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Cournot-Nash Equilibria for Bandwidth Allocation
under Base-Station Cooperation

J.S. Gomez, A. Vergne, P. Martins, L. Decreusefond, and WieinC

Abstract—In this paper, a novel resource allocation scheme are deployed according to a Poisson point process 6r a
based on discrete Cournot-Nash equilibria and optimal trarsport ~ Ginibre point process. The SINR between each user and each
theory is proposed. The originality of this framework lies in  hase station is the only known information. Under these houg
the joint optimization of downlink bandwidth allocation and ti ble t ve th bandwidth sitiocat
cooperation between base stations. A tractable formalizain assump 'On_S'We "’Tref”l ? 0 solve the user bandwi a a.
is given in the form of a quadratic optimization problem. A and an optimal distribution of resources among cooperative
low complexity approximate solution is derived and theoreically base stations. Optima correspond to Cournot-Nash eqailibr
characterized. Simulations highlight the existence of antimal  \We also show the link between Cournot-Nash equilibria and
working point, that maximizes user satisfaction ratio and retwork optimal transport theory and give a tractable mathematical
load. The impact of the network deployment on the optimum is . ) .
numerically investigated, thanks to the3-Ginibre model. Indeed, fgrmulaﬂon of jthe problem_. A low complexity a.tpproxm.ateop
base stations are assumed to be drawn according t8-Ginibre ~ timal solution is also provided and characterized. Sinnorest
point processes. Numerical analysis shows that the network reveal that there is an optimal working point of the network,
pelrfo(;maq_ce incr%ases V\t/i':\fllﬁ Eoing t':')bo'ne'o el t t where the user satisfaction ratio and the network load are

ndex Terms—Cournot-Nash equilibria, Optimal transport, : ; ;
Downlink bandwidth resource allocation, Base station coogr- equal. We flnally compare the impact of the Spa“?' depl.oymen
ation, 8-Ginibre point process. of the bqsg statlo_ns, assuming that they are localized diogpr
to a 8-Ginibre point process.

. INTRODUCTION Resource allocation has been widely explored in literature

IRELESS networks have to tackle a major chalMany algorithms based on optimization have been described
lenge: offering increasing user throughput while cosin [8]. One example is the-fair resource allocatiori [9] that

efficiently allocating resources. Consequently, dynange rgives a unified framework for optimization solution. Goingego
source allocation adaptation to user traffic has been inted step further, optimal transport theory has been introduoed
in cellular networks. Strategies based on Markov proced$es [10] and [11]. This theory is used to shape cell boundaries
queuing theory 2], graph theory or game theary [3] are useddind efficiently allocate power. Authors in_[10] introduce a
finely tune bandwidth and power allocation. Nash bargainingngestion term, in order to modify the optimized solution,
theory has been used in this matier [4], assimilating the@it using the Wardrop equilibrium. Unlike optimization proiuis,
resource allocation as a Nash equilibrium. this framework provides many mathematical tools to charac-

Another type of equilibria, the Cournot-Nash equilibriaterize the optimal solution. However, pure optimal tranmspo
has been defined by Antoine Augustin Cournot in 1838. Hmlutions suffer from the fact that user demand for resaurce
studied the situation of a spring water company duopolyhEahas to be known in order to compute the solution. Authors also
firm competes on the amount of their production output anighit their analysis to power allocation. On the contratye t
decides at the same time which volume to produce in ordeburnot-Nash framework does not needagriori knowledge
to maximize its profit. This problem has been reformulated yf the user spatial distribution. It can therefore solve the
Mas-Colell [5] in probabilistic terms. Blanchet et al. wexigle fair allocation of the bandwidth even in the case of outage.
to characterize existence and uniqueness of such eqailitori The impact of the regularity of the deployment on SINR has
[6] by taking advantage of properties of probability spaaed been studied and [12] shows that theGinibre point process
optimal transport theory exposed in the book of Villani [7]. is an eligible candidate to model cellular networks. To our

