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Joint Computation Offloading and Resource

Allocation in Cloud Based Wireless HetNets
Nguyen Ti Ti and Long Bao Le

Abstract—In this paper, we study the joint computation of-
floading and resource allocation problem in the two-tier wireless
heterogeneous network (HetNet). Our design aims to optimize the
computation offloading to the cloud jointly with the subchannel
allocation to minimize the maximum (min-max) weighted energy
consumption subject to practical constraints on bandwidth, com-
puting resource and allowable latency for the multi-user multi-
task computation system. To tackle this non-convex mixed integer
non-linear problem (MINLP), we employ the bisection search
method to solve it where we propose a novel approach to trans-
form and verify the feasibility of the underlying problem in each
iteration. In addition, we propose a low-complexity algorithm,
which can decrease the number of binary optimization variables
and enable more scalable computation offloading optimization in
the practical wireless HetNets. Numerical studies confirm that
the proposed design achieves the energy saving gains about 55%
in comparison with the local computation scheme under the strict
required latency of 0.1s.

Index Terms—Mobile edge computing, energy saving, comput-
ing and resource allocation, HetNet, MINLP, and ILP.

I. INTRODUCTION

The number of global devices has increased drastically

in recent years. Moreover, with the multi-task processing

capacity, advanced mobile devices have led to proliferation

of many computation-intensive applications covering differ-

ent areas including entertainment, communication, social net-

working, e-health, image recognition, language processing,

and gaming. These computation-extensive applications have

demanded more powerful central processing unit (CPU) with

higher clock frequency, which will result in significant increase

in the mobile energy consumption [1]. Moreover, advancement

in mobile battery technology is usually not sufficiently fast to

keep up with practical applications’ requirements; therefore,

the battery can become the bottleneck to improve the quality

of experience (QoE) for mobile users. Consequently, reducing

mobile energy consumption in power-hungry applications is

of great importance and one very potential solution for this

problem is to offload heavy computations tasks to the edge

cloud servers using the so-called mobile cloud computing

(MCC) technology.

Recent development of small-cell based wireless HetNets

promises enormous benefits from both the network and mobile

user perspectives. First, deployment of low-power small cells

enables efficient reuse of the radio spectrum, which helps

increase the spectral efficiency. Second, the close transmitter-

receiver proximity allows small cell users to achieve high

signal-to-noise ratio (SNR) even with low transmit power.

This enables them to meet the low-latency requirements of

many emerging applications. Finally, realization of the MCC
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in small-cell based wireless HetNets can lead to significant

benefits such as prolonging battery lifetime and providing

high-speed and ultra-low latency communications services in

future 5G wireless systems.

Several MCC platforms have been proposed and developed

in the literature such as MAUI [2], CloneCloud [3], ThinkAir

[4] and a good survey for them with the corresponding com-

putation offloading designs can be found in [5]. In particular,

the tradeoff between transmission and computation energy

was studied in [6], [7]. The joint computation task offloading

scheduling and transmit power allocation of a single-user

system was investigated in [8]. Moreover, the authors in [9]

studied the multi-user radio resource management problem

for the HetNet-MCC system, which always offloads the entire

computation task to the cloud. Dynamic computation offload-

ing policies based on Lyapunov optimization were developed

in [1], [10]. These existing works, however, only consider

the single-cell setting and many practical design aspects of

the multi-cell MCC system such as dynamic computation

offloading, joint multi-user resource allocation and computing

resource assignment, and consideration of practical constraints

on bandwidth, operating frequency and tolerable delay limits

are not satisfactorily accounted for. Our current work aims to

fill this gap in the literature.

In this paper, we study the joint optimization problem

for computation offloading and resource allocation where

computation tasks are either processed locally at the mobile

or offloaded and processed in the cloud. Moreover