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Abstract—An energy efficient use of large scale sensor net-
works necessitates activating a subset of possible sensors for
estimation at a fusion center. The problem is inherently com-
binatorial; to this end, a set of iterative, randomized algorithms
are developed for sensor subset selection by exploiting the
underlying statistics. Gibbs sampling-based methods are designed
to optimize the estimation error and the mean number of
activated sensors. The optimality of the proposed strategy is
proven, along with guarantees on their convergence speeds. Also,
another new algorithm exploiting stochastic approximation in
conjunction with Gibbs sampling is derived for a constrained
version of the sensor selection problem. The methodology is
extended to the scenario where the fusion center has access
to only a parametric form of the joint statistics, but not the
true underlying distribution. Therein, expectation-maximization
is effectively employed to learn the distribution. Strategies for
iid time-varying data are also outlined. Numerical results show
that the proposed methods converge very fast to the respective
optimal solutions, and therefore can be employed for optimal
sensor subset selection in practical sensor networks.

Index Terms—Wireless sensor networks, active sensing, data
estimation, Gibbs sampling, stochastic approximation, expecta-
tion maximization.

I. INTRODUCTION

A wireless sensor network typically consists of a number of
sensor nodes deployed to monitor some physical process. The
sensor data is often delivered to a fusion center via wireless
links. The fusion center, based on the gathered data from the
sensors, infers the state of the physical process and makes
control decisions if necessary.

Sensor networks have widespread applications in various
domains such as environmental monitoring, industrial pro-
cess monitoring and control, localization, tracking of mobile
objects, system parameter estimation, and even in disaster
management. However, severe resource constraints in such
networks necessitates careful design and control strategies in
order to attain a reasonable compromise between resource
usage and network performance. One major restriction is that
the nodes are battery constrained, which limits the lifetime of
the network. Also, low capacity of wireless channels due to
transmit power constraint, heavy interference and unreliable
link behaviour restricts the amount of data that can be sent to
the fusion center per unit time. In some special cases, such
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as mobile crowdsensing applications (see [1]), a certain cost
might be necessary in order to engage a sensor owned by a
third party. All these constraints lead us to the fundamental
question: how to select a small subset of sensors so that the
observations made by these sensors are most informative for
the effiicient inference of the state of the physical process
under measurement?

Recent results have focused on optimal sequential sensor
subset selection in order to monitor a random process mod-
eled as Markov chain or linear dynamical system; see e.g.
[2]–[7]. Sensor subset selection using these control-theoretic
resullts are typically computationally expensive, and the low-
complexity approximation schemes proposed in some of these
papers (such as [3] and [7]) are not optimal. On the other
hand, there appears to be limited work on optimal subset
selection when sensor data is static and its distribution is
known either absolutely or in parametric form; the major
challenge in this problem is computational ( [8]), where the
computational burden arises for two reasons: (i) finding the
optimal subset requires a search operation over all possi-
ble subsets of sensors, thereby requiring exponentially many
number of computations, and (ii) for each subset of active
sensors, computing the estimation error conditioned on the
observation made by active sensors requires exponentially
many computations. In [8], the problem of minimizing the
minimum mean squared error (MMSE) of a vector signal using
samples collected from a given number of sensors chosen by
the network operator is considered; a tractable lower bound
to the MMSE is employed in a certain greedy algorithm
to obviate the complexity in MMSE computation and the
combinatorial problem of searching over all possible subsets
of sensors. In contrast, our paper deals with a general error
metric (which could potentially be the MMSE or even the
lower bound to MMSE as in [8]), and proposes Gibbs sampling
based techniques for the optimal subset selection problem, in
order to minimize a linear combination of the estimation error
and the expected number of activated sensors. To the best of
our knowledge, ours is the first paper to use Gibbs sampling
for optimal sensor subset selection with low complexity in the
context of active sensing. We also provide an algorithm based
on Gibbs sampling and stochastic approximation, which is
provably optimal and which minimizes the expected estimation
error subject to a constraint on the expected number of
activated sensors; this technique can be employed to solve
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many other constrained combinatorial optimization problems.1

A. Organization and our contribution

The paper is organized as follows. The system model is
described in Section II. In Section III, we propose Gibbs
sampling based algorithms to minimize a linear combination
of data estimation error and the number of active sensors.
We prove convergence of these algorithms, and also provide a
bound on the convergence speed of one algorithm. Section IV
provides algorithm for minimizing the estimation error subject
to a constraint on the mean number of active sensors. We
propose a novel algorithm based on Gibbs sampling and
stochastic approximation, and prove its convergence to the
desired solution. To the best of our knowledge, this is a novel
technique that can be used for other constrained combinatorial
optimization problems as well. We also discuss how the
Gibbs sampling algorithm can be used when we have a hard
constraint on the number of activated sensors. Section V
discusses expectation maximization (EM) based algorithms
when data comes from a parameterized distribution with
unknown parameters. Numerical results on computational gain
and performance improvement by using some of the proposed
algorithms are presented in Section VI. Finally, we conclude
in Section VII. All proofs are provided in the appendices.

We have also discussed in various sections how the proposed
algorithms with minor modifications can be used for data
varying in time in an i.i.d. fashion.

