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Abstract—Maintaining service guarantees in a dynamic multi-
tenant network, while ensuring an economically sustainable
sharing platform, is a non-trivial problem. This paper, extending
our previous work, develops a dynamic slicing and trading
framework that can satisfy a variety of service guarantees. This
framework not only determines the size of the network resource
slices required for various active services, but it also adapts
resource prices in accordance with the microeconomic laws
of supply and demand. The proposed framework also ensures
service continuity by learning the variations in the traffic mix
as well as in the channel conditions, and by adjusting the slice
assignments accordingly.

I. INTRODUCTION

Stringent quality of service (QoS) requirements as well as
lofty expectations of flexibility pose great challenges to 5G
networks. One of the many technical solutions proposed –
and widely accepted – is increasing network heterogeneity.
However, in light of the steady decrease in network operator
profits in last few years [1], this solution appears to pose a
rather grave threat to the overall health of the mobile oper-
ator business. As shown in [2], increased heterogeneity and
the demand for low service times decreases the profitability
of operators and their impact is particularly severe on the
smaller operators in the market. To alleviate this problem,
the Organization for Economic Co-operation and Development
(OECD) report [3] recommends various methods (and degrees)
of infrastructure sharing among operators to increase operator
profits as well as to ensure improved customer service.

The OECD report has lead to greater attention being paid
to this topic. Works such as [4]–[6] focus on the compar-
isons between the technical aspects of sharing approaches
like capacity or spectrum sharing. However, their technology
specific focus (e.g., on LTE) makes it difficult to draw more
generic conclusions from their findings. Malanchini et al.
in [7] provide a generic (technology independent) resource
sharing algorithm, but their algorithm is unable to cater to
the flexibility guarantees that one expects in 5G networks.
Although [3], and the references therein provide detailed
economic analyses, only a handful of works deal with both
the technical as well as the economic aspects. E.g., [8] and
[9] investigate the relationship between the technical and the
economic aspects, and provide an understanding of the tenants’
(i.e., network operators’) inclination to share as well as their
related network costs. However, neither of these works provide

a concrete techno-economic model required by the tenants
to have a clear understanding of the consequences of their
decisions on their economic as well as quality objectives.
Another salient shortcoming is their strict adherence to state-
of-the-art service level agreements (SLAs), which are intended
to be fixed over a rather long time period (of months/years).
This proves to be a major hurdle in allowing the network
operators (or tenants) to adapt their resource consumption to
the traffic traversing their network. As a result, operators in
such a framework can often find themselves in situations of
resource surplus, where they incur unnecessary expenditure by
paying for unused resources, or resource scarcity, where they
risk having dissatisfied customers. To address this issue, our
previous work [10], while still relying on state-of-the-art SLAs
and considering active sharing, provides a techno-economic
model that permits short-term dynamic resource trading (i.e.,
on the order of seconds/minutes), wherein the mobile virtual
network operators (MVNOs) can buy or sell resources based
on their customers’ needs and, as a consequence, deviate
from the original SLA to a certain extent. While the idea
proposed in [10] works quite well when the MVNOs happen to
choose similar types of services, it struggles to accommodate
scenarios wherein the service heterogeneity is large.

As detailed in [11] and [12], slicing the network1 and
using dedicated resources for different services is deemed
beneficial for achieving the service guarantees required by
the heterogeneous applications of future networks (5G and
beyond). However, as explained in [13], service scalability,
adaptability to varying channel conditions and traffic types,
and dynamic resource allocation are also of crucial importance
within a particular network slice itself. While [14] provides
an auction based pricing and dynamic slicing framework,
it neither considers fluctuations in the channel quality nor
variations in the traffic mix. Additionally, the applicability of
the algorithm in a competitive shared infrastructure scenario
is also unclear. [15] and [16] provide other dynamic slicing
approaches, but they also ignore the fact that the algorithm
needs to be able to adapt to varying channel conditions.
The main reason for [14]–[16] not taking these aspects into
consideration is because they are also reliant on traditional

1A network slice refers to the dedicated vertical network resources, i.e. both
spectrum resources and operational functions.
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(long-term) SLAs for network slicing. In order to address
the aforementioned issues while ensuring the profitability of
stakeholders, in this work, we propose an automatic resource
slicing algorithm, which works on short time scales and can
provide the desired service guarantees, while exploiting the
economic benefits of infrastructure sharing. We assume that
there are only two stakeholders in our scenario, namely: the
infrastructure provider who owns the physical resources; and
the tenants who do not own any physical resources, but trade
resources they obtain from the infrastructure provider in order
to provide for their designated services. The dynamic pricing
structure proposed in this paper also allows the infrastructure
provider to collect revenue, proportional to the performance
expectations of the tenants, and use it for the infrastructure
expansion necessary to satisfy the service guarantees.

