
On Heterogeneous Coded Distributed Computing
Mehrdad Kiamari∗, Chenwei Wang† and A. Salman Avestimehr∗

∗Department of Electrical Engineering, University of Southern California, Los Angeles, CA
†DOCOMO Innovations, Inc., Palo Alto, CA

Abstract

We consider the recently proposed Coded Distributed Computing (CDC) framework [1]–[3] that leverages carefully designed
redundant computations to enable coding opportunities that substantially reduce the communication load of distributed computing.
We generalize this framework to heterogeneous systems where different nodes in the computing cluster can have different storage
(or processing) capabilities. We provide the information-theoretically optimal data set placement and coded data shuffling scheme
that minimizes the communication load in a cluster with 3 nodes. For clusters with K > 3 nodes, we provide an algorithm
description to generalize our coding ideas to larger networks.

I. INTRODUCTION

The modern paradigm for large-scale distributed computing involves a massively large distributed system comprising
individually small and relatively unreliable computing nodes made of commodity low-end hardware. Specifically, distributed
computational frameworks like MapReduce [4], Spark [5], Dryad [6], and CIEL [7] have gained significant traction, as they
enable the execution of production-scale tasks on data sizes of the order of tens of terabytes and more. However, as we
“scale out” computations across many distributed nodes, massive amounts of raw and (partially) computed data must be moved
among nodes, often over many iterations of a running algorithm, to execute the computational tasks. This creates a substantial
communication bottleneck. For example, by analyzing Hadoop traces from Facebook, it is demonstrated that, on average, 33%
of the overall job execution time is spent on data shuffling [8]. This ratio can be much worse for sorting and other basis tasks
underlying many machine learning applications. For example, as shown in [9], 50% ∼ 70% of the execution time can be spent
for data shuffling in applications including TeraSort, WordCount, RankedInvertedIndex, and SelfJoin.

Recently, it has been been shown that “coding” can provide novel opportunities to significantly slash the communication load
of distributed computing by leveraging carefully designed redundant local computations at the nodes (which can be viewed
as creating “side information”). In particular, a coding framework, named Coded Distributed Computing (CDC), has been
proposed in [1]–[3] , which assigns the computation of each task at r carefully chosen nodes (for some r ∈ Z+), in order to
enable in-network coding opportunities that reduce the communication load by r times. For example, by redundantly computing
each task at only two carefully chosen nodes, CDC can reduce the communication load by 50%. The impact of CDC has also
been numerically demonstrated through experiments over Amazon EC2. For example, in [10] it is shown that in a 16-node
cluster, CDC cuts down the execution time of the well-known distributed sorting algorithm TeraSort [11] by more than
70%.

However, CDC have so far been studied and developed for homogeneous computing clusters. In distributed computing
networks different nodes have often different processing, storage, and communication capabilities. For example, Amazon
EC2 [12] provides users with a wide selection of instance types with varying combinations of CPU, memory, storage, and
bandwidth. Moreover, as discussed in [13], the computing environments in virtualized data centers are heterogeneous and
algorithms based on homogeneous assumptions can result in significant performance reduction. Our goal in this paper is to
take the first steps towards development of CDC for heterogeneous computing clusters. In particular, we aim to understand how
we should optimally assign the computation tasks and design optimal coded shuffling techniques in heterogeneous computing
clusters.

From homogeneous to heterogeneous, although their CDC developments both rely on creating index coding-type coding
opportunities, the problem in heterogeneous systems appears to be much more challenging, due to the fact that we have to deal
with more parameters of storage size of nodes for file allocation. In addition, in homogeneous systems, the file allocation to
achieve the minimum communication load turned out to be cyclically symmetric with node indices. In contrast, such a manner
of file allocation is impossible for heterogeneous systems.

To shed light on CDC for heterogeneous systems, in this paper, we focus on the smallest heterogeneous system with K=3
nodes and characterize the information-theoretically minimum communication load for arbitrary storage size of all nodes. For
the achievability, we resolve the main challenge of designing file allocation at each node and then identify how to create coding
opportunities on top of carefully designed file allocation. For the converse, we provide a total of four bounds. While two of
them are translated directly from [2], the other two bounds, derived by incorporating genie-aided arguments with the cut-set
bounds, are novel.

For K>3, generalizing the ideas used for developing the information theoretic result for K = 3 appears to be insufficient
due to the fact that when the number of parameters {Mk}Kk=1 linearly grows, the number of possible coding opportunities

ar
X

iv
:1

70
9.

00
19

6v
1

 [
cs

.D
C

]
 1

 S
ep

 2
01

7

Map functions
Reduce functions

Fig. 1. A heterogeneous distributed computing system with Q=K=3

exponentially increases. Specifically, for the achievability, we need to examine if there exists any coding opportunity among
every possible subset of K ′ out of the total K nodes for every 3 ≤ K ′ ≤ K. Regarding the converse, investigating whether
an achievable scheme is information-theoretically optimal in general is not possible due to lack of efficient tools. Because of
these difficulties, we provide a heuristic algorithm to formulate the problem into a linear programming optimization to design
the file allocation and the corresponding communication load.

The problem of coded computing in heterogeneous systems has also been studied recently in [14]. However, the focus
of that work has been on coded computing approaches that deal with the straggler problem, e.g., [15], as opposed to the
communication load minimization that is the focus of this paper. An interesting future direction is the development of a unified
coded computing method for heterogeneous systems that deals with both the bandwidth and straggler problems. Such a unified
framework has been proposed for homogeneous systems in [16], but remains open for heterogeneous systems.

II. SYSTEM MODEL AND MAIN RESULTS

We consider a heterogeneous distributed computing system which consists of K distributed nodes, N input files {wn}Nn=1,
and each wn ∈ F2F for some F ∈ Z+. We assume that each node k∈K , {1, · · · ,K} can only store Mk files out of the total
N files, i.e., the storage size is Mk. In addition, we use Mk⊆{w1, · · · , wN} with the cardinality Mk = |Mk| to denote the
files stored at node k. For simplicity, we denote the set of all files by N , {1, 2, · · · , N}, and when there is no ambiguity we
simplify the notation to Mk ⊆ N to represent files stored at node k. In MapReduce-based distributed computing introduced
in [4], the goal is to compute Q (for some Q/K ∈ Z+) output functions φ1, . . . , φQ where each φq : (F2F)

N → F2B maps
the file wn, n ∈ N into an output length-B file uq = φq(w1, . . . , wN) ∈ F2B for some B ∈ Z+. As depicted in Fig. 1, the
output function φq , ∀q ∈ {1, . . . , Q} can be decomposed as follows