II. SYSTEM MODEL AND NOTATION

A. The network and data model

We consider a large connected single or multi-hop sensor
network, whose sensor nodes are denoted by the set N =
{1, 2, · · · , N}. Each node k ∈ N is associated with a (possibly
vector-valued) data Xk, and we denote by X = {Xk}k∈N
the set of data which has to be reconstructed. A fusion center
determines the set of activated sensors, and estimates the data
in each node given the limited observations only from the
activated sensors.

While our methods assume static data from the sensors;
these methods can be employed with good performance for
data that varies in an iid fashion with respect to time.

B. Reconstruction of sensor data

We denote the activation state of a sensor by 1 if it is
active, and by 0 otherwise. We call B := {0, 1}N the set of
all possible configurations in the network, and denote a generic
configuration by B. Specifying a configuration is equivalent
to selecting a subset S of active sensors. We denote by B−j ∈
{0, 1}N−1 the configuration B with its j-th entry removed.

1In this connection, we would like to mention that Gibbs sampling based
algorithms were used in wireless caching [9], but to solve an unconstrained
problem. In the current paper, we combine Gibbs sampling and stochastic
approximation to solve a constrained optimization problem; this technique
is general and can iteratively solve many other constrained combinatorial
optimization problems optimally with very small computation per iteration,
while the approximation algorithms are not guaranteed to achieve optimality.

The estimate of X at the fusion center is denoted by X̂ . The
corresponding expected error under configuration B ∈ B is
denoted by EdB(X, X̂) =

∑N
k=1 EdB(Xk, X̂k). Specifically,

the mean squared error (MSE) yields EdB(X, X̂) = E(||X −
X̂||2) =

∑N
k=1 E(||Xk − X̂k||2). Let us denote the cost

of activating a sensor by λ. Heterogeneous sensor classes
with different priorities or weights can be straightforwardly
accommodated and thus are not presented herein.

1) The unconstrained problem: Given a configuration B ∈
B, the associated network cost is given by:

h(B) := EdB(X, X̂) + λ||B||1 (1)

In the context of stastistical physics, one can view h(B) as the
potential under configuration B. Our goal herein is to solve
the following optimization problem:

min
B∈B

h(B) (UP)

2) The constrained problem: Problem (UP) is a relaxed
version of the constrained problem below:

min
B∈B

EdB(X, X̂) s.t. E||B||1 ≤ N̄ (CP)

Here the expectation in the constraint is over any possible
randomization in choosing the configuration B. The cost of
activating a sensor, λ, can be viewed as a Lagrange multiplier
used to relax this constrained problem.

Theorem 1 relates solution of (UP) to (CP).
Theorem 1: Consider problems (CP) and (UP). If there

exists a Lagrange multiplier λ∗ ≥ 0 and a B∗ ∈ B, such
that an optimal configuration for (UP) under λ = λ∗ is B∗,
and the constraint in (CP) is satisfied with equality under the
pair (B∗, λ∗), then B∗ is an optimal configuration for (CP).

In case there exist multiple configurations B∗1 , B
∗
2 , · · · , B∗m,

a multiplier λ∗ ≥ 0, and a probability mass function
(p1, p2, · · · , pm) such that (i) each of B∗1 , B

∗
2 , · · · , B∗m is opti-

mal for problem (UP) under λ∗, and (ii)
∑m
i=1 pi||B∗i ||1 = N̄ ,

then an optimal solution for (CP) is to choose one configu-
ration from B∗1 , B

∗
2 , · · · , B∗m with probability mass function

(p1, p2, · · · , pm).
Proof: See Appendix A.

Remark 1: Theorem 1 allows us to obtain a solution for
(CP) from the solution of (UP) by choosing an appropriate
λ∗; this will be elaborated upon in Section IV.

III. GIBBS SAMPLING APPROACH TO SOLVE THE
UNCONSTRAINED PROBLEM

In this section, we will provide algorithms based on Gibbs
sampling to compute the optimal solution for (UP).

A. Basic Gibbs sampling

Let us denote the distribution πβ(·) over B as follows:

πβ(B) :=
e−βh(B)∑
B∈B e

−βh(B)
:=

e−βh(B)

Zβ



Choose any initial B(0) ∈ {0, 1}N . At each discrete time
instant t = 0, 1, 2, · · · , pick a random sensor jt ∈ N
independently and uniformly. For sensor jt, choose
Bjt(t) = 1 with probability
p := e

−βh(B−jt (t−1),1)

e
−βh(B−jt (t−1),1)

+e
−βh(B−jt (t−1),0) and choose

Bjt(t) = 0 with probability (1− p). Choose
Bk(t) = Bk(t− 1) for all k 6= jt.

Algorithm 1: BASICGIBBS algorithm

. Motivated by the theory of statistical physics, we call the
parameter β the inverse temperature, and Zβ the partition
function. Clearly, limβ↑∞

∑
B∈arg minA∈B h(A) πβ(B) = 1.

Hence, if we can choose a configuration B with probability
πβ(B) for a large β > 0, we can approximately solve (UP).

Computing Zβ will require 2N addition operations, and
hence it is computationally prohibitive for large N . As an
alternative, we provide an iterative algorithm based on Gibbs
sampling, which requires many fewer computations in each
iteration. Gibbs sampling runs a discrete-time Markov chain
{B(t)}t≥0 whose stationary distribution is πβ(·).