The main contributions of this work can be summarized as
follows:

∙ Automated network slice adjustment in order to guarantee
a certain quality for each service type;

∙ Tenant centric resource provisioning – scaled according
to the quality expectations, the channel conditions, and
the mix of traffic;

∙ Short time scale (i.e. on the order of seconds) infrastruc-
ture sharing in a multi-tenant network.

The remainder of the paper is organized as follows: Section
II contains the system model and the main assumptions. Fol-
lowing the system model, the optimization model is presented
in Section III. In Section IV, the behavior and the validity of
the optimization model are investigated through simulations,
and Section V concludes the paper.

II. SYSTEM MODEL

In this study, the downlink of a base station is shared by a
set of tenants denoted by ! . The base station is supplied (and
operated) by an infrastructure provider and the tenants use the
obtained resources to accommodate a set of active users, ",
whose cardinality is given by ∣"∣. In the scenario considered,
the active users are distributed among tenants, and the subset
of users belonging to a tenant # ∈ ! is given by "! ⊆ ".
As commonly practiced when dealing with resource allocation
algorithms, time is discretized and separated into time slots
(denoted by $). The total number of slots contained in the
entire time period of operation (during which the optimization
is to be performed) is denoted by % . For the sake of clarity
and continuity, this work coopts the notations as used in [10].
Namely, the fraction of resources assigned to a user & at time
slot $ is represented by '"[$]. The achievable rate for a user
during the time slot $ is denoted by ("[$]. The users are
assumed to use a single service at each time slot and the users
of a particular service are aggregated in a single network slice.

To regulate the slicing of resources and the manner in which
they are shared, we assume SLAs between the tenants and
the infrastructure provider. The latter, i.e. the infrastructure
provider, regulates the initial sharing values and prevents un-
fair scenarios, wherein a wealthier tenant tries to monopolize
the market by artificially inflating the sharing parameters.

However, the tenants are free to renegotiate their SLAs to fulfil
their performance expectations and adapt to the fluctuations in
their respective traffic.

In this paper, the SLA based sharing ratio for each tenant
is represented by )! ∈ [0, 1) and indicates the fraction of
resources assigned to tenant #. Notably, without introducing
an added degree of flexibility, this would correspond to the
static sharing scenario, where each tenant # obtains a resource
share equal to )!. The ability to trade resources is enabled
by introducing Δ! denoting a maximum deviation from the
initial value )!. It is through this parameter that the tenant
has the opportunity to either trade unused resources or acquire
additional resources from tenants who have a resource surplus.
However, these trades are limited by the average deviation
from )!, represented by +![$], which lies within the interval
[−Δ!,Δ!]. Namely, the average deviation is calculated at
every time slot $ for a time window , (of length - ),
by considering the current and previous time slots from the
beginning of the window. This implies that the time span over
which the average is calculated varies at every $, and this time
span is equal to (.+1) time slots, where . ≡ ($−1 mod - ).
The sharing parameters ()!,Δ!) are negotiated at the end
of each time window and are held constant for the window
that follows. We assume that each tenant aims to fulfil its
own utility target2. The gap between a tenant’s utility target,
denoted by /th,!, and the utility actually obtained during a
given time slot is represented by 0![$].

To model the economic aspects of slicing, we introduce
1!, which denotes the budget per time slot for tenant #.
Furthermore, we assume that each tenant pays a cost per
assigned resource, which is composed of three parts, namely:
capital expenditure (CapEx) represented by 2ca; operational
expenditure (OpEx) denoted as 2op; and finally, the pressure
cost given by 2pre. As discussed in [10], the pressure cost links
the tenants’ gaps (i.e., 0![$]) with the revenue necessary for
expansion.

