along

their flow in the network multihop AF by a Gaussian noise

of variance σzeq , as explained in the network model (1), such

that at node 5,

R1 +R2 =
1

2
log

(

1 +
h21,eqP1snr + h22,eqP2snr

σzeq

)

(19)

The piggybacking scheme suggests that we can estimate x1
while x2 is treated as noise with respective rate,

R1 =
1

2
log

(

1 +
h2
1,eqP1snr

σzeq + h2
2,eqP2snr

)

(20)

While the second input is estimated by assuming perfectly

removing the knowledge of x1, such that,

R2 =
1

2
log

(

1 +
h22,eqP2snr

σzeq

)

(21)

The input (with high power) estimated first will piggyback

the input (with low power) estimated next, thus allowing the

sum of the rates, R1 + R2, to achieve capacity for both. Of

particular relevance is to prove that the proposed piggybacking

scheme captures the multiterminal I-MMSE behavior while yet

optimal in achieving capacity. It is instrumental to know that

for Gaussian inputs, the conditional mean estimators of inputs

x1 and x2 given the output at node 5, are linear and given,

respectively by,

Ex1|y5
[x1|y5] =

√
snrhigh

1 + snrhigh
ỹ5 (22)

Where snrhigh = γρsnr, γ is the snr scaling factor due to

scaling input 1 with the variance of input 2 plus the noise

variance, and ρ = h2
1,eqP1. In turn, ỹ5 =

√
snrhighx1 + z a

received signal scaled by input 2 variance plus the network

noise variance, such that the noise z is of unit variance. After

complete removal of the estimated x1, we have similarly,

Ex2|y5
[x2|y5] =

√
snrlow

1 + snrlow
ŷ5 (23)

Where snrlow = ζνsnr and ν = h2
2,eqP2. In turn, ŷ5 =√

snrlowx2+z
′ a received signal scaled by the network noise

ζ, such that the noise z′ is of unit variance. Therefore, the

MMSE of input 1 and input 2, with the piggybacking scheme,

are linear and given, respectively by,

Ej =
1

1 + snrj
(24)

In turn, substituting (22), (23), and (24) into (9),

dI(snr)

dsnr
=

h2
1,eqP1

1 + snrhigh
+

h2
2,eqP2

1 + snrlow
(25)



Where, ψ(σ−1

zeq
snr) = 0 due to orthogonality between input

estimates, and due to complete removal of input 1 when

estimating input 2. This implies that the change in the sum-rate

associated to destructive non-mutual interference is mitigated

at high/low-snr. In other words, the interference term in the

multiterminal I-MMSE is canceled using the piggybacking

scheme, which proves optimality of such scheme.

In general, it is worth to characterize such interference effect

driven by the detection or estimation method. In particular, the

interference effect or the rate loss (gap from the cut-set) due

to the existence of input 2 as noise scaling the power of user

1, can be written as,
∫

ψ(σ−1

zeq
snr)dsnr = I(x1; y5)− I(x1; y5|x2)

=
1

2
log

(

1 +
h2
1,eqP1snr

σzeq + h2
2,eqP2snr

)

−1

2
log

(

1 +
h2
1,eqP1snr

σzeq

)

=
1

2
log

(

1 +
h2
1,eqP1snr + h2

2,eqP2snr

σzeq

)

− 1

2
log

(

1 +
h2
1,eqP1snr

σzeq

)

− 1

2
log

(

1 +
h2
2,eqP2snr

σzeq

)

= I(x1, x2; y5)− I(x1; y5|x2)− I(x2; y5|x1) (26)

More clearly, within the context of the multiterminal I-MMSE,

taking the derivative w.r.t the snr of both sides of the equation

above, we have,

ψ(σ−1

zeq
snr) =

dI(x1, x2; y5)

dsnr
−dI(x1; y5|x2)

dsnr
−dI(x2; y5|x1)

dsnr
= mmse1(σ

−1

zeq
snr) +mmse2(σ

−1

zeq
snr) − ψ(σ−1

zeq
snr)

−mmse1(σ
−1

zeq
snr) + ψ(σ−1

zeq
snr)

−mmse2(σ
−1

zeq
snr) + ψ(σ−1

zeq
snr) (27)

Therefore, if the difference between the sum-rates of the

conditional mutual information and the joint mutual infor-

mation is closed, we achieve the cut-set upper bound, or

in other words, the derivative of the mutual information has

the term ψ(σ−1
zeq
snr) → 0. In the following section, we will

characterize the optimal power allocation of the piggybacking

scheme that allows for closing the gap.

IV. PIGGYBACKING SCHEME CHARACTERIZATION OF

POWER ALLOCATION

The piggybacking scheme will lead to a mixed power

allocation strategy. This is attributed to the high/low mixed-

snr operational regime. In particular, the first estimated input

should be assigned high power level to be able to scale it

with the larger portion of the interfering signal plus noise

variance, such that the estimation of the second input allows

complete cancellation of the first input. In turn, a low power

level assignment to the second input is sufficient to mitigate

the left noise variance, and follows single user point-to-point

channel assignment.