The BASICGIBBS algorithm (Algorithm 1) simulates the
Markov chain {B(t)}t≥0 for any β > 0. The fusion center
runs the algorithm to determine the activation set; as such, the
fusion center must create a virtual network graph.

Theorem 2: The Markov chain {B(t)}t≥0 has a stationary
distribution πβ(·) under the BASICGIBBS algorithm.

Proof: Follows from the theory in [10, Chapter 7]).
Remark 2: Theorem 2 tells us that if the fusion center runs

BASICGIBBS algorithm and reaches the steady state distribu-
tion of the Markov chain {B(t)}t≥0, then the configuration
chosen by the algorithm will have distribution πβ(·). For
very large β > 0, if one runs {B(t)}t≥0 for a sufficiently
long, finite time T , then the terminal state BT will belong to
arg minB∈B h(B) with high probability.

B. The exact solution

BASICGIBBS is operated with a fixed β; but, in practice,
the optimal soultion of the unconstrained problem (UP) is
obtained with β ↑ ∞; this is done by updating β at a
slower time-scale than the iterates of BASICGIBBS. This new
algorithm is called MODIFIEDGIBBS (Algorithm 2).

Theorem 3: Under MODIFIEDGIBBS algorithm,
the Markov chain {B(t)}t≥0 is strongly ergodic,
and the limiting probability distribution satisfies
limt→∞

∑
A∈arg minC∈B h(C) P(B(t) = A) = 1.

Proof: See Appendix C. We have used the notion of
weak and strong ergodicity of time-inhomogeneous Markov
chains from [10, Chapter 6, Section 8]), which is provided in
Appendix B. The proof is similar to the proof of one theorem
in [9], but is given here for completeness.

Remark 3: Theorem 3 shows that we can solve (UP) exactly
if we run MODIFIEDGIBBS algorithm for infinite time, in
contrast with BASICGIBBS algorithm which provides an

This algorithm is same as BASICGIBBS algorithm
except that at time t, we use β(t) := β(0) log(1 + t) to
compute the update probabilities, where β(0) > 0,
β(0)N∆ < 1, and ∆ := maxB∈B,A∈B |h(B)− h(A)|.

Algorithm 2: MODIFIEDGIBBS algorithm

approximate solution.
Remark 4: For i.i.d. time varying {X(t)}t≥0 with known

joint distribution, we can either: (i) find the optimal configu-
ration B∗ using MODIFIEDGIBBS and use B∗ for ever, or
(ii) run MODIFIEDGIBBS at the same timescale as t, and
use the running configuration B(t) for sensor activation; both
schemes will minimize the time-average expected cost.

C. Convergence rate of BASICGIBBS

Let µt denote the probability distribution of B(t) under
BASICGIBBS. Let us consider the transition probability ma-
trix P of the Markov chain {X(l)}l≥0 with X(l) = B(lN),
under the BASICGIBBS algorithm. Let us recall the defini-
tion of the Dobrushin’s ergodic coefficient δ(P ) from [10,
Chapter 6, Section 7] for the matrix P ; using a method
similar to that of the proof of Theorem 3, we can show that
δ(P ) ≤ (1− e−βN∆

NN
). Then, by [10, Chapter 6, Theorem 7.2],

we can say that under BASICGIBBS algorithm, we have

dV (µlN , πβ) ≤ dV (µ0, πβ)

(
1 − e−βN∆

NN

)l
. We can prove

similar bounds for any t = lN + k, where 0 ≤ k ≤ N − 1.
Unfortunately, we are not aware of such a bound for

MODIFIEDGIBBS.
Remark 5: Clearly, under BASICGIBBS algorithm, the

convergence rate decreases as β increases. Hence, there is
a trade-off between convergence rate and accuracy of the
solution in this case. Also, the rate of convergence decreases
with N . For MODIFIEDGIBBS algorithm, the convergence
rate is expected to decrease with time.

IV. GIBBS SAMPLING AND STOCHASTIC APPROXIMATION
BASED APPROACH TO SOLVE THE CONSTRAINED PROBLEM

In Section III, we presented Gibbs sampling based algo-
rithms for (UP). In this section, we provide an algorithm that
updates λ with time in order to meet the constraint in (CP)
with equality, and thereby solves (CP) (via Theorem 1).

Lemma 1: The optimal mean number of active sensors,
E|B|1, for the unconstrained problem (UP), decreases with
λ. Similarly, the optimal error, EdB(X, X̂), increases with λ.

Proof: See Appendix D.
Lemma 1 provides an intuition about how to update λ in
BASICGIBBS or in MODIFIEDGIBBS in order to solve (CP).
We seek to provide one algorithm which updates λ(t) in
each iteration, based on the number of active sensors in the
previous iteration. In order to maintain the necessary timescale
difference between the {B(t)}t≥0 process and the λ(t) update
process, we use stochastic approximation ( [11]) based update
rules for λ(t).