A. Assumptions

A couple of assumptions worth explicitly mentioning are as
follows:

1) The tenants’ gap, 0![$], provides a clear understanding
of the capacity expansion required to reach their respec-
tive performance expectations.

2) All the resources are identical and services have no
choice in terms of resource block assignment.

B. Utility Functions

We assume that the utility function of each tenant directly
depends on the QoS of their respective users. Namely, it is
a function of the average rate achieved within [$− ., $] (i.e.
current time window), which is defined as

3"[$] =

(
1

(.+ 1)

$∑

%=$−&

'"[4]("[4]

)
.

2Here, utility is used as a generic synonym for the key performance
indicators of a particular tenant and will be clarified subsequently.



Rate (bps/Hz)

U
til

ity
, U

k 

R
1 R

2
R

3

U
3

U
2

U
1

(a) Generic utility function.

Rate (bps/Hz)

U
til

ity
, U

k

Elastic
Inelastic
Background
M2M

(b) Exemplary utility functions.

Fig. 1. Generic utility function (left) and exemplary utility functions per
service type (right).

In order to incorporate the heterogeneity of services, we first
define a generic function /"(3"[$]) (known henceforth as the
“utility function”) as illustrated in Fig. 1(a). This function
– shaped by six parameters, namely, 31, 32, 33, /1, /2,
and /3 – can be used to describe a variety of services and
their requirements as described in the paragraphs below. 31

denotes the minimum rate required by a service if it has
to be active. If the rate 31 is achieved, the utility function
takes the value zero. However, if a rate less that 31 is
achieved, the utility function takes the value /1. 32 is used
to represent the rate necessary to achieve ‘standard quality’
for which the utility function takes the value /2. We call 33

the saturation point and use it to denote the rate that enables
the utility function to attain its maximum value /3. Note that
although the utility function is only based on the achieved
rate, the latency required by a service is implicitly taken into
account by considering that the proposed utility is evaluated
by considering the cumulative rate achieved within the current
time window ,, i.e. 3"[$]. Therefore, the latency is indirectly
constrained by the length of the time window, - .

We then categorize the heterogeneous services envisioned
in 5G networks into 4 broad categories, namely: elastic ser-
vices, inelastic services, background services, and machine to
machine (M2M) services. In what follows, we describe how
a utility function for each of these categories can be obtained
from the generic utility function in Fig. 1(a).

1) Elastic Services: By definition, elastic services do not
have strict delay or rate constraints, e.g., downloading a large
file. Therefore, 31 = 0 for this type of service. Moreover,
since the service requirements are fairly lax, the slope of
the utility function between 31 and 32 (cf. Fig. 1(a)) can
be fairly gradual. Furthermore, since elastic users can usually
‘take all they can get’, the utility function does not really have
a saturation point, i.e., theoretically 33−→ ∞ – albeit very
slowly. This definition also provides tenants the possibility to
increase their utility function’s value by increasing the elastic
rates. A visualization of the utility function for this service is
given by the curve with the dashed blue line in Fig. 1(b).

2) Inelastic Services: A classic example for this type of
services is video streaming. In particular, inelastic services
need relatively large achieved rates even to guarantee service
availability. Therefore, 31 is assumed to be quite large. To
reflect the fact that users are sensitive to variations in video

quality, especially when it is low (e.g., the perceived difference
between 144p and 720p videos), the slope of the utility
function between 31 and 32 (cf. Fig. 1(a)) is assumed to
be quite steep. However, since changes in the quality are less
perceptible when quality is already high (e.g., the perceived
difference between 720p and 1080p videos), the slope of the
utility function between 32 and 33 (cf. Fig. 1(a)) is assumed
to be gradual. In Fig. 1(b), the slope for this region (see the
dotted red curve) is assumed to be same as that of the curve for
elastic traffic. For such services, we assume the existence of a
saturation region which corresponds to the fact that improving
the achieved rates beyond what is required for the highest class
of video transmission is unfruitful.

3) Background Services: This type of service is assumed
to require considerably low rates and as soon as those rates
are achieved, the utility function rapidly reaches the saturation
point. As a result, the points 32 and 33 in Fig. 1(a) coincide,
leading to the utility function looking like the curve with the
dashed green line in Fig. 1(b). Notably, for such services, we
assume the minimum value of the utility function /1 to be
zero, and thereby, indicating that the service is not critical
and should not be prioritized over other services. A software
update illustrates this type of a service.