To characterize the piggybacking mixed power allocation

strategy, we capitalize on the gradient of the non-conditional

and conditional mutual information to find the optimal power

allocation.

For Gaussian inputs, and according to the proposed piggy-

backing scheme, the gradient of the the non-conditional mutual

information of the first estimated input with respect to P1 is

given by,

∇P1
I(x1; y5)

√

P1 =
1

σeq
h2
1,eqP1E1snr = mmse1(σ

−1

eq snr)

(28)
Therefore, the optimal power allocation for input 1 is given
as,

P
∗

1 =
σeq

h2

1,eq
snr

mmse
−1

1

(

η
h2

2,eqP2snr + σzeq

h2

1,eq
snr

)

, η <
h2

1,eqsnr

σeq

(29)

P ∗
1 = 0, η ≥

h2
1,eqsnr

σeq
(30)

reduces to the waterfilling obtained by applying the KKT

conditions that solves (15) and given as,

P ∗
1 =

1

η
− P2h

2

2,eq

h2
1,eq

− σzeq
h2
1,eqsnr

, η <
h21,eqsnr

σeq
(31)

P ∗
1
= 0, η ≥ h21,eqsnr

σeq
(32)

where η−1 is the water level. It is clear that the power

allocation has a term that accounts for scaling input 1 snr

with the power of the second input, particularly, the second

term of the right hand side of (31). On the other hand, the

gradient of the conditional mutual information of the second

estimated input with respect to P2 is given by,

∇P2
I(x2; y5|x1)

√

P2 =
1

σzeq
h2
2,eqP2E2snr

− 1

σzeq
h2,eqh1,eqP1Ey5

[Ex1|y5
[x1|y5]Ex2|y5

[x2|y5]†]snr

= mmse2(σ
−1

zeq
snr) (33)

Given the orthogonality between linear estimates and the

assumption of perfect reconstruction of the second input due

to complete removal of first input, the second term in (33)

which describes the gap, ψ(σ−1
zeq
snr) = 0.

Therefore, the second piggybacked input optimal power

allocation follows a single user mercury/waterfilling interpre-

tation similar to the one in [16]. Following similar steps to the

ones before, the optimal power allocation for input 2 is given

as,

P ∗
2
=

σzeq
h2
2,eqsnr

mmse−1

2

(

η
σzeq

h2
2,eqsnr

)

, η <
h2
2,eqsnr

σzeq
(34)

P ∗
2
= 0, η ≥ h22,eqsnr

σzeq
(35)

reduces to the single user waterfilling obtained by applying

the KKT conditions that solves (17), and given as,

P ∗
2
=

1

η
− σzeq
h2
2,eqsnr

, η <
h2
2,eqsnr

σzeq
(36)

P ∗
2 = 0, η ≥

h2
2,eqsnr

σzeq
(37)



It is straightforward to observe looking into (31) and (36)

that the optimal power allocation of input 1 estimated first

should exceed input 2 power, at such power set where one

input piggybacks the other, we hit the cut-set upper bound.

Moreover, its interesting to recall that we can yet hit the cut

set upper bound if we increase the power of input 1 and 2

to be maximum. This resorts to the fact that the joint mutual

information provides a waterfilling interpretation for input 2

similar to input 1 in (31) if input 1 is not removed when

estimating input 2. This suggests that we can hit the cut-

set upper bound with minimal energy via the piggybacking

scheme, while yet keeping optimality when increasing the

powers for the case of Gaussian inputs.

Worth to note that such piggybacking scheme defines a rate-

splitting-like approach of two independent input’s rates, where

the interference of input 2 on input 1 is used as a code, and

input 2 is a virtual input that is time-shifted in such a way that

its signal convolves in time with input 1 data, which multiplies

in the frequency band, allowing for bandwidth expansion as

a coding gain, this is another way to understand the benefits

introduced due to the piggybacking scheme [17].

V. OPTIMALITY OF PIGGYBACKING SCHEME

In this section, we show the asymptotic optimality of the

proposed piggybacking scheme at the high/low mixed-snr

regime. To characterize the achievable rates with piggybacking

at the high- and high/low-snr regimes, we recall the condition

on the noise variance at high-snr given in [13] by,

σzeq = 1 +
h2
35
P3

h2
13
P1 + h2

23
P2

+
h2
45
P4

h2
14
P1 + h2

24
P2

(38)

We capitalize on (38) to study the high/low-snr, as a special

case. It is clear that, when P1 → ∞ and P2 → 0, σzeq → 1.

In turn, the first input achievable rate follows,

I(x1; y5) =
1

2
log

(

1 +
h21,eqP1snr

1 + h2
2,eqP2snr

)

(39)

Assuming perfect removal of linearly estimated x1, the second

input achievable rate follows,

I(x2; y5|x1) =
1

2
log
(

1 + h2
2,eqP2snr

)

(40)

According to the closed form of (39) and (40), the optimal

power allocation yet follows (31)-(32) and (36)-(37). There-

fore, we establish the operational regime of high/low mixed-

snr at which piggybacking achieves the cut-set upper bound,

with less energy consumption in the network.