Choose any initial B(0) ∈ {0, 1}N and λ(0) ≥ 0. At
each discrete time instant t = 0, 1, 2, · · · , pick a random
sensor jt ∈ N independently and uniformly. For sensor
jt, choose Bjt(t) = 1 with probability
p := e

−βhλ(t)(B−jt (t−1),1)

e
−βhλ(t)(B−jt (t−1),1)

+e
−βhλ(t)(B−jt (t−1),0) and choose

Bjt(t) = 0 with probability (1− p). For k 6= jt, we
choose Bk(t) = Bk(t− 1).

After this operation, before the (t+ 1) decision instant,
update λ(t) at each node as follows.

λ(t+ 1) = [λ(t) + a(t)(||B(t− 1)||1 − N̄)]cb

The stepsize {a(t)}t≥1 constitutes a positive sequence
such that

∑∞
t=1 a(t) =∞ and

∑∞
t=1 a

2(t) =∞. The
nonnegative projection boundaries b and c for the λ(t)
iterates are such that λ∗ ∈ (b, c) where λ∗ is defined in
Assumption 1.

Algorithm 3: GIBBSLEARNING algorithm

Remark 6: The optimal mean number of active sensors,
E||B||1, for the unconstrained problem (UP) is a decreasing
staircase function of λ, where each point of discontinuity is
associated with a change in the optimizer B∗(λ).

The above remark tells us that the optimal solution of the
constrained problem (CP) requires us to randomize between
two values of λ in case the optimal λ∗ as in Theorem 1 belongs
to the set of such discontinuities. However, this randomization
will require us to update a randomization probability at another
timescale; having stochastic approximations running in mul-
tiple timescales leads to very slow convergence and hence is
not a very practical solution for (CP). Hence, instead of using
a varying β(t), we use a fixed, but large β and update λ(t) in
an iterative fashion using stochastic approximation.

Before proposing the algorithm, we provide a result analo-
gous to that in Lemma 1.

Lemma 2: Under BASICGIBBS algorithm for any given
β > 0, the mean number of active sensors E||B||1 is a
continuous and decreasing function of λ.

Proof: See Appendix E.
Let us fix any β > 0. We make the following feasibility
assumption for (CP), under the chosen β > 0.

Assumption 1: There exists λ∗ ≥ 0 such that the constraint
in (CP) under λ∗ and BASICGIBBS is met with equality.

Remark 7: By Lemma 2, E||B||1 continuously decreases in
λ. Hence, if N̄ is feasible, then such a λ∗ must exist by the
intermediate value theorem.
Let us define: hλ(t)(B) := EdB(X, X̂) + λ(t)||B||1.

Our proposed algorithm GIBBSLEARNING (Algorithm 3)
updates λ(t) iteratively in order to solve (CP).

Discussion of GIBBSLEARNING algorithm:

• If ||B(t−1)||1 is more than N̄ , then λ(t) is increased with
the hope that this will reduce the number of active sensors
in subsequent iterations, as suggested by Lemma 2.

Choose any initial estimate θ1. Sample the sensor

j1 = arg minj∈N E
(
dB:Bj=1,||B||1=1(X, X̂)

∣∣∣∣θ1

)
. In

general, after sampling nodes j1, j2, · · · , jk and
observing the partial data Xj1

= xj1 , · · · , Xjk
= xjk ,

obtain a new estimate θk+1 by completely running the
EM algorithm using the available partial data and
starting from the initial estimate θk. Once θk+1 is
obtained, sample

jk+1 = arg min
j∈N ,j /∈{j1,··· ,jk}

EB(
dB(X, X̂)

∣∣∣∣Xj1
= xj1 , · · · , Xjk

= xjk ; θk+1

)
where B is such that Bj = Bj1 = · · · = Bjk = 1, and
||B||1 = k + 1. Continue this process until the N -th
sensor is sampled.

Algorithm 4: EMSTATIC algorithm

• The B(t) and λ(t) processes run on two different
timescales; B(t) runs in the faster timescale whereas λ(t)
runs in a slower timescale. This can be understood from
the fact that the stepsize in the λ(t) update process de-
creases with time t. Here the faster timescale iterate will
view the slower timescale iterate as quasi-static, while the
slower timescale iterate will view the faster timescale as
almost equilibriated. This is reminiscent of two-timescale
stochastic approximation (see [11, Chapter 6]).

Let πβ|λ∗(·) denote πβ(·) under λ = λ∗.
Theorem 4: Under GIBBSLEARNING algorithm and As-

sumption 1, we have λ(t)→ λ∗ almost surely, and the limiting
distribution of {B(t)}t≥0 is πβ|λ∗(·).

Proof: See Appendix F.
This theorem says that GIBBSLEARNING produces a config-
uration from the distribution πβ|λ∗(·) under steady state.

A. A hard constraint on the number of activated sensors

Let us consider the following modified constrained problem:

min
B∈B

EdB(X, X̂) s.t. ||B||1 ≤ N̄ (MCP)

It is easy to see that (MCP) can be easily solved using similar
Gibbs sampling algorithms as in Section III, where the Gibbs
sampling algorithm runs only on the set of configurations
which activate N̄ number of sensors. Thus, as a by-product,
we have also proposed a methodology for the problem in [8],
though our framework is more general than [8].

Remark 8: The constraint in (CP) is weaker than (MCP).
Remark 9: If we choose β very large, then the number of

sensors activated by GIBBSLEARNING will have very small
variance. This allows us to solve (MCP) with high probability.