4) Machine to Machine (M2M) Services: M2M commu-
nications are the broadest group of services among the ones
considered here. In this work, three major groups of M2M
devices are considered and we assume that each M2M service
request is a mix containing all three of them. Hence, the utility
function shown in Fig. 1(b) (cf. the maroon curve) reflects this
mix and resembles the generic utility function (see Fig. 1(a))
closely. The point 31 in Fig. 1(a) corresponds to the minimum
rate requirement for emergency services and the requirements
of low rate and delay sensitive devices are modeled by the
curve in the interval [31, 32]. An example of devices requiring
this type of service are sensors that send traffic periodically.
For this region, we assume quite a steep curve within the
interval [31, 32] (compare Fig. 1(a) and Fig. 1(b)) in order
to prioritize the delivery of such messages. Additionally, the
interval [32, 33] models rate sensitive devices, which are delay
insensitive, and for whom the slope of the utility function can
be gradual. An example of such a device is sensor aggregation
node, wherein a large amount of sensor data is transmitted over
a relatively large period. Lastly, the maroon curve in Fig. 1(b)
also reaches a point in of saturation (cf. 33 in Fig. 1(a)).

III. FORMULATION AND ANALYSIS OF THE MODEL

A. Problem Formulation

Using the notations defined in Section II, the base station’s
scheduler solves the optimization problem described in (1a)-
(1h) in order to perform real-time resource allocation, carry
out sharing negotiations, and calibrate the dynamic pricing.
Since the problem is intended to be solved in real-time,
the achievable rates are not known to the scheduler. Thus,
negotiating the sharing ratio for the upcoming time windows
is quite a difficult hurdle to overcome. In order to realize this
goal, the optimization is divided into two sub-problems, P1



min
'!

6(0![$], )max) (1a)

s.t. )max ≥max()!, 1− )!), ∀# ∈ !, (1b)

/th,! −
∑

"∈("

/" (3"[$]) ≤ 0!, ∀# ∈ !, (1c)

∣+![$]∣ ≤ Δ!, ∀# ∈ !, (1d)

$∑

%=$−&

()!(2ca + 2op) + +![4]2op + 0!2pre) ≤ 1!(.+1),

∀# ∈ !, . ≡ ($− 1 mod - ) , (1e)

0 ≤ Δ! ≤ max()!, 1− )!), ∀# ∈ !, (1f)
∑

"∈(

'"[$] ≤ 1, '"[$] ≥0, ∀& ∈ ", (1g)

∑

!∈)

)! ≤ 1 , )! ≥0, ∀# ∈ !, (1h)

and P2. The details of these problems are presented in Section
III-B, while the remainder of this subsection describes the
entire optimization problem (cf. (1a) - (1h)).

The continuous objective function depends on two factors,
namely, 0! and )max. The first part minimizes the total gap of
the tenants. By minimizing the total gap, instead of focusing
on the tenants’ individual gaps, a relaxation of the optimization
problem is achieved. By using this approach, the optimizer can
prioritize users with the best channel conditions and increase
spectral efficiency. The second factor, )max, enables fairness
among tenants in terms of their initial SLA based share of the
resources, i.e. )!. Constraint (1b) ensures that )max is lower
bounded by the larger of the two values between the amount
of resources available to a tenant ()!) and the remaining
resources (1− )!). If one assumes the budgets of all tenants
to be feasible, constraint (1b) ensures that resources are fairly
(and equitably) distributed among all the tenants.

The primary constraint ensuring service-based resource slic-
ing is presented in (1c). Namely, this constraint ensures that
a given tenant’s gap is the difference between the tenant’s
utility target (i.e., /th,!) and the achieved utility. Though
visually similar to the formulation in [10], note that a tenant’s
achieved utility – in this formulation – is calculated as the
sum of the utilities of all the tenant’s services catered to.3

The individual service utilities are computed using the utility
functions illustrated in Fig. 1(b) and the average rate achieved
by a particular service within the time window ,, i.e. 3"[$].

Constraint (1d) bounds the values taken by the maximum
average deviation, +![$], to those that lie within the interval
[−Δ!,Δ!]. Constraint (1e) sets the budget constraint per
tenant. In particular, for each time slot $, each tenant has
a fixed budget. However, the right-hand side of (1e) allows
tenants to use the unused budget from the previous time slots.