This paper focuses on a novel approach that jointly opnowledge, this is the first paper that uses the Cournot-Nash
timizes bandwidth allocation and cooperation between bagamework to tackle the joint resource allocation and coop-
stations. In the downlink scenario we consider, base sisiticeration problem and that investigates the impact of network

. - 1 R deployment with g3-Ginibre point process model.
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Il. SYSTEM MODEL AND PROBLEM FORMULATION the energy used to transfer the pile to the hole? Assimdatin

We consider a cellular wireless network composed of omrif- = _(Mlv s i), v= (V1,5 vm) andy = (V1,15 -+ - Ynm)
directional identical base stations drawn in the planeating @S discrete probability measures respectively: P([1,7]),
to a certain point process (Poisson®6inibre point process) ¥ € P([1,m]) andy € P ([1,m] x [1, n]), the resource trans-
of intensity \,,. Users are drawn according to a Poisson poifft’ Problem can be described by the discrete transport @nobl
process of intensity,,,. The state of the network is observedvhere the pile is identified by, the hole is identified by
and assessed at a given moment. The downlink spectr@ffl the quantity transferred is given by The transport cost
allocation problem where bandwidth is decomposed in blocR§tween theth and,jth entities is defined by; ; = S_INR;jl'
-i.e. resource block in LTE- is investigated. Using Sharisory iS naturally the joint probability density of margingisand

capacity law, each user computes the number of resoutte

blocks it W'SheSN_J'* to fulfill its desired capacityC;, based pefinition 1. The optimal transfer policy is given by the linear
on the best SINR: optimization problem:

Cj

= | Wap logy(1 + max; (SINR;)) |’ 7= argoin > i s
M (i.9)

N;

whereWpg g is the bandwidth of one resource block dng is
the ceil value ofr. In our scheme, a user can receive resourgéerell(y, v) is the space of the joint probability measures
blocks from several base stations. of marginalsy andv.
When the number of users is large enough, the network . .
: In other words,y* solves the transportation problem be-

has to share the available resource blocks among users f'ind e

. . . .~ tweeny andv, and verifies:
among base stations. The bandwidth allocation problenus th

divided into two sub-cases: m
« Knowing N;, how many resource blocks does the network Vi<i<n, Z%*j = Hi,
allocate to thejth user? j=1
« Knowing the number of resource blocks allocated to _ nL
the jth user, from which base stations should they be vizjsm, Z%J’ = Vi
transferred? =t

L >0,
The second sub-problem can be addressed with to optimal MR

transport theory. Collapsingy andc into a vector form, the previous optimiza-

TABLE |- Notations tion problem can be rewritten in this form:

- st
n Number of base stations ~* = argmin‘c - v,
drawn according to the chosen point procgss v
m Number of users such that:
drawn according to the chosen point procgss
N, Total available number Tn‘)’ =,

of resource blocks in the network

Ty =v
Proportion of the total available mY ’

Hi resource blocks at thih base station V1i<i<nm, v >0,

Proportion of the total allocated

vi resource blocks at thgth user where:
N, Number of resource blocks T o1 ©1d
: requested by thgth user n = +lm n
N Proportion of resources allocated T, =1d, ® 11,n-
Vi from theith base station to thg¢th user ] ]
SINR; Measured SINR between ® denotes the Kronecker produdt, ,, is the matrix of ones
% the ith base station and thih user with n lines andm columns andld,, is the square identity
matrix onR".
Since~* is a probability measure, this linear programming
A. Optimal transport and base stations cooperation problem takes place on a compact set. Optimal solutions-ther

In 1781, Monge first described the optimal transport prolfere exist. However, before applying optimal transportotlye
lem. One has to transfer sand from a pile of sand to a hale must first obtain the probability measurerepresenting
in the ground. Knowing the shape of the pile and of the holthe user demand. This problem is solved with Cournot-Nash
what are the paths taken by each grain of sand that minimizguilibria.