V. EXPECTATION MAXIMIZATION BASED ALGORITHM FOR
PARAMETERIZED DISTRIBUTION OF DATA

In previous sections, we assumed that the joint distribution
of X is completely known to the fusion center. In case this
joint distribution is not known but a parametric form p(x|θ) of
the distribution is known with unknown parameter θ, selecting
all active sensors at once might be highly suboptimal, and a
better approach would be to sample sensor nodes sequentially
and refine the estimate of θ using the data collected from a
newly sampled sensor. We use standard expectation maximiza-
tion (EM) algorithm (see [12, Section 5.2]) to refine the esti-
mate of θ. Hence, we present a greedy algorithm EMSTATIC
(Algorithm 4) to solve (MCP):

Remark 10: This algorithm is based on heuristics, and
it does not have any optimality guarantee because (i) EM
algorithm yields a parameter value which corresponds to
only a local maximum of the log-likelihood function of the
observed data, and (ii) the greedy algorithm to pick the nodes
is suboptimal.

The performance of EMSTATIC algorithm depends on the
initial value θ1, since θ1 will determine {θk}k=1,2,··· ,N̄ and
the chosen subset of activated sensors. If θ1 happens to be
initialized at a favourable value, then EMSTATIC algorithm
might even yield the same optimal subset of sensors as in
MCP with θ known apriori. One trivial example for this case
would be when N = 1 and we set θ1 = θ.

In case X(t) ∼ p(x|θ) varies in time t in an i.i.d.
fashion, we can employ the EMSEQUENTIAL algorithm
(Algorithm 5) to find the optimal subset of sensors at each
discrete time slot t.

Remark 11: The performance of EMSEQUEN-
TIAL algorithm depends on the initial estimate
θ1. Also, the maximization operation B(1) =

arg minB(1)∈B:||B(1)||1=N E
(
dB(1)(X(1), X̂(1))

∣∣∣∣θ1

)
can be

efficiently done by employing Gibbs sampling algorithms as
in Section III; this shows the potential use of Gibbs sampling
in solving sensor subset selection problem for parameterized
distribution of data with unknown parameters. However,
since this is not the main focus of our paper, we will only
consider known data distribution from now on.

VI. NUMERICAL RESULTS

A. Performance of BASICGIBBS algorithm

For the sake of illustration, we consider N = 18 sensors
which are supposed to sense X = {X1, X2, · · · , X18}, where
X is a jointly Gaussian random vector with covariance matrix
M . Sensor k has access only to Xk. The matrix M is chosen
as follows. We generated a random N × N matrix A whose
elements are uniformly and independently distributed over the
interval [−1, 1], and set M = ATA as the covariance matrix
of X . We set sensor activation cost λ = 2.3, and seek to solve
(UP) with MMSE as the error metric. We assume that sensing

Choose any initial estimate θ1. In slot t = 1, choose the
configuration B(1) of sensors B(1) =

arg minB(1)∈B:||B(1)||1=N E
(
dB(1)(X(1), X̂(1))

∣∣∣∣θ1

)
.

Then update the parameter to θ2 using EM algorithm
with the partial observation XB(1)(1) = xB(1)(1) and
with initial estimate θ1. Use θ2 to choose B(2) =

arg minB(2)∈B:||B(2)||1=N E
(
dB(2)(X(2), X̂(2))

∣∣∣∣θ2

)
in

slot t = 2. Continue this procedure for all t.

Algorithm 5: EMSEQUENTIAL algorithm

at each node is perfect,2 and that the fusion center estimates X̂
from the observation {Xi}i∈S =: XS as E(X|XS), where S
is the set of active sensors. Under such an estimation scheme,
the conditional distribution of XSc is still a jointly Gaussian
random vector with mean E(XSc |XS) and the covariance
matrix M(Sc, Sc)−M(Sc, S)M(S, S)−1M(S, Sc) (see [12,
Proposition 3.4.4]), where M(S, Sc) is the restriction of M
to the rows indexed by S and the columns indexed by Sc.
The trace of this covariance matrix gives the MMSE when
the subset S of sensors are active.

In this scenario, in Figure 1, we compare the cost for the
following four algorithms:

• OPTIMAL: Here we consider the minimum possible cost
for (UP).

• BASICGIBBS under steady state: Here we assume that
the configuration B ∈ B is chosen according to the
distribution πβ(·) defined in Section III. This is done for
several values of β.

• BASICGIBBS with finite iteration: Here we run BA-
SICGIBBS algorithm for 100 iterations. This is done
independently for several values of β, where for each
β the iteration starts from an independent random con-
figuration. Note that, we have simulated only one sample
path of BASICGIBBS for each β; if the algorithm is run
again independently, the results will be different.

• GREEDY: Start with an empty set S, and find the cost
if this subset of sensors are activated. Then compare this
cost with the cost in case sensor 1 is added to this set. If
it turns out that adding sensor 1 to this set S reduces the
cost, then add sensor 1 to the set S; otherwise, remove
sensor 1 from set S. Do this operation serially for all
sensors, and activate the sensors given by the final set S.