φq(w1, . . . , wN) = hq(gq,1(w1), . . . , gq,N (wN)), (1)

where −→g n = (g1,n, · · · , gQ,n) : F2F → (F2T)
Q, ∀n ∈ N for some T ∈ Z+, represent the Map functions, and hq : (F2T)

N →
F2B , ∀q ∈ {1, . . . , Q} represent the Reduce functions. The MapReduce-based distributed computing consists of the following
three phases:
Map Phase: Node k ∈ K computes the Map functions on each of the files in Mk to obtain Q length-T intermediate values
computed from each file wn, i.e., vq,n = gq,n(wn) ∈ F2T for q = 1, · · · , Q.
Shuffle Phase: Node k ∈ K creates a message Xk which is a function of the intermediate values {vq,n|wn ∈ Mk, q ∈
{1, · · · , Q}} locally computed at itself during the Map phase, i.e., Xk = ψk({−→g n|wn ∈ Mk}), and then broadcasts it to all
the other nodes.
Reduce Phase: Node k ∈ K utilizes the intermediate values computed from its locally stored files during the Map phase and
the messages {Xk}Kk=1 collected during the Shuffle phase to recover all its desired intermediate values {vq,n|q∈Wk, n∈N}
via the Reduce functions {hq}q∈Wk

, where Wk is the subset of indices of functions interesting to node k. Similar to [2], we
assume that ∪kWk = {1, · · · , Q}, Wi ∩Wj = ∅ for ∀i,∀j, i 6= j, and |Wk| = Q/K.

The communication load we use in this paper, represented by L, is defined as the total number of bits broadcasted by the
K nodes, during the Shuffle phase, normalized by T . Intuitively, it means the total number of equations associated with the
intermediate values (or files) contributed by the messages {Xk}Kk=1. To read the notations easily, we illustrate one example
in Fig. 1 with K = 3 and by letting Q = K, which means that each node k desires only one intermediate value for each file
vk,n, n ∈ N , represented by the blue (node 1), green (node 2) and brown (node 3) colors, respectively. For the file wn, n ∈ N ,
the kth intermediate value desired by node k is denoted as vk,n or Vk,n which is a random variable when we study the converse.
Since each file has to be stored at one node at least, we also assume that ∪kMk = N and M ,

∑
kMk≥N .

In this paper, we are primarily interested in the central question: given the parameters ({Mk}Kk=1, N), what is the minimum
communication load L∗? To address this question, we need to find out the file allocation at each node and the coding scheme

for data shuffling to achieve L∗. In particular, we will consider first the setting with K = 3 and then the setting with K>3.
The result is shown as follows.

A. Main Result

For the problem we defined above, for K = 3, without loss of generality, we assume that M1 ≤M2 ≤M3. We summarize
our new result for K = 3 in the following theorem.

Theorem 1: For the CDC problem defined above, given a general setting with P , (M1,M2,M3, N) and M = M1 +
M2 +M3, the minimum communication load L∗ is given by:

L∗ =


7
2N −

3
2M if P ∈ R1 ∪R2 ∪R3

3N − (M1 +M) if P ∈ R4 ∪R5
3
2N −

1
2M if P ∈ R6

N −M1 if P ∈ R7

(2)

where
R1={P | M1+M2 ≤ N, M3 ≤ N+M1−M2},
R2={P | M ≤ 2N, M1+M2 > N,M3 ≤ N+M1−M2},
R3={P | M ≤ 2N, M1+M2 > N, N+M1−M2 ≥M3 > 3N−M1−3M2},
R4={P | M1+M2 ≤ N, M3 > N+M1−M2},
R5={P | M ≤ 2N, M1+M2 > N,M3 > N+M1−M2},
R6={P | M > 2N, M3 ≤ N+M1−M2},
R7={P | M > 2N, M3 > N+M1−M2}.

Proof: The proof will be presented in Section III for the achievability and Section IV for the converse, respectively.
Remark 1: Compared to the uncoded scheme where the 3 nodes need a total of 3N −M intermediate values in the Shuffle

phase, Theorem 1 implies that we can save the communication load by up to 3N −M − L∗ by carefully designing the file
allocation and the coding scheme.

Remark 2: When M1 = M2 = M3, Theorem 1 reduces to the result specified for the homogeneous system in [2] after
normalizing L by N . Meanwhile, it can be seen that the inequality M3 > N +M1 −M2 in R4, R5 and R7 identifies cases
which do not exist in the homogeneous system. In addition, comparison with the homogeneous system in [2] implies that L∗
depends on not only the computation load (defined as M/N in [2]), but also the storage size Mk (e.g., M1 in R4, R5, R7).

The key idea for developing the result in Theorem 1 is to carefully design file allocation over nodes so that we can create
coding opportunities for reducing the communication load as many as possible. Meanwhile, since the new result depends on
the storage size of each node, it is natural to expect that file allocation to achieve L∗ is non-cyclically symmetric with node
indices, as opposed to the manner of cyclically symmetric file allocation to achieve L∗ in the homogeneous system.

For K > 3, due to the difficulties of characterizing the information-theoretically optimal result, we provide an achievable
scheme in Section V via developing an algorithm that formulates the achievability into a linear programming problem, followed
by several discussions. The main idea behind the achievability is to incorporate scaling up the coding schemes proposed for
heterogeneous systems with K=3 with the coding schemes for homogeneous systems developed in [2].

III. THE ACHIEVABILITY OF THEOREM 1

Before proceeding into the proof in detail, we first provide an overview of CDC for heterogeneous systems and build the
key intuitions behind the new result, which can be naturally applied when we design the achievable scheme.

Let us consider an example with (M1,M2,M3, N) = (6, 7, 7, 12) where node k is only interested in collecting its desired
N intermediate values {vk,n}n∈N where k = 1, 2, 3. Clearly, without creating L = 16, since besides the 6, 7, 7 intermediate
values computed directly from their own files, respectively, these nodes need another 6, 5, 5 intermediate values, respectively,
to complete their reductions.

Next, consider the files allocated sequentially as shown in Fig. 2 where node 1 stores files 1−6, node 2 stores files 7−12, 1,
node 3 stores files 2−8, and they aim to reduce circle (blue), square (green), and triangle (brown) output functions, respectively.
In this case, we can reduce the communication load from L = 16 to L = 13 by designing an appropriate coding scheme.
Specifically, instead of broadcasting the intermediate values v2,2 (square 2) and v3,1 (triangle 1) individually, node 1 directly
broadcasts v2,2⊕v3,1 where ⊕ denotes the XOR operator. Since v2,2 and v3,1 are available at node 3 and node 2, respectively,
they can obtain the desired interference-free v3,1 = X1 ⊕ v2,2 and v2,2 = X1 ⊕ v3,1, respectively. Similarly, encoding over 4
intermediate values v2,5, v2,6, v3,7, v3,8 at node 3 to v2,5 ⊕ v3,7 and v2,6 ⊕ v3,8 enables saving another 2 transmissions. Thus,
we save a total of 3 transmissions.