3For brevity and clarity, the utility function is presented in its aggregated
form. The complete model can be found at https://tinyurl.com/akgul-model.

The tenants have the flexibility to adjust their budget according
to their users’ channel conditions and their own long term
fiscal strategies. On the left-hand side (LHS) of (1e), the total
expenses incurred by a tenant is calculated. The first term
represents the “ownership” cost of the resources, i.e., each
tenant incurs a CapEx and OpEx in proportion to their sharing
ratio )!. The second term of the LHS of (1e) is included to
ensure that the tenants can adjust their resource use based on
their traffic estimates and QoS targets. If a particular tenant
has surplus resources and wants to sell some, this term takes a
negative value indicating that the total expenditure decreases
in proportion to the OpEx. If, on the other hand, the tenant
wants to buy resources due to a resource insufficiency, this
term takes a positive value and the total expenditure increases.
Finally, the last term on the LHS of (1e) is the pressure cost,
which reflects the market driven price fluctuations as well as
provides a means to collect the additional revenue required for
future network capacity expansion.

Constraint (1f) sets an upper limit for the maximum devia-
tion Δ! that a given tenant can choose. This constraint ensures
that a tenant cannot trade resources they do not own, and
conversely, try to buy resources that the infrastructure provide
does not yet have. Constraints (1g) and (1h) ensure that the
total number of resources assigned cannot be larger than the
system capacity and that the sum of the resources owned
by tenants are not larger than the total number of resources
available, respectively. Note that, for the sake of readability,
all the constraints are given in their non-linear form. However,
they can be linearized using standard techniques.

B. Applied Algorithm

As mentioned earlier, the optimization problem is divided
into two parts, i.e., P1 and P2, to facilitate real-time appli-
cability. The two sub-problems deal with slightly different
optimization goals, while using each other’s (previous) results
as inputs. Successively, P1 and P2 find the exact solutions for
each time window. Formally, we have:

P1 :=

⎧
⎨

⎩
(1a) min

*", '!, +"

∑
!∈)

0![$]

s.t. (1c)(1d)(1e)(1g)

P2 :=

⎧
⎨

⎩

(1a) min
*", '!, ,",

Δ", +"

∑
!∈)

0![$] + )max

s.t. (1b) – (1h)

P1, by taking )! and Δ! as inputs, finds the optimal
resource allocation (i.e. '"[$]) that minimizes the total gap of
each tenant. This optimization is run at each time slot within
the time window , and the problem P2 is solved at the end
of each time window ,.

The problem P2, then, uses the knowledge of all the rates
actually achieved during the previous window (i.e., the window
that just ended) to determine the optimal resource allocation
for a given traffic mix and known channel states. The values



TABLE I
UTILITY PARAMETERS AND VALUES PER SERVICE TYPE.

Elastic Inelastic Background M2M

!1 0 bps/Hz 0.1 bps/Hz 0.05 bps/Hz 0.01 bps/Hz
!2 1.083 bps/Hz 0.225 bps/Hz 0.07 bps/Hz 0.075 bps/Hz
!3 ∞ 0.55 bps/Hz 0.07 bps/Hz 0.4 bps/Hz
#1 0 −0.5 0 −1
#2 1 0.7 1 0.7
#3 ∞ 1 1 1

of the optimal )! and Δ! determined are then used to update
the input values for P1 in the upcoming time window.

IV. SIMULATION RESULTS

The simulation setup and their results are discussed in the
following subsections.

A. Parameters and investigated scenarios

We consider the downlink of a single base station shared
by 3 tenants, i.e., ! = 3. The total number of active users
is ∣"∣ = 24 and they are distributed equally among the 3
tenants, i.e., ∣"!∣ = 8, ∀# ∈ ! . At each time window, ,,
a new set of active users, which replaces the set of active
users in the previous window, is generated and uniformly
distributed in the coverage area of the base station. The
tenants provide the four service types described in Section
II-B, where the parameters take values as reported in Table I.
The number of users requesting each type of service is equal
to ∣"!∣/4 for each tenant. Furthermore, each tenant has
a utility target /th,! = ∣"!∣. All the budgets and costs
are normalized to take values between 0 and 100 (namely,
2ca = 50, 2op = 50, 2pre = 16.66, 1! = 100, ∀# ∈ ! ).
Note that the values for costs and the budgets mentioned
here are for purely illustrative purposes and are used with the
sole intention of studying the characteristic behaviour of the
framework.