It turns out that, under the optimal configuration, 12 sensors
are activated and the optimal cost is 32.3647. On the other
hand, GREEDY activates 14 sensors and incurred a cost of
35.9663. However, we are not aware of any monotonicity or
supermodularity property of the objective function in (UP);
hence, we cannot provide any constant approximation ratio
guarantee for the problem (UP). On the other hand, we have
already proved that BASICGIBBS performs near optimally

2However, our analysis can be extended where there is sensing error, but
the distribution of sensing error is known to the fusion center.
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Fig. 1: Comparison among OPTIMAL, BASICGIBBS under
steady state, GREEDY, and BASICGIBBS with finite itera-
tions, for solving problem (UP). For each β, BASICGIBBS
with finite iterations stops after 100 iterations. Details are
provided in Section VI-A.

for large β. Hence, we choose to investigate the performance
of BASICGIBBS, though it might require more number of
iterations compared to N = 18 iterations for GREEDY. It is
important to note that, (UP) is NP-hard, and BASICGIBBS
allows us to avoid searching over 2N possible configurations.

In Figure 1, we can see that for β ≥ 2, the steady state
distribution πβ(·) of BASICGIBBS achieves better expected
cost than GREEDY, and the cost becomes closer to the optimal
cost as β increases. On the other hand, for each β ≥ 2,
BASICGIBBS after 100 iterations yielded a configuration
that achieves near-optimal cost. Hence, BASICGIBBS with
reasonably small number of iterations can be used to find the
optimal subset of active sensors when N is large.

B. Performance of Gibbs sampling applied to problem (MCP)

Here we seek to solve problem (MCP) with N̄ = 10 under
the same setting as in Section VI-A except that a new sample
of the covariance matrix M is chosen. Here we compare the
estimation error for the following three cases:

• OPTIMAL: Here we choose an optimal subset for (MCP).
• BASICGIBBS under steady state: Here we assume that the

configuration B is chosen according to the steady-state
distribution πβ(·) defined in Section III, but restricted
only to the set {B ∈ B : ||B||1 = N̄}. This is done by
putting h(B) = EdB(X, X̂) if ||B||1 = N̄ and h(B) =
∞ otherwise. This is done for several values of β.

• NEWGREEDY: Start with an empty set S, and find the
estimation error if this subset of sensors are activated.
Then find the sensor j1 which, when added to S, will
result in the minimum estimation error. If the estimation
error for S ∪ {j1} is less than that of S, then do S =
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Fig. 2: Comparison among OPTIMAL, BASICGIBBS under
steady state, and NEWGREEDY, for solving problem (MCP).
Details are provided in Section VI-B.

S ∪ {j1}. Now find the sensor j2 which, when added
to S, will result in the minimum estimation error. If the
estimation error for S ∪ {j2} is less than that of S, then
do S = S ∪ {j2}. Repeat this operation until we have
|S| = N̄ , and activate the set of N̄ sensors given by the
final set S. A similar greedy algorithm is used in [8].

The performances for these three cases are shown in Fig-
ure 2. It turns out that, the estimation error for OPTIMAL
and NEWGREEDY are 12.9741 and 15.4343, respectively.
BASICGIBBS outperforms NEWGREEDY for β ≥ 2, and
becomes very close to OPTIMAL performance for β ≥ 5.

C. Convergence speed of GIBBSLEARNING algorithm

We first demonstrate the convergence speed of GIBB-
SLEARNING algorithm, for one specific sample path.

We consider a setting similar to that of Section VI-A,
except that we fix β = 5. The covariance matrix M is
generated using the same method, but the realization of
M here is different from that in Section VI-A. Under this
setting, for λ∗ = 2, BASICGIBBS algorithm yields the
MMSE 3.5680, and the expected number of sensors activated
by BASICGIBBS algorithm becomes 12.7758. Now, let us
consider problem (CP) with the constraint value N̄ = 12.7758.
Clearly, if GIBBSLEARNING algorithm is employed to find
out the solution of problem (CP) with N̄ = 12.7758, then λ(t)
should converge to λ∗ = 2.

The evolution of λ(t) against the iteration index t is shown
in the top plot in Figure 3. We can see that, starting from
λ(0) = 4 and and using the stepsize sequence a(t) = 1

t ,
the iterate λ(t) becomes very close to λ∗ = 2 within
100 iterations. At t = 200, we found that λ(200) = 2.0318.
The resulting configuration yielded by GIBBSLEARNING al-
gorithm at t = 200 achieves MMSE 5.0308 and activates
12 sensors; it is important to remember that these results are
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Fig. 3: Illustration for convergence speed of λ(t) in the
GIBBSLEARNING algorithm. Top plot: Result for a single
sample path. Details can be found in Section VI-C. Bottom
plot: Average result over 1000 independent sample paths.
Details can be found in Section VI-C.

for one specific realization of the sample path. On the other
hand, under λ(200) = 2.0318, the steady state distribution
of BASICGIBBS, πβ(·), yields MMSE 3.6524 and mean
number of active sensors 12.7354, which are very close to
the respective target values 3.5680 and N̄ = 12.7758.