However, for (M1,M2,M3, N) = (6, 7, 7, 12), Theorem 1 implies L∗ = 12, which means that L = 13 shown above is
not minimum. As depicted in Fig. 3, if we carefully design the file allocation at node 3 to be M3 = {2, 4, 5, 6, 7, 8, 9} and

files

1 2 3 4 5
1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Map
files

Needs 7 8 9

Computes

1 7 8 9

1 7 8 9

1 7 8 9

1 7 8 9

Map

Needs

Computes
2 3 4 5 6 7

2 3 4 5 6 7

2 3 4 5 6 7

2 3 4 5 6 7

Map

10 11 12

2 3 4 5

11 12

11 12

11 12

8

8

8

8
1 9 10 11 12

9 9
Broadcasts

Broadcasts

Broadcasts

,

,

, ,

Node 1

Node 2 Node 3

,

6

6

6

6

6

, , , 10 12 10 12

11 12 10

11

10

10

10

, 11

Needs

Computes

files
Shuffle

7 5 6 8 , ,

3 2 1 4

Fig. 2. An example of non-optimal CDC for heterogeneous network with (M1,M2,M3, N) = (6, 7, 7, 12) and K = Q = 3 achieves L = 13.

files

1 2 3 4 5
1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Map
files

Needs 7 8 9

Computes

1 7 8 9

1 7 8 9

1 7 8 9

1 7 8 9

Map

Needs

Computes
2 4 5 6 7 8

2 4 5 6 7 8

2 4 5 6 7 8

2 4 5 6 7 8

Map

10 11 12

2 3 4 5

11 12

11 12

11 12

9

9

9

9
1 3 10 11 12

3

9 Broadcasts

Broadcasts

Broadcasts
, ,

Node 1

Node 2 Node 3

,

6

6

6

6

6

, , , 10 12 10 12

2

7 5 6 8 ,

11 12 10

11

10

10

10

, 11

Needs

Computes

files

4 9 ,

1

Shuffle

Fig. 3. An example of optimal CDC for heterogeneous network with (M1,M2,M3, N) = (6, 7, 7, 12) and K = Q = 3 achieves L∗ = 12 which is 25%
lower compared to uncoded distributed computing.

keep the file allocation at the other two nodes the same, then we can create another coding opportunity of v2,4 ⊕ v3,9 at
node 3. By doing so, we save one more transmission, so as to achieve L∗ = 12. Meanwhile, as explained later, 12 is also
information-theoretically optimal for (M1,M2,M3,N)=(6, 7, 7, 12) with every possible file allocation.

Based on the example above, it turns out that we need to deal with two coupled challenges including (a) appropriate file
allocation over the nodes, and (b) optimal coding scheme design. Let us first consider the challenge (b): given an arbitrary
but fixed file allocation, we will show how to create coding opportunities as many as possible. In particular, given the file
allocation M1, M2, M3, we can always characterize their relationship by identifying the following 7 subsets:

S123 ,M1 ∩M2 ∩M3, S12 , (M1 ∩M2) \ S123, S1 ,M1 \ (M2 ∪M3),

S13 , (M1 ∩M3) \ S123, S2 ,M2 \ (M1 ∪M3),

S23 , (M2 ∩M2) \ S123, S3 ,M3 \ (M1 ∪M2).

For simplicity, we denote the set cardinality by S(·) , |S(·)|.
Since the subset S123 of files is available at every node, we do not need to consider the communication of the intermediate

values vk,S123 , {vk,n}n∈S123 among the 3 nodes. In addition, each of the 3 subsets S1, S2 and S3 of files is available at one
node only. Thus, for each node k, if the other two nodes want to collect their intermediate values {vj,Sk}j 6=k, node k’s message
Xk has to carry those intermediate values, which need a total of 2(S1+S2+S3) transmissions. Hence, the possibility of CDC
originates from the remaining 3 subsets S12, S13, S23 where each file is stored at 2 nodes only. With this key observation, we
have the following lemma.

Lemma 1: Given file allocation M , (M1,M2,M3), the communication load LM is achievable, where

LM = 2(S1 + S2 + S3) + g(S12, S13, S23), (3)

and

g(x1, x2, x3) =
1

2

(∣∣∣max
k

xk+
∑
k

xk
2

∣∣∣+∣∣∣max
k

xk−
∑
k

xk
2

∣∣∣).
Proof: Clearly, we only need to show the achievability of the g(S12, S13, S23) term. In fact, observations of the function

g(S12, S13, S23) reveal that if we satisfy the triangle inequality S12 + S13 + S23 −maxSij ≥ maxSij , then we can create a
total of (S12+S13+S23)/2 equations. Otherwise, besides the S12+S13+S23−maxSij equations that we can create at most, we
need to send additional maxSij− (S12+S13+S23−maxSij) intermediate values, so the total number of equations is maxSij .
With this intuition, we provide the coding scheme for the two cases, respectively. Without loss of generality, we assume that
S12 ≤ S13 ≤ S23.

Case 1: S12 + S13 ≥ S23 ⇒ g(S12, S13, S23) = (S12 + S13 + S23)/2: As shown in Fig. 4 (upper), we group the files
into 3 non-overlapping groups Gl, l = 1, 2, 3 in 3 rectangles (dashed, solid and mixture), so that each Gl has the same size of
overlapping with two out of the 3 sets S12, S13, S23. Denoting the number of files in Gl as Ll, we can resolve Ll, l = 1, 2, 3
from the following linear equations: L1/2 + L2/2 = S12

L2/2 + L3/2 = S13

L1/2 + L3/2 = S23

=⇒

 L1 = S12 − S13 + S23

L2 = S12 + S13 − S23

L3 = −S12 + S13 + S23,
(4)

and we obtain the corresponding files in each group as:

G1 = S12(1:L1/2) ∪ S23(1:L1/2) (5)
G2 = S12(L1/2+1:S12) ∪ S13(1:L2/2) (6)
G3 = S13(L2/2+1:S13) ∪ S23(L1/2+1:S23). (7)

Thus, the messages broadcasted from each node are given by:

X1 = v3,G2∩S12 ⊕ v2,G2∩S23 (8)
X2 = v3,G1∩S12 ⊕ v1,G1∩S23 (9)
X3 = v2,G3∩S13 ⊕ v1,G3∩S23 . (10)

With the design above, it is easy to examine that each node will obtain all desired intermediate values in the shuffling phase.
Case 2: S12 + S13 < S23 ⇒ g(S12, S13, S23) = S23: With the similar approach, as shown in Fig. 4 (lower), we split S23

into 3 non-overlapping groups, each with cardinality 2S12, 2S13 and S23 − (S12 + S13), respectively. While the former two
groups have the same types of file allocation as in G1 and G3 in Case 1, respectively, we only need to let node 2 or node 3
directly send the corresponding intermediate values in group 3 (outside of the rectangles in Fig. 4 (lower)) to node 1.