The channel between the user and the base station is
modeled using a frequency-flat block fading channel with i.i.d.
Rayleigh coefficients, which implies exponentially distributed
channel gains, denoted by ∣ℎ"[$]∣2. Using the Okumura-Hata
propagation model, the average signal-to-interference-plus-
noise ratio (SINR) for user &, SINR", is computed as:

SINR" = 9:−-
" /(;2+ <0),

where 9 is the transmit power (in Watts [W]), :" is the
user’s distance to the base station (in meters), = is the path-
loss exponent, ;2 is the thermal noise, and <0 is the average
interference power. From which, the instantaneous SINR of
user & at a time slot $ is calculated as >"[$] = SINR"∣ℎ"[$]∣2.
Similar to [7], 10 log10(9/; + <0) is assumed to be 94dB,
while = is set to 2.5. The users’ spectral efficiency at a time
slot $ is calculated as

("[$] = ?@A2(1 + >"[$]).

The findings in [10] also showed that the size of the time
window plays a significant role in the ability of the framework
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Fig. 2. Equitable distribution scenario with $ = 24.

to adapt to network fluctuations. Using a metric called the
“Relative Distance to Optimum” (RDO), [10] showed that
the best value was - = 100 ms. However, given that [10]
considered an optimization framework wherein only a single
service type existed, its complexity was significantly lower
than the scenario considered here, where multiple service
types need to be dealt with simultaneously. Therefore, we
set - = 50 ms based on an empirical evaluation. The total
duration of the simulation is 5000 time slots (i.e., % = 5000),
where the length of each time slot is assumed to be 1 ms.
Note that a detailed computational complexity analysis has
been deferred to our future work due to the page limit. The
approximate computational time required for the algorithm is,
however, on the order of a few seconds.

B. Equitable distribution scenario

Fig. 2 depicts the case where the set of active users are
distributed equally among the tenants, who have the same ini-
tial sharing ratios. Fig. 2(a) shows the percentage of resources
allocated to each of the service types per tenant, wherein one
readily observes that there is an equitable share of resources.
The instantaneous rates achieved per unit cost are given in
Fig. 2(b). This figure along with Fig. 2(c), which depicts the
cumulative distribution function (CDF) of the rates achieved
per tenant, corroborates the fact that the tenants pay a similar
price for obtaining a similar throughput; in essence, ‘one
gets what one pays for’. The variations seen early on during
the simulation window are due to variations in the channel
qualities of individual users. However, we observe that, as one
starts to consider a larger observation set, the three tenants
obtain similar rates per monetary unit (MU) – as evidenced
by the overlap of the curves beyond 3000ms in Fig. 2(b).
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Fig. 3. Results for the resource scarcity scenario.

Finally, Fig. 2(d) plots the averaged sum of the utility
achieved per service type for each of the tenants. The fact that
the elastic services achieve the lowest average utility indicates
that elastic services have the lowest priority and that they are
assigned only when the other 3 service types no longer need
resources or have poor channel conditions.

C. Effects of resource scarcity

The effects of resource scarcity, documented in Fig. 3, are
studied by increasing the number of active users. Fig. 3(a)
shows the increase in the average difference between the utility
target of the tenants and the utility they actually achieved
over a time window, when the number of active users are
doubled. Fig. 3(b), when compared with Fig. 2(b), illustrates
a decrease in the average rate per unit cost. This behaviour
can be understood as a decrease in the purchasing power of
tenants due to an increase in the pressure cost, driven in turn
by resource scarcity.

Fig. 3(c) shows the average sum of utility per tenant,
demonstrating that the prioritization among service types still
works efficiently and is unaffected by resource scarcity. We
see that the framework continues to adhere to the priority set
by the utility function design and tries to cater to all service
types to the greatest extent possible. Finally, Fig. 3(d) plots the
CDF of the rates achieved per tenant and shows that, despite
being faced with situations of resource scarcity, the tenants
pay a similar price for obtaining a similar throughput. The
framework, therefore, ensures that all tenants are charged fairly
for the resources they seek to purchase.