B. Exact Cournot-Nash equilibria due to the cost term. Considering that most of the resources

Definition 2. Using previous notations, the Cournot-Nasf'e allocated fo the link of the minimal cost,;,,; defined
equilibria are the joint density probabilities such that their PY ¢min,; = min; ¢; ;, the classical approach of the problem

second marginat* verifies: consists in:
) « first, solving the resource allocation problem at a user
v* = argmin W,(p,v)+s(v), level
veP([1,m ! .
€P((1,m]) « second, routing the allocated resources among cooperat-
where: ing base stations to attain the final user.
We(u,v)= inf c-=, 1 R . I A
YETI(0) ) Resource allocation algorithm: Therefore, the simplified
guadratic problem function is derived:
_t N N
S(V)_ V_ﬁt . I/_Nt 5 I/*:argmintl/HV—i—tLl/,
This definition of the Cournot-Nash equilibria is the one 14, -v=1andv; >0,
introduced by Blanchet et al. inl[6]. The first teri,., solves h:
the optimal transport problem between the probabilitieand with: N

v. It is also known as the Wasserstein distance between the H =1d,, and L = cmip — 2o
probability measures and v. The second termy(v) is the k

faimess term, it only depends on the probability measufé&€orem 1. The solutionv* of the above simplified optimiza-
v. This Cournot-Nash problem can be reformulated into tn problem is unique and is of the form:

guadratic optimization problem. e tu(® — M)u
Definition 3. Cournot-Nash equilibria are solutions of the (m—k) ’
following quadratic optimization problem : wherek is the number of zero coordinatesef, u = 1,,_; 1
~* = argmin 'y Hv + 'Ly, v? = -L/2 andM = u/(m—k).
K Proof: The theorem is proven in AppendiX A. ]
such that: 2) Cooperation: Solving the resource transfer problem is
Ty = 1, equivalent to solve the optimal transport problem:
Ty < N/Ny, ~* = argmin‘c - v,
Vi<i<nm, vy >0, v
such that:
where:
Thy = )
H =TTy = Idm ® 1.0, . =l
N mY =V .
L=c-2T,—. )
Ny 3) Complexity:

SinceH is a positive semi-definite matrix and is a prob- thaorem 2. An approximate optimum can be found in poly-
ability measure, the boundedness of the optimization domaj,mial time.

is ensured. The existence of a solution is hence guaranteed.

Such formulation is easily implementable in a common solver Proof: In order to compute approximate Cournot-Nash
and allows numerical simulations on networks composed @fuilibria, one must first solve the allocation problem ameht
up to half a thousand users in a reasonable amount of timet@ optimal transport problem. Since the allocation proble

it will be shown in Sectiofi Tll. involves at mostn projections, its complexity is iO(m?).
The optimal transport part is a linear programming optimiza
C. Approximate Cournot-Nash equilibria tion problem and is known to be solved in polynomial time.
Thanks to the separability of the Cournot-Nash objective ]

function, one can interpret this Cournot-Nash equilibrsaaa ~ 4) Algorithm: Algorithm [ is derived from the proof of
superposition of the user allocation problem and the ressur TheorenllL. The optimal allocatian® is first computed, then
transfer problem. This superposition structure is higitkgl the optimal transporf* between the two discrete probability
by the algebraic structure df, due to the Kronecker product.measureg: andv* is derived by linear programming. The al-
Indeed, thdd,, factor gives the allocation of resources and thgorithm is centralized and iterative. The while-loop cagess
1, , factor gives for each user the optimal resource transfes the dimensions of the projective space is strictly dsanga
The quadratic formalization however cannot be fully sefgata and bounded by one.



Data: ¢, cynin, N, N¢, Th, T, TABLE II: Simulation parameters

*
R_esu_lt ~y*. . An 10 per unit square
Initalize (k, v°, M, u, v*); .

. Am from 10 to 500 per unit square
while Jv; <0 do 7B 0

Project ¢°, M, u, v*) on the space of strictly gm 500 KBlS

positive coordinates of*; W 180 Kz

Let k& be the number of negative coordinatesudf ui .