So far, given file allocationM, L(M) can be uniquely determined by Lemma 1. What remains to be shown is the challenge:
what file allocation achieves L∗ in Theorem 1. In the rest of this section, we provide the file allocation M to achieve L∗ for
regimes R1 −R7.

S12 S13 S23

S12 S13 S23

node 1

node 2

node 3

file indices S121 S12+S13 S12+S13+S23¢¢¢ ¢¢¢ ¢¢¢

file indices S121 S12+S13 S12+S13+S23¢¢¢ ¢¢¢ ¢¢¢

node 1

node 2

node 3

Fig. 4. Illustration of coding scheme design for (upper) S12 + S13 ≥ S23 and (lower) S12 + S13 < S23 by considering the files in S12, S13, S23 only

File indices

Node 1

Node 2

Node 3

1 𝑁 2 …

Fig. 5. File placement for R1 where `1 = M1 − (M −N)/2, `2 = (M −N)/2, `3 = M2 − (M −N)/2, and `4 = N − (M1 +M2).

File indices

Node 1

Node 2

Node 3

1 𝑁 2 … 2𝑀1

Fig. 6. File placement for R4 where `1 = M1, `2 = M2 +M3 −N , `3 = N −M3, and `4 = N − (M1 +M2).

A. M1 +M2 ≤ N
1) M3 ≤ N +M1 −M2 (Regime R1): We choose the file allocation M = (M1,M2,M3) as follows:

M1 = [1 :M1],

M2 = [M1 + 1 :M1 +M2],

M3 = [M1 +M2 + 1 : N] ∪ [M1 − (M −N)/2 + 1 :M1 + (M −N)/2].

(11)

In order for the reader to understand more easily, we also illustrate the file allocation in Fig. 5. With counting the length of
the segment corresponding to each subset in Fig. 5, the cardinality of each subset is given by:

S1 = M1 − (M −N)/2, S12 = 0,

S2 = M2 − (M −N)/2, S13 = (M −N)/2, (12)
S3 = N − (M1 +M2), S23 = (M −N)/2.

Hence, by applying the coding scheme specified in the proof of Lemma 1, we obtain:

L = 2(2N −M) + (M −N)/2 =
7

2
N − 3

2
M. (13)

2) M3 > N +M1 −M2 (Regime R4): For this regime, we consider the file allocation M = (M1,M2,M3) as follows:

M1 = [1 :M1],

M2 = [M1 + 1 :M1 +M2], (14)
M3 = [M1 +M2 + 1 : N] ∪ [1 : (M −N)].

which are also shown in Fig. 6, where the length of L1, L2, L3 can be simply calculated via Lemma 1. Thus, the cardinality
of each subset is given by:

S1 = 0, S12 = 0,

S2 = N −M3, S13 =M1,

S3 = N − (M1 +M2), S23 =M2 +M3 −N. (15)

Hence, based on Lemma 1, we have:

L = 2(2N−M) + (M2+M3−N) = 3N − (M1 +M). (16)

B. M ≤ 2N and M1 +M2 > N

1) M3 ≤ 3N−M1−3M2 (Regime R2): We design the file allocationM = (M1,M2,M3), depicted in Fig. 7, as follows:

M1 = [1 :M1],

M2 = [M1 + 1 : N] ∪ [1 :M1 +M2 −N], (17)

M3 = [M1 +M2 −N + 1 : 2(M1 +M2 −N)] ∪
[
M1−

M3−(M1+M2−N)

2
+1:M1+

M3−(M1+M2−N)

2

]

File indices

Node 1

Node 2

Node 3

1 𝑁 …
𝑀1 +𝑀2 − 𝑁

…

𝑀1 + 𝑀2 − 𝑀1 +𝑀2 −𝑁 /2

…

Fig. 7. File placement for R2 where `1 = M1+M2−N , `2 = M1−2(M1+M2−N)− (M3− (M1+M2−N))/2, `3 = (M3− (M1+M2−N))/2,
and `4 = N −M1 − (M3 − (M1 +M2 −N))/2.

Thus, the cardinality of each subset is given by:

S1 =M1− 2(M1+M2−N)− (M3− (M1+M2−N))/2, S12 =M1 +M2 −N,
S2 = N −M1 − (M3 − (M1 +M2 −N))/2, S13 =M1+M2−N+ (M3− (M1+M2−N))/2,
S3 = 0, S23 = (M3 − (M1 +M2 −N))/2.

(18)

Hence, according to Lemma 1, we obtain:

L = 2(2N −M) +M1 +M2 −N +
M3 − (M1 +M2 −N)

2
=

7

2
N − 3

2
M. (19)

2) M3 > 3N −M1 − 3M2: The file allocation M = (M1,M2,M3) is as follows:

M1 = [1 :M1],

M2 = [M1 + 1 : N] ∪ [1 :M1 +M2 −N], (20)
M3 = [M1 +M2 −N + 1 :M −N].

Thus, the cardinality of each subset is given by:

S1 = 0, S12 =M1 +M2 −N,
S2 = 2N −M, S13 = N −M2, (21)
S3 = 0, S23 =M2 +M3 −N.

According to Lemma 1, we have the results in the following two cases:
Case 1: M3 ≤ N +M1 −M2 (Regime R3)

L = 2(2N −M) + (M −N)/2 =
7

2
N − 3

2
M. (22)

Case 2: M3 > N +M1 −M2 (Regime R5)

L = 2(2N−M)+M2+M3−N = 3N − (M1 +M). (23)

The corresponding file allocation for regimes R3 and R5 are shown in Fig. 8 and Fig. 9, respectively.

File indices

Node 1

Node 2

Node 3

1 𝑁 …
𝑀1 +𝑀2 − 𝑁

…
𝑀 −𝑁

…

Fig. 8. File placement for R3 where `1 = M1+M2+M3−N
2

− (N −M2), `2 = M1+M2+M3−N
2

− (M2 +M3 −N), `3 = M2 +M3 −N − L1, and
`4 = 2N −M .

File indices

Node 1

Node2

Node 3

1 𝑁 …
𝑀1 +𝑀2 − 𝑁

…
𝑀 −𝑁

…

Fig. 9. File placement for R5 where `1 = M1 +M2 −N , `2 = N −M2, `3 = M2 +M3 −N −M1, and `4 = 2N −M .

File indices

Node 1

Node 2

Node 3

1 𝑁 …

Fig. 10. File placement for R6 where `1 = M − 2N , `2 = N −M3, `3 = N −M2, and `4 = N −M1.