However, the top plot in Figure 3 is only for a specific
sample path of GIBBSLEARNING algorithm. In the bottom
plot in Figure 3, we demonstrate convergence speed of λ(t)
averaged over multiple independent sample paths of GIBB-
SLEARNING algorithm. Here we generate a different covari-
ance matrix M , set λ∗ = 2, and follow the same procedure as
before to set N̄ . Then we run GIBBSLEARNING algorithm
independently 1000 times, starting from λ(0) = 4. The bottom
plot of Figure 3 shows the variation of λ(t) (averaged over
1000 sample paths) with t. We can again see that the average
λ(t) is very close to λ∗ = 2 for t ≥ 100.

Thus, our numerical illustration shows that GIBBSLEARN-

ING algorithm has reasonably fast convergence rate for prac-
tical active sensing.

VII. CONCLUSION

In this paper, we have presented Gibbs sampling, stochastic
approximation and expectation maximization based algorithms
for efficient data estimation in the context of active sens-
ing. We first proposed Gibbs sampling based algorithms for
unconstrained optimization of the estimation error and the
mean number of active sensors, proved convergence of these
algorithms, and provided a bound on the convergence speed.
Next, we proposed an algorithm based on Gibbs sampling
and stochastic approximation, in order to solve a constrained
version of the above unconstrained problem, and proved its
convergence. Finally, we proposed expectation maximization
based algorithms for the scenario where the sensor data is
coming from a distribution with known parametric distribution
but unknown parameter value. Numerical results demonstrate
the near-optimal performance of some of these algorithms with
small number of computations.

As our future research endeavours, we seek to develop
distributed sensor subset selection algorithms to efficiently
track the data varying in time according to a stochastic process.
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APPENDIX A
PROOF OF THEOREM 1

We will prove only the first part of the theorem where there
exists a unique B∗. The second part of the theorem can be
proved similarly.

Let us denote the optimizer for (CP) by B, which is
possibly different from B∗. Then, by the definition of B∗,
we have EdB∗(X, X̂) + λ∗||B∗||1 ≤ EdB(X, X̂) + λ∗||B||1.
But ||B||1 ≤ K and ||B∗||1 = K. Hence, EdB∗(X, X̂) ≤
EdB(X, X̂). This completes the proof.

APPENDIX B
WEAK AND STRONG ERGODICITY

Consider a discrete-time Markov chain (possibly not time-
homogeneous) {B(t)}t≥0 with transition probability matrix
(t.p.m.) P (m;n) between t = m and t = n. We denote
by D the collection of all possible probasbility distributions
on the state space. Let dV (·, ·) denote the total variation
distance between two distributions in D. Then {B(t)}t≥0

is called weakly ergodic if, for all m ≥ 0, we have
limn↑∞ supµ,ν∈D dV (µP (m;n), νP (m;n)) = 0.

The Markov chain {B(t)}t≥0 is called strongly
ergodic if there exists π ∈ D such that,
limn↑∞ supµ∈D dV (µTP (m;n), π) = 0 for all m ≥ 0.

APPENDIX C
PROOF OF THEOREM 3

We will first show that the Markov chain {B(t)}t≥0 in
weakly ergodic.

Let us define ∆ := maxB∈B,A∈B |h(B)− h(A)|.
Consider the transition probability matrix (t.p.m.) Pl for

the inhomogeneous Markov chain {X(l)}l≥0 (where X(l) :=
B(lN)). The Dobrushin’s ergodic coefficient δ(Pl) is given
by (see [10, Chapter 6, Section 7] for definition) δ(Pl) =
1 − infB′ ,B′′∈B

∑
B∈Bmin{Pl(B

′
, B), Pl(B

′′
, B)}. A suffi-

cient condition for the Markov chain {B(t)}t≥0 to be weakly
ergodic is

∑∞
l=1(1 − δ(Pl)) = ∞ (by [10, Chapter 6,

Theorem 8.2]).
Now, with positive probability, activation states for all nodes

are updated over a period of N slots. Hence, Pl(B
′
, B) > 0 for

all B
′
, B ∈ B. Also, once a node jt for t = lN + k is chosen

in MODIFIEDGIBBS algorithm, the sampling probability for
any activation state in a slot is greater than e−β(lN+k)∆

2 . Hence,
for independent sampling over N slots, we have, for all pairs
B
′
, B:

Pl(B
′
, B) >

N−1∏
k=0

(
e−β(lN+k)∆

2N

)
> 0

Hence,
∞∑
l=0

(1− δ(Pl))

=

∞∑
l=0

inf
B′ ,B′′∈B

∑
B∈B

min{Pl(B
′
, B), Pl(B

′′
, B)}

≥
∞∑
l=0

2N
N−1∏
k=0

(
e−β(0) log(1+lN+k)×∆

2N

)

≥
∞∑
l=0

N−1∏
k=0

(
e−β(0) log(1+lN+N)×∆

N

)
=

1

NN

∞∑
l=1

1

(1 + lN)β(0)N∆

≥ 1

NN+1

∞∑
i=N+1

1

(1 + i)β(0)N∆

= ∞ (2)

Here the first inequality uses the fact that the cardinality of
B is 2N . The second inequality follows from replacing k by
N in the numerator. The third inequality follows from lower-
bounding 1

(1+lN)β(0)N∆ by 1
N

∑lN+N−1
i=lN

1
(1+i)β(0)N∆ . The last

equality follows from the fact that
∑∞
i=1

1
ia diverges for 0 <

a < 1.
Hence, the Markov chain {B(t)}t≥0 is weakly ergodic.
In order to prove strong ergodicity of {B(t)}t≥0, we

invoke [10, Chapter 6, Theorem 8.3]. We denote the t.p.m.
of {B(t)}t≥0 at a specific time t = T0 by Q(T0), which is
a given specific matrix. If {B(t)}t≥0 evolves up to infinite
time with fixed t.p.m. Q(T0), then it will reach the stationary
distribution πβT0

(B) = e
−βT0

h(B)

ZβT0

. Hence, we can claim that
Condition 8.9 of [10, Chapter 6, Theorem 8.3] is satisfied.