Re-writing the joint mutual information of the MAC at node

5 by substituting the amplification factors as shown in (38)

as βi = Pi/(h
2

1,iP1 + h2
2,iP2), i = {3, 4} into the equivalent

channel components, [13], we have,

I(x1, x2; y5) =
1

2
log
(

1 + (h35
√

P3snr + h45
√

P4snr)
2

)

(41)

Consequently, it is easy to observe that, at the high/low mixed-

snr regime the sum rate at node 5 satisfies,

R1 +R2 >
1

2
log
(

1 + h2
35
P3snr + h2

45
P4snr

)

(42)
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Figure 2. Joint Mutual Information with piggybacking: I(x1, x2; y5)
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Figure 3. The cut-set upper bound at node 5: I(x3, x4; y5)

However, the MAC cut-set bound at node 5,

I(x3, x4; y5) =
1

2
log
(

1 + (h35
√

P3snr + h45
√

P4snr)
2

)

(43)

Therefore, the cut-set upper bound is always achievable at

the piggybacking operational asymptotic regime of high/low

mixed-snr. If such conditions hold, the gap or the term

ψ(σ−1
zeq
snr) = 0 almost surely. If a degradation in the quality

of the first input estimate occurred due to scaling its snr with

a hugely amplified noise, this might lead to non-complete
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Figure 5. The network noise σzeq at node 5



removal of the first input when estimating the second, thus,

0 < ψ(σ−1

zeq
snr) ≤ 0.5 is bounded but not a constant gap as

was known.

Of particular relevance is to observe that the piggybacking

necessitates a certain order of the inputs estimation at which

the first estimated input must be the one with higher power,

thus a low/high mixed-snr is not a candidate operational

regime of the piggybacking scheme. However, for Gaussian

inputs, it is straightforward to check that the order of esti-

mation is not necessary due to the orthogonality of the input

estimates.
VI. SIMULATIONS

We shall now present a set of illustrative results that cast

further insight into the proposed piggybacking scheme. In the

following set of results, we use channel gains h13 = 1, h14 =
1, h23 = 1, h24 = 1, h35 = 1, h36 = 1, h45 = 1, h46 = 1, to

isolate the effect of the channel gains from the impact of the

study, particularly, we focus on the effect of the piggybacking

of the inputs.

With high/low mixed-snr, we consider input 1 with high-

snr SNR1 = 10 is estimated first and input 2 with low-

snr SNR2 = 1 is estimated next. The amplification gains

at intermediate nodes are dependent on source inputs powers

and the powers at intermediate nodes 3 and 4, which are

P3 = 1 and P4 = 1 respectively, a set of power levels

at which we assure establishment of the operational regime

without degrading the performance of the estimates.

We show in Figure 2 the joint mutual information at node

5 with successive estimation. Such successive estimation at

node 5 is established for the piggybacking scheme with input

1, the strong input is piggybacking input 2, thus, input 1

is estimated-first, and the piggybacked input 2 is estimated-

next accordingly. It is clear how the piggybacking scheme

makes an efficient usage of the power in the system while

achieving higher rates for both inputs, i.e. achieving capacity

for both inputs. This can be clearly observed comparing the

rate achieved at the power set (P1, P2) = (10, 2), to the usage

of maximum power at (P1, P2) = (10, 10) which is associated

with a decay in the achievable rate while yet hitting the cut-set

bound.

Furthermore, the capacity achievability of the piggybacking

scheme has been also demonstrated comparing Figure 2 with

Figure 3-4, where the cut-set upper bound is achieved, and

the gap is closed almost surely, respectively. The points in

Figure 4 where the gap is above zero are those where the

noise levels exceeds the input’s snr in the scaling process of

the first estimate, which is not part of the operational regime.

Additionally, we can see from Figure 5, that the gap increases

when the network noise variance is increased above unity,

where the high/low-snr asymptotic condition σzeq → 1 is not

met at (P1, P2) = (0, 0), which are not part of the operational

regime.

In turn, we can observe the necessity of the selection of

which inputs to be piggybacking/piggybacked. This makes the

order of estimation of the inputs at the sink fundamentally

important to the performance of the piggybacking scheme. In

particular, the order of the estimation defines a limiting factor

on the noise scaling effect, thus the high-snr input is firstly

estimated then the low-snr input. This is much relevant for

arbitrarily distributed inputs rather than Gaussian distributed

ones, where the estimation process is non-linear and the inputs

estimates are non-orthogonal.

VII. CONCLUSION

We show that piggybacking weak source inputs over strong

ones will be necessary to achieve the cut-set upper bound of

the multihop network with AF at high/low mixed-snr regime, a

novel operational snr-regime at which AF provides optimality

and achieves capacity. We shed light on the importance of

the order of estimation to the optimality of the piggybacking

scheme, albeit Gaussian inputs are insensitive to it.
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