File indices

Node 1

Node 2

Node 3

1 𝑁 …

Fig. 11. File placement for R7 where `1 = M − 2N , `2 = N −M3, `3 = N −M2, and `4 = N −M1.

C. M > 2N

We consider the following file allocation M = (M1,M2,M3):

M1 = [1 :M1],

M2 = [M1 + 1 : N] ∪ [1 :M1 +M2 −N], (24)
M3 = [M1 +M2 −N + 1 : N] ∪ [1 :M1 +M2 +M3 − 2N].

Thus, the cardinality of each subset is given by:

S123 =M − 2N, S1 = 0, S12 =M1 +M2 −N − (M − 2N) = N −M3,

S2 = 0, S13 =M1 +M3 −N − (M − 2N) = N −M2,

S3 = 0, S23 =M2 +M3 −N − (M − 2N) = N −M1. (25)

It is straightforward to see that after removing the subset S123 from the sets Sk, k = 1, 2, 3, respectively, the remaining subsets
Sk \ S123, k = 1, 2, 3 fall into the setting that we have identified in Section III-B2). Specifically, we need to consider the two
cases where S23 ≤ S12 + S13 and where S23 > S12 + S13 due to S12 ≤ S13 ≤ S23. Thus, according to Lemma 1, we have
the results in the following two cases:

Case 1: If S23≤S12+S13, then M2+M3−M1≤N (Regime R6)

L =
S12 + S13 + S23

2
=

3

2
N − 1

2
M. (26)

Case 2: If S23>S12+S13, then M2+M3−M1>N (Regime R7)

L = S23 = N −M1. (27)

The file allocation corresponding to regimes R6 and R7 are shown in Fig.10 and Fig.11, respectively.

IV. CONVERSE OF THEOREM 1

Applying the result in Lemma 1 in [2], letting K = 3 and translating their notation into those we use, i.e., 1) converting
the communication load defined in [2] into ours, 2) a1M = S1 +S2 +S3 and 3) a2M = S12 +S13 +S23 where ajM represents
the number files stored at j nodes only, we have the following corollary:

Corollary 1: LM ≥ 2(S1 + S2 + S3) +
1
2 (S12 + S13 + S23).

Remark 3: It can be easily seen that the right-hand side of inequality above is the same as the right-hand side of (3) in
Lemma 1 when the triangle inequality S12 + S13 + S23 −maxSij ≥ maxSij is satisfied.

Next, considering any possible file allocation M and any coding scheme, we will provide the lower bounds on LM.

A. Converse for P ∈ R1 ∪R2 ∪R3: LM ≥ 7
2N −

3
2M

According to our definition, we have:  S1 + S12 + S13 + S123 =M1

S2 + S12 + S23 + S123 =M2

S3 + S13 + S23 + S123 =M3

(28)

which leads to

S12 + S13 + S23 =
(
∑3

k=1Mk)− (
∑3

i=1 Si)− 3S123

2
. (29)

Due to S1 + S2 + S3 + S12 + S13 + S23 + S123 = N , we have

S123 =M +
(3∑

i=1

Si

)
− 2N. (30)

Substituting (30) into (29) and then expressing S12 + S13 + S23 with S1 + S2 + S3, we can rewrite Corollary 1 as follows:

LM ≥
3

2
N − 1

2
M +

3∑
i=1

Si. (31)

Since M ≤ 2N , we must have S1+S2+S3 ≥ 2N−M for every possible file allocation. Thus, we obtain the bound:

LM ≥
3

2
N − 1

2
M +

3∑
k=1

Sk ≥
7

2
N − 3

2
M. (32)

B. Converse for P ∈ R6: LM ≥ 3
2N −

1
2M

Following from (31), since we always have S1 + S2 + S3 ≥ 0, we can directly obtain:

LM ≥
3

2
N − 1

2
M +

3∑
k=1

Sk ≥
3

2
N − 1

2
M. (33)

Observations of Theorem 1 reveal that the two bounds shown above apply to R1, R2, R3 and R6. What remains to be
shown is the converse for R4, R5 and R7, respectively. Next, We provide two new propositions in the following.

C. Converse for P ∈ R7: LM ≥ N −M1

This bound is essentially a “cut-set” bound, because intuitively server 1 needs at least a total of N −M1 equations to collect
its desired intermediate symbols. The formal proof is briefly written as follows:

LM ≥ H(X1, X2, X3) (34)
≥ H(X2, X3|V:,M1

) (35)
≥ I(X2, X3;V1,:|V:,M1

) (36)
= H(V1,:|V:,M1

)−H(V1,:|X2, X3, V:,M1
)︸ ︷︷ ︸

(a)
= 0

(37)

= N −M1 (38)

where (a) is due to the decoding requirement at node 1.

D. Converse for P ∈ R4 ∪R5: LM ≥ 3N − (M +M1)

Intuitively, this bound LM ≥ (N−M1)+(2N−M) can be interpreted as number of equations needed to meet the “cut-set”
bound shown above and associated with the files stored at only one node and sent to another node. We first provide two
inequalities in the following two lemmas.

Lemma 2: H(X1|X2, X3) ≥ 2S1.
Proof: The proof is readily shown as follows:

H(X1|X2, X3) ≥ H(X1|X2, X3, V:,M2
, V:,M3

) (39)
≥ I(X1;V2,:, V3,:|X2, X3, V:,M2

, V:,M3
) (40)

= H(V2,:|X2, X3, V:,M2
, V:,M3

)︸ ︷︷ ︸
≥S1

+H(V3,:|V2,:, X2, X3, V:,M2
, V:,M3

)︸ ︷︷ ︸
≥S1

−H(V2,:, V3,:|X1, X2, X3, V:,M2
, V:,M3

)︸ ︷︷ ︸
(a)
= 0

(41)

≥ 2S1 (42)

where (a) is due to the decoding requirements at node 2, 3.

Remark 4: This lemma essentially implies that the message X1 must contain S1 equations required by node 2 and another
S1 equations required by node 3, because node 2 and node 3 do not have any intermediate signals accosted with the files in
N \ (M2 ∪M3) = S1.

Lemma 3: H(X2, X3|V1,:, V:,M1
) ≥ S2 + S3.

Proof: It can be proved by following the similar approach above and omitted due to the space limitation.
Finally, we derive the desired bound as follows.