Next, we check Condition 8.10 of [10, Chapter 6, Theo-
rem 8.3]. For any B ∈ arg minB′∈B h(B

′
), we can argue

that πβT0
(B) increases with T0 for sufficiently large T0; this

can be verified by considering the derivative of πβ(B) w.r.t.
β. For B /∈ arg minB′∈B h(B

′
), the probability πβT0

(B)
decreases with T0 for large T0. Now, using the fact that
any monotone, bounded sequence converges, we can write∑∞
T0=0

∑
B∈B |πβT0+1

(B)− πβT0
(B)| <∞.

Hence, by [10, Chapter 6, Theorem 8.3], the Markov chain
{B(t)}t≥0 is strongly ergodic. It is straightforward to verify
the claim regarding the limiting distribution.

APPENDIX D
PROOF OF LEMMA 1

Let λ1 > λ2 > 0, and the corresponding optimal error and
mean number of active sensors under these multiplier values
be (d1, n1) and (d2, n2), respectively. Then, by definition, d1+
λ1n1 ≤ d2 +λ1n2 and d2 +λ2n2 ≤ d1 +λ2n1. Adding these
two inequalities, we obtain λ1n1 + λ2n2 ≤ λ1n2 + λ2n1,
i.e., (λ1 − λ2)n1 ≤ (λ1 − λ2)n2. Since λ1 > λ2, we obtain
n1 ≤ n2. This completes the first part of the proof. The second



part of the proof follows using similar arguments.

APPENDIX E
PROOF OF LEMMA 2

Let us denote E||B||1 =: f(λ) =
∑
B∈B ||B||1e

−βh(B)

Zβ
. It is

straightforward to see that E||B||1 is continuously differen-
tiable in λ.

Let us denote Zβ by Z for simplicity, and let h(B) = dB +
λ||B||1 be the linear combination of the error (here we have
written EdB(·, ·) as dB for simplicity in notation) and number
of active sensors under configuration B. Then the derivative
of f(λ) w.r.t. λ is given by:

f ′(λ)

=
−Zβ

∑
B∈B ||B||

2
1e
−β(dB+λ||B||1) −

∑
B∈B ||B||1e

−β(dB+λ||B||1) dZ
dλ

Z2

Now, it is straightforward to verify that dZ
dλ = −βZf(λ).

Hence,
f
′
(λ)

=
−Zβ

∑
B∈B ||B||

2
1e
−β(dB+λ||B||1) +

∑
B∈B ||B||1e

−β(dB+λ||B||1)βZf(λ)

Z2

Now, f ′(λ) ≤ 0 is equivalent to

f(λ) ≤
∑
B∈B ||B||21e−β(dB+λ||B||1)∑
B∈B ||B||1e−β(dB+λ||B||1)

Noting that E||B||1 =: f(λ) and dividing the numerator and
denominator of R.H.S. by Z, the condition is reduced to
E||B||1 ≤ E||B||21

E||B||1 , which is true since E||B||21 ≥ (E||B||1)2.
Hence, E||B||1 is decreasing in λ for any β > 0.

APPENDIX F
PROOF OF THEOREM 4

Let the distribution of B(t) under GIBBSLEARNING al-
gorithm be µt(·). Since limt→∞ a(t) = 0, it follows
that limt→∞ dV (µt−1, πβ|λ(t−1)) = 0 (where dV (·, ·) is
the total variation distance), and limt→∞(Eµt−1

||B||1 −
Eπβ |λ(t−1)||B||1) := limt→∞ e(t) = 0. Now, we can rewrite
the λ(t) update equation as follows:

λ(t+ 1) = [λ(t) + a(t)(Eπβ |λ(t−1)||B||1 − N̄ +Mt + et)]
c
b (3)

Here Mt := ||B(t−1)||1−Eµt−1
||B(t−1)||1 is a Martingale

difference noise sequence, and limt→∞ et = 0. It is easy to
see that the derivative of Eπβ |λ||B||1 w.r.t. λ is bouned for λ ∈
[b, c]; hence, Eπβ |λ||B||1 is a Lipschitz continuous function of
λ. It is also easy to see that the sequence {Mt}t≥0 is bounded.
Hence, by the theory presented in [11, Chapter 2] and [11,
Chapter 5, Section 5.4], λ(t) converges to the unique zero
of Eπβ |λ||B||1 − N̄ almost surely. Hence, λ(t) → λ∗ almost
surely. Since limt→∞ dV (µt−1, πβ|λ(t−1)) = 0 and πβ|λ is
continuous in λ, the limiting distribution of B(t) becomes
πβ|λ∗ .
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