D. Guaranteed Services

An important use of network slicing is to ensure service
guarantees. This also implies that service guarantees in one
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Fig. 4. Results for the guaranteed services scenario.

slice should have no perceptible effects on the service guar-
antees in other slices. This aspect is examined by doubling
the rates required by the inelastic users of tenant 2. This
increase also represents a case study, wherein one of the
tenants promises a higher quality to their users than the others.
These results are illustrated in Fig. 4. The average distribution
of resources among tenants are given in Fig. 4(a), while
Fig. 4(b) shows the moving arithmetic mean of total cost per
tenant. Once the tenants have sufficient budgets, the framework
first satisfies the prioritized services (i.e., inelastic, M2M, and
background services), regardless of the quality expectations
of the tenants. Subsequently, the non-prioritized services (viz.
elastic services) are satisfied in a fair manner. Consequently,
the elevated quality expectations of second tenant do not effect
the achieved quality of the critical services of other tenants.
However, the tenant with a high quality target pays higher cost
in comparison to the other tenants.

Fig. 4(c) shows that when tenants increase their quality
expectations (i.e., increase the values of 31, 32, and 33),
there is no effect on the other services except for elastic traffic.
Fig. 4(c), also indicates that average utility obtained for a given
tenant’s users per service type continues to remain equitable
even if one of the tenants increases their utility target for a
specific service type. Finally, Fig. 4(d) shows the CDF of the
rates achieved per tenant. This figure demonstrates that the
second tenant is able to obtain the higher rates its users require.
Note that tenant 2 is able to obtain higher rates only because
it can afford to pay for the additional resources required.
Furthermore, we also observe that the CDFs of the other
two tenants, whose requirements remained unaltered, have the
same behavior. Therefore, this illustrates that the framework is
able to cope with the increased demands of one of the tenants
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Fig. 5. Framework’s adaptability to the changes in the channel condition.

without affecting the equitable distribution of resources among
the other tenants.

E. Adaptability to varying the channel conditions

Fig. 5 demonstrates our framework’s ability to reshape the
network slices according to variations in channel quality and
the total expenses incurred by the tenants for the resources
they obtain. In the scenario considered, all three tenants – at
the beginning of the simulation – have the same statistical
properties for the channel state distribution. During the 20th

time window (i.e, , = 20), path-loss exponent = of the users
belonging to the first tenant is increased and thereby, results in
a corresponding decrease in the rates they achieve (i.e. 3"[$]).
This decrease manifests itself as an increase in the average
gap, 0![$], during a given time window as seen in Fig. 5(a).
The change in the path-loss exponent mainly affects elastic
services, since the other services are prioritized over elastic
service by design. Fig. 5(b) illustrates the moving arithmetic
mean of the tenants’ costs over the simulation time. As long as
the first tenant faces a larger gap due to poor channel quality,
its total cost increases, while the costs of the other tenants
remain fairly stable.

So far, the /th,! values for all tenants are assumed to
be equal – implying that their respective channel qualities
play a central role in determining the inter-tenant resource
distribution. In order to observe the behavior of the framework
when tenants increase their utility targets to counteract the
effects of bad channel quality, we assume that the first tenant
increases its utility target to /th,1 = 1.2∣"!∣ at , = 70 –
denoted by a sharp dip in the blue curve in Fig. 5(a). This
results in an increase in the total expenses of the first tenant
as seen in Fig. 5(b). This leads us to conclude that, as long
as a given tenant’s budget is planned with a large enough
margin for ‘contingencies’, the tenant has the ability to satisfy
its users by compensating for bad channel conditions by an
overall increase in expenditure.

V. CONCLUSION

This paper provides a framework that enables automatic
network slice adjustment based on a tenant centric resource
provisioning, which allows tenants to retain their autonomy
in setting their quality targets. It provides a structure within
which the slice sizes allocated to tenants can be adapted dy-
namically on short time scales based on the channel conditions

the tenant’s users face, the tenant’s traffic mix, and their indi-
vidual budget considerations. Dynamic network slice scaling
in this framework is achieved by allowing tenants to trade
unused resources and thereby, reduce expenditure. Simulations
also show that this framework ensures that changes to service
guarantees in one slice have no perceptible effects on the
service guarantees in other slices.
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