LM ≥ H(X1, X2, X3) (43)
= H(X2, X3) +H(X1|X2, X3) (44)
≥ H(X2, X3|V:,M1

) +H(X1|X2, X3) (45)
= H(X2, X3|V:,M1

)+H(V1,:|X2, X3,V:,M1
)+H(X1|X2, X3) (46)

= H(V1,:|V:,M1
)+H(X2, X3|V1,:, V:,M1

)+H(X1|X2, X3) (47)
≥ N −M1 +H(X2, X3|V1,:, V:,M1

) +H(X1|X2, X3) (48)
≥ N −M1 + S2 + S3 + 2S1 (49)
≥ N −M1 + 2N − (M1 +M2 +M3) + S1 (50)
≥ N −M1 + 2N −M (51)

where (49) is obtained due to Lemma 2 and Lemma 3.
The union of the inequalities derived above cover all the regimes specified in Theorem 1. This completes the entire converse

proof of Theorem 1. In addition, observations of the 4 inequalities reveal that each inequality is a valid lower bound in every
regime, but they are not simultaneously active.

V. ALGORITHM OF THE ACHIEVABILITY FOR THE GENERAL K SERVER NODES

As we introduced earlier, due to the difficulties of seeking information theoretic result for K > 3, we provide an algorithm
to investigate the achievability of the communication load.

Before presenting the algorithm, we first summarize the main idea behind our algorithm. Specifically, given a file allocation
M = {Mk}Kk=1, we can identify a total of 2K − 1 subsets (similar to 7 subsets defined for the case K = 3) by considering
the relationship among the K subsets M1, · · · ,MK . Thus, we decompose the system into up to K parallel subsystems
where in the jth subsystem for each j ∈ K, every file is stored at j nodes only. Then for each subsystem, we will find the
coding opportunities as many as possible, by using coding schemes developed for K = 3 in Section III in this paper and
in [2]. Since each coding equation involves j intermediate values, we can save at least j − 1 transmissions compared to the
communication load Lj

u of the uncoded scheme. Hence, the communication load contributed by the jth subsystem is given
by Lj = Lj

u − (j − 1)lj where lj is the number of equations we can create. Next, we obtain L =
∑

j∈K Lj , i.e., adding up
the communication load contributed by each subsystem. Since the explicit expressions of the 2K − 1 subsets depend on the
choice of file allocationM, we treatM as undetermined variables and choose the total communication load L as the objective
function which is a linear function of the variables we define. Finally, resolving the linear programming problem we formulate,
we are able to obtain a feasible solution.

Since our proposed algorithm might not be easy to read, in the following we will first provide two specific examples for
K = 3 and K = 4 before presenting the algorithm for the systems with general K > 4.

A. Example 1: K = 3

Let us start with the simplest setting with K = 3. Although this setting has already been completely resolved in the prior
sections, we will readily show an alternative approach of developing an algorithm to formulate the original problem into an
optimization problem, while getting rid of the 7 regime classification. Given the setting with (M1,M2,M3, N), the algorithm,
which results in the same conclusion as in Theorem 1, is shown in the following.
• Step 0: Initialize the communication load L = 0, and the set of constraints E = ∅.
• Step 1: Consider the subsystem j = 1 where we only have the files in the 3 subsets S1, S2, S3. According to Section III,

we can directly obtain the communication load function:

L1 = 2(S1 + S2 + S3). (52)

• Step 2: Consider the subsystem j = K−1 = 2 where we only have S12, S13, S23. Recall that in Lemma 1 in Section III,
we develop the function g(·) based on the subsets where each file is stored at K−1 = 2 nodes only. Denoting the number
of files in S12, S13, S23 as undetermined non-negative variables x12, x13, x23, we can obtain the following inequalities:

x21 + x22 ≤ S12,

x21 + x23 ≤ S13, (53)
x22 + x23 ≤ S23.

In addition, we also have x2q ≥ 0, for q = 1, 2, 3, and S12 ≥ 0, S13 ≥ 0, S23 ≥ 0. Add all these 9 inequalities to E .
• Step 3: Then the communication load function L2 can be written as follows:

L2 = (S12 + S13 + S23)− (x21 + x22 + x23). (54)

• Step 4: Consider the subsystem j = K = 3 where we only have S123. Clearly, L3 = 0.
• Step 5: Next, we obtain the entire communication load function L = L1+L2+L3. Meanwhile, we also have the following

constraints over the entire files:

S1 + S2 + S3 + S12 + S13 + S23 + S123 = N, (55)
S1 + S2 + S3 + 2(S12 + S13 + S23) + 3S123 = M1 +M2 +M3, (56)

and the following constraints over the files allocated at each server:

S1 + S12 + S13 + S123 = M1,

S2 + S12 + S23 + S123 = M2, (57)
S3 + S13 + S23 + S123 = M3.

Add all these K + 2 = 5 equations to E .
• Step 6: Finally, after removing redundant variables and constraints, we translate seeking the communication load problem

into resolving the linear optimization problem:

min L = 2(S1 + S2 + S3) + (S12 + S13 + S23)− (x21 + x22 + x23)

subject to E ,



x21 + x22 ≤ S12,
x21 + x23 ≤ S13,
x22 + x23 ≤ S23,
x2q ≥ 0, q = 1, 2, 3.
S1 + S12 + S13 + S123 =M1,
S2 + S12 + S23 + S123 =M2,
S3 + S13 + S23 + S123 =M3,
S1 + S2 + S3 + S12 + S13 + S23 + S123 = N,
Sk ≥ 0, k = 1, 2, 3,
Sij ≥ 0, i, j = 1, 2, 3, j 6= j,
S123 ≥ 0.

This linear optimization problem above can be easily resolved via several algorithms and programming tools.
• Step 7: According to optimal solution we obtained above, we can readily determine file allocation Mo

k greedily for each
server k sequentially.

Remark 5: It can be readily seen that the linear optimization problem above is equivalent to the original problem, but we
do not need to specify the boundaries between those 7 regimes associated with M1, M2, M3 and N .

B. Example 2: K = 4

Considering the setting of ({Mk}4k=1, N), the simplest setting beyond K = 3, we can use the following algorithm to find
an achievability.
• Step 0: Initialize the communication load L = 0, and the set of constraints E = ∅.
• Step 1: Consider the subsystem j = 1 where we only have the files in the 4 subsets S1, S2, S3, S4. Similar to the

subsystem j = 1 for K = 3 explained in Section III, we can directly obtain the communication load function:

L1 = 3(S1 + S2 + S3 + S4). (58)

• Step 2: Then we consider the subsystem with j = 2 where we only have {Sij}(i,j)∈C and the set C is given
by C = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}. Considering the optimal coding scheme identified in [2] for the
homogeneous system with j = 2 and K = 4, we have the following three file allocation methods to achieve the mini-
mum communication load, i.e., {(1, 2), (1, 3), (2, 4), (3, 4)}, {(1, 2), (1, 4), (2, 3), (3, 4)}, and {(1, 3), (1, 4), (2, 3), (2, 4)}.
Specifically, regarding the first set, it implies that if we allocate L files to K = 4 users, we will allocate the first quarter
to node 1, 2, the second quarter to node 1, 3, the third quarter to node 2, 4, and the last quarter to node 3, 4.

• Step 3: Denote the number of files for encoding by using the three methods above by 3 non-negative variables x21, x22,
x23. Clearly, we must have

x21 + x22 ≤ S12, x21 + x22 ≤ S34,

x21 + x23 ≤ S13, x21 + x23 ≤ S24, (59)
x22 + x23 ≤ S14, x22 + x23 ≤ S23,

due to the cardinality constraints. In addition, we add all these inequalities into E . Also, the communication load L2 can
be written as follows:

L2 = (K − j)(S12 + S13 + S14 + S23 + S24 + S34)− (j − 1)K(x21 + x22 + x23) (60)

where K = 4 and j = 2.
• Step 4: Consider the subsystem j = K − 1 = 3 where we only have S123, S124, S134, S234. Recall that in Lemma 1 for
K = 3 in Section III, we develop the function g(·) based on the subsets where each file is stored at K−1 = 2 nodes only. In
fact, we generalize the function g(·) to achieve the information-theoretically optimal (i.e., minimum) communication load
for K = 3 to K > 3. In particular, denote the number of files in S123, S124, S134 as undetermined non-negative variables
x31, x32, x33, x34. Extending the main idea behind the proof of Lemma 1, we can obtain the following inequalities:

x31 + x32 + x33 ≤ S123,

x31 + x32 + x34 ≤ S124, (61)
x31 + x33 + x34 ≤ S134,

x32 + x33 + x34 ≤ S234.

In addition, we also have x3q ≥ 0, for q = 1, 2, 3, 4, and Sijk ≥ 0. Add all these 12 inequalities to E .
• Step 5: Then the communication load function L3 can be written as follows:

L3=(S123+ S124+ S134+ S234)−2(x31+ x32+ x33+ x34).

• Step 6: Consider the subsystem j = K = 4 where we only have S1234. Clearly, L4 = 0.
• Step 7: Next, we obtain the entire communication load function L =

∑4
j=1 Lj . Meanwhile, we also have the following

constraints over the entire files: ∑
k

Sk +
∑
ij

Sij +
∑
ijk

Sijk + S1234 = N,∑
k

Sk + 2
∑
ij

Sij + 3
∑
ijk

Sijk + S1234 = M, (62)

and the constraints over the files allocated at each node:

S1+ S12+ S13+ S14+ S123+ S124+ S134+ S1234=M1,

S2+ S12+ S23+ S24+ S123+ S124+ S234+ S1234=M2, (63)
S3+ S13+ S23+ S34+ S123+ S134+ S234+ S1234=M3,

S4+ S14+ S24+ S34+ S124+ S134+ S234+ S1234=M4.

Add all these K + 2 = 6 equations to E .
• Step 8: Finally, after removing redundant variables and constraints, we translate seeking the communication load problem

into resolving the linear optimization problem:

min L, subject to E .

• Step 9: According to optimal solution we obtained above, we can determine file allocation {Mo
k}k∈K greedily for each

node k sequentially.
Remark 6: Based on what we have obtained so far, several interesting observations can be summarized as follows.
1) It can be easily seen that we consider the coding opportunities among the nodes’ files in every jth subsystem, individually.

Since we do not consider the coding opportunities across subsystems, this algorithm is suboptimal in general.
2) Observations of steps 2−3 (for the subsystems with 1 < j < K−1) and steps 4−5 (for the subsystem with j = K−1)

reveal that they have the similar form, but their cost functions appear to be different. This is because for the subsystem
with j = K − 1, we generalize the coding idea that we identified for K = 3 to the general setting with K > 3, which
further means that for the subsystem with j = K − 1, our achievability is also information-theoretically optimal.

3) Recall that in Lemma 1 in Section III, the communication load includes the function of g(·), which is piece-wise linear.
In contrast, still regarding the subsystem with j = K − 1, L3 in Step 5 is a linear function. This is the key to formulate
finding the communication load into resolving a linear programming problem.

C. The Algorithm for General K

Finally, we are going to show the algorithm for general K. Considering the setting of ({Mk}Kk=1, N) where Mk > 0 for
∀k ∈ K and

∑K
k=1Mk ≥ N , we state the algorithm as follows.

• Step 0: (Initialization) Set L = 0, E = ∅, j = 1.
• Step 1: Find out the collection Cj of every possible subsets in K with cardinality j: Cj , {K′ | K′ ⊂ K, |K′| = j}, and

its cardinality is given by |Cj | =
(

K
j

)
, P . Note that each element in Cj is a subset or a tuple with j indices.

• Step 2: Find out the collection C′j of every possible subsets in Cj with cardinality K where the node indices from 1 to
K appear exactly j times: C′j , {C | ∀C ∈ Cj ,

∑
1(k ∈ C) = j, for ∀k ∈ K}. We denote its cardinality by |C′j | = Q.

• Step 3: Claim Q non-negative variables xj1, xj2, · · · , xjQ. Set p = 1.
• Step 4: Add up all the variables {xjq} if the qth element in C′j contains (Cj)p, the pth subset or tuple in Cj for
q = 1, · · · , Q, and upper bound it by a non-negative S(Cj)p . That is,

Q∑
q=1

xjq1((Cj)p ∈ (C′j)q) ≤ S(Cj)p .

In addition, note that xjq ≥ 0, for q = 1, 2, · · · , Q, and S(Cj)p ≥ 0. Add all these Q+ 2 inequalities to E .
• Step 5: If p < Q, then p = p+ 1 and go back to Step 4; Otherwise, go to Step 6.
• Step 6: Develop the cost function Lj as follows. Without coding, we need a total of (K − j)

∑P
p=1 S(Cj)p transmissions.

Note that we create a total of
∑Q

q=1 xjq collections, each with K subsets and each file exactly mapped to j servers. After
extending the encoding scheme described in [2] to the homogeneous setting, we can save (K − j)(1 − 1

j)Kxjq for the
qth collection. Thus, we save a total of (K − j)(1− 1

j)(
∑Q

q=1 xjq) transmissions. Hence, the cost function is given by:

Lj = (K − j)
P∑

p=1

S(Cj)p −K(K − j)
(
1− 1

j

)(Q∑
q=1

xjq

)
.

Then we update the objective function as L = L+ Lj .
• Step 7: Let j = j + 1. If j < K − 1, then go back to Step 1; Otherwise, go to Step 8.
• Step 8: Find out the collection CK−1 of every possible subsets in K with cardinality K − 1: CK−1 , {K \ {k} | k =

1, · · · ,K}, and its cardinality is given by |CK−1| =
(

K
K − 1

)
= K.

• Step 9: Claim K non-negative variables {xK−1,q | q = 1, 2, · · · ,K}.
• Step 10: Sum up all the variables {xK−1,q | q = 1, 2, · · · ,K} if the qth element in CK−1 contains p for p = 1, · · · ,K,

and we upper bound them by non-negative S(CK−1)p , respectively. That is,

Q∑
q=1

xK−1,q1(q ∈ (CK−1)p) ≤ S(CK−1)p , p = 1, 2, · · · ,K.

In addition, we also have xK−1,q ≥ 0, for q = 1, 2, · · · ,K, and S(CK−1)p ≥ 0. Add all these 3K inequalities to E .
• Step 11: Develop the cost function LK−1 as follows. If there is no coding, then we need a total of

∑K
p=1 S(CK−1)p

transmissions. After we use coding, we create a total of
∑K

q=1 xK−1,q equations, each involving K − 1 intermediate
symbols, and thus saving a total of (K − 2)(

∑K
q=1 xK−1,q) transmissions. Thus, the cost function is:

LK−1 =

K∑
p=1

S(CK−1)p − (K − 2)

(K∑
q=1

xK−1,q

)
.

Then we update the objective function as L = L+ LK−1.
• Step 12: Consider the set of variables S(Cj)p for every p, j where p = 1, 2, · · · ,

(
K
j

)
and every j ∈ K. We have the

following constraints over the entire files:

K∑
j=1

(
K
j

)∑
p=1

S(Cj)p = N,

K∑
j=1

(
K
j

)∑
p=1

jS(Cj)p =

K∑
k=1

Mk,

and the following constraints over the files allocated at each server:

K∑
j=1

(
K
j

)∑
p=1

S(Cj)p1(If k is contained in the foot indices of S(Cj)p) =Mk, for ∀k ∈ K.

Add all these K + 2 equations to E .
• Step 13: Finally, after removing redundant variables and constraints, we translate seeking the communication load problem

into resolving the linear optimization problem:

min L, subject to E .

• Step 14: We denote the optimal solution by Lo, and the values of corresponding variables by So , {So
(Cj)p | p =

1, 2, · · · ,
(

K
j

)
, j = 1, 2, · · · ,K}. According to So, the corresponding file allocation Mo

k to each server k for k =
1, 2 · · · ,K can be readily obtained.

Remark 7: It is worth noting that when K increases, the number of variables and constraints grows much faster than K.
When K is large, even the linear optimization problem would be overwhelming, which prevents our algorithm from being
applied for large K due to the computational complexity. Therefore, an improved algorithm with lower complexity might be
of interest in the future work.

VI. CONCLUSION

We investigate the MapReduce-based coded distributed computing (CDC) for heterogeneous systems by carefully designing
file allocation and the optimal coding scheme to achieve the minimum communication load. While we completely resolve
the minimum communication load for the system with K = 3 by providing the achievability and the information theoretic
converse, we provide an algorithm for the achievability for K > 4. Future potential works would be to seek the minimum
communication load for heterogeneous systems in the information theoretic sense under the MapReduced CDC framework.

VII. ACKNOWLEDGMENT

This work is in part supported by ONR award N000141612189, NSA Award No. H98230-16-C-0255, a research gift from
Intel. This material is also based upon work supported by Defense Advanced Research Projects Agency (DARPA) under
Contract No. HR001117C0053. The views, opinions, and/or findings expressed are those of the author(s) and should not be
interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

REFERENCES

[1] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded MapReduce,” 53rd Allerton Conference, Sept. 2015.
[2] ——, “Fundamental tradeoff between computation and communication in distributed computing,” in 2016 IEEE International Symposium on Information

Theory (ISIT), July 2016, pp. 1814–1818.
[3] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental tradeoff between computation and communication in distributed computing,”

e-print arXiv:1604.07086, Apr. 2016.
[4] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clusters,” Comm. of the ACM, vol. 51, no. 1, pp. 107–113, 2008.
[5] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster computing with working sets.” HotCloud, vol. 10, no. 10-10,

p. 95, 2010.
[6] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: distributed data-parallel programs from sequential building blocks,” in ACM SIGOPS

operating systems review, vol. 41, no. 3, 2007, pp. 59–72.
[7] D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Madhavapeddy, and S. Hand, “Ciel: a universal execution engine for distributed data-flow

computing,” in Proc. 8th ACM/USENIX Symposium on Networked Systems Design and Implementation, 2011, pp. 113–126.
[8] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, “Managing data transfers in computer clusters with orchestra,” in ACM SIGCOMM

Computer Comm. Review, vol. 41, no. 4, 2011, pp. 98–109.
[9] Z. Zhang, L. Cherkasova, and B. T. Loo, “Performance modeling of mapreduce jobs in heterogeneous cloud environments,” in 2013 IEEE Sixth Int.

Conf. on Cloud Computing, June 2013, pp. 839–846.
[10] S. Li, S. Supittayapornpong, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded Terasort,” in proc. 2017 Int. Workshop on Parallel and Dis. Comp. for

Large Scale Machine Learning and Big Data Analytics, 2017.
[11] O. O’Malley, “Terabyte sort on apache hadoop,” 2008.
[12] Amazon: Elastic Compute Cloud (EC2), http://aws.amazon.com/ec2.
[13] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica, “Improving mapreduce performance in heterogeneous environments.” in Osdi, vol. 8,

no. 4, 2008, p. 7.
[14] A. Reisizadehmobarakeh, S. Prakash, R. Pedarsani, and S. Avestimehr, “Coded computation over heterogeneous clusters,” arXiv preprint

arXiv:1701.05973, 2017.
[15] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Speeding up distributed machine learning using codes,” in 2016 IEEE Int.

Symposium on Information Theory, July 2016, pp. 1143–1147.
[16] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding framework for distributed computing with straggling servers,” in 2016 IEEE Globecom

Workshops, 2016, pp. 1–6.

	I Introduction
	II System Model and Main Results
	II-A Main Result

	III The Achievability of Theorem 1
	III-A M1+M2N
	III-A1 M3N+M1-M2 (Regime R1)
	III-A2 M3>N+M1-M2 (Regime R4)

	III-B M2N and M1+M2> N
	III-B1 M33N-M1-3M2 (Regime R2)
	III-B2 M3>3N-M1-3M2

	III-C M> 2N

	IV Converse of Theorem 1
	IV-A Converse for PR1 R2 R3: LM72N-32M
	IV-B Converse for PR6: LM32N-12M
	IV-C Converse for PR7: LMN-M1
	IV-D Converse for PR4R5: LM3N-(M+M1)

	V Algorithm of the Achievability for the General K Server Nodes
	V-A Example 1: K=3
	V-B Example 2: K=4
	V-C The Algorithm for General K

	VI Conclusion
	VII Acknowledgment
	References