. " . Resource blocks per base statign 100
Projectr* on the new hyperplane defined by @,
M. u 1/*)' Path-loss exponent 3
T ! Shadowing 10 dB

end

~* = LinearProdu, v*, ¢, T,, Trn);

Algorithm 1: Approximate solution algorithm o
user is limited toRB,,,... Therefore the number of resource

blocks requested per user is given by:

D. Cournot-Nash equilibria and system optimum C

. _ . N;j= RBax | -
On a system level, three indicators are analyzed in function ’ Hax <{WRB log,(1 + maxj(SINRi,j)—‘ )
of the number of users in the network:

« The user satisfaction ratio:

B. Exact vs. approximate Cournot-Nash solution

Ny - v — e
Py = — - e 72 (Exact CN)
. X —#— 1, (Exact CN
i=1 i 09 / u EExac: CN))
. . = =72 (Approx. CN)
It is the mean ratio between the number of resource bloc* f / - (hppr € |

allocated by the network to each user and the number o7 - 1
resources requested by each user.
« The network load:

06 4

05 4
m

Tn = E yj. 0.4
J=1 03

It is the proportion of total available resources used i,
the network.
« The cooperation proportion:

0
1 m n 0 5 10 15 20 25 30 35 40 45 50
Density ratio: A, /A,
Tc:_EJ’F E “é('yz,]%o) #1 )
m < 1
‘7:

i=1 Fig. 1: Exact Cournot-Nash vs. approximate Cournot-Nash.

0.1

where ¥ is the indicator function. It is the proportion

of users that receive resource blocks from multiple base!" Figureld,r,,, r, andr. are plotted for the exact Cournot-
stations. Nash equilibria in function of the density ratig,, /\,, in solid
We define the optimum network working point as the interseléges.' Using Matlabuadprog function, an iteration for the
. . . aximum number of users takes about 3 seconds to compute
tion of user satisfaction curve and the network load curme. Lnn a late 2014. 8 cores CPU lapton computer. This figure was
the next section, this point is identified for both the exad a ' piop PULer. g

: : . .~ " produced with 500 iterations. The optimum working point of
the approximate Cournot-Nash solutions. lts relative fmsi the network is reached for a density ratio of 21 and for a user

Is investigated under several network deployment SChemes'satisfaction ratio (or a network load) of 89%. The cooperati
proportion reaches a minimum in the neighborhood of the
_ ) optimum working point, with about 10% of the users under
A. Smulation parameters base station cooperation.

Simulation parameters are summarized in Téble Il. We as-A comparison between the approximate solutions and the
sume that each base station reuses all the resource bldtksefact solutions is also given in Figlre 1. The optimal tramsp
antennas are omnidirectional and emit at the same powdr leveas solved with thent1inprog function. One iteration for
Base station locations are drawn according to a Poisson pandensity of 500 users and 10 base stations per unit square is
process of intensity,,. Users locations are drawn accordingomputed in about 350 ms. The network optimum working
to a Poisson point process with intensity,. Each user asks point is reached for a density ratio of 17 and for a user
for the same capacity’. The number of resource blocks pesatisfaction ratio (or a network load) of 80%. The approxina

I1l. NUMERICAL ANALYSIS



algorithm thus proves to be a pessimistic bound of the exact APPENDIXA

Cournot-Nash solution, that can be used for an under-etgima PROOF OF THEOREML

of the network performance. It is a good trade-off betweqismma 1. The simplified optimization problem can be trans-
computational complexity and precision, since computei8o tormed into a hypersphere equation.

about ten times faster than the exact algorithm whereas the

error made is only of 10% on the indicator. The cooperation ~Proof: The simplified optimization problem can be writ-
proportion and the network load behaviors are similar to tfen in the following form:

exact curves. w . 1,

. v* =argmin‘'vHv + 'Ly 4+ —'LL,
C. Impact of network deployment on the optimum network v 4
working point such that:

We consider networks composed of antennas drawn accord-

ing to a -Ginibre or Poisson point process with the sa , .
. . - . . . . ﬁle denote byC, the convex hull defined by the constraints
intensity \,,. The 3-Ginibre point process is a repulsive pOmof this optimi)zcation problem. The added gonstant does not

rocess, which regularity can be set with the paramgéter . . . : .
b g y b a odify the optima and therefore this problem is equivalent t

A [-Ginibre point process is obtained after a thinning of t%: implified optimizati bl Furth the itil
Ginibre point process. Each point of the Ginibre point pesce € simpihied optimization problem. Furthermore, et
function is the equation of an hypersphere of centér=

is independently selected with a probability If 5 goes to0, L . )
: . ; —L/2 and the objective value is its radius. |
the point process tends to a Poisson point process (conmdspo Thanks to Lemmdl1, the optimum* is given by the

to a uniform network deployment). If = 1, then the point intersection of the minimal radius hypersphere of cepter=
process corresponds to a Ginibre point process (corresnondiL/2 and ofC. Let H be the hyperplane defined by:

a regular network deployment). A way to simulate a Ginibre
point process (and thereforgdaGinibre point process) is given
in [13].

I[n Iligureth an@2b, the impact of regularity is studie§. iS included in the hyperplang. Let v* be the orthogonal
Curves for Poisson and-Ginibre point processes are plottedrojection ofv? on 7. Two cases can be distinguished:
for the exact and the approximate Cournot-Nash equilibrial) v* has no strictly negative coordinates.
Four3-Ginibre point processes are considered with four value) v* has some strictly negative coordinates.
of 3: 0.25, 0.50, 0.75 and 1. Results are given in Table Ill. In the first casep* is the tangent point betweeh and the
hypersphere. Since* is the orthogonal projection af° on
C, it also minimizes the radius of the hypersphere that ietdrs

t117m -v=1and Vj Z 0,

H={xeR"| ", 1x=1}.

TABLE IlI: Optimum network working points in function of

B. C. The optimum is given by:
Exact CN Approx. CN ¢ 0
Point Process| Am/x, 7y OF 7, | Am/X, T4 OF Ty v =10 _ u(w’ — M)u
Poisson 21 88% 17 80% m ’
=0.25 22.5 88% 19 82% .
g:o.5o — 5% 1 T whereM = 1,,,/m andu = 1,, . If all coordinates are
B =0.75 275 92% 225 85% positive, then the optimum has been reached.
B=1 29 94% 24 87% In the second case (indexing frointo m — k the strictly

positive coordinates, whereis the number of negative coor-

For both exact and approximate Cournot-Nash equilibriginates), the positivity constraints— k+1 to m are saturated.
the density ratio and the user satisfaction of the optimupy is in %/ but outsideC. Thereforey?, ., ...v;, are set to
working point jointly increase with the value of This can be zero andv; ... v* _, have to be computed, u andv? are
explained as the overall SINR quality in the network incesasfjrst projected on the non-null subspace:
with the regularity of the deploymerit [114].

V1<j<m—k, M =1/(m—k),

IV. CONCLUSION 0
Vm—k+1<j<m,v; =0M;=0u;=0.

A novel resource allocation scheme under cooperation based
on Cournot-Nash equilibria has been introduced. An exact @len the optimum is calculated in the non-null subspace:
well as an approximate fast computable solution have been tu(n® — M
provided. Numerical analysis has shown the existence of an v =Y M
optimum network working point, where network load and (m—Fk)
user satisfaction ratio are jointly maximized. The coofiera In this case, the previous operations must be repeatedalintil
proportion, is minimum in the neighborhood of the optimumtoordinates are positive.
working point. Impact of the network deployment has been Uniqueness of the solution is ensured by the fact that the
investigated. The more regular the network is, the better tbptimal solution is the orthogonal projection of the cerdér
performance is. an hypersphere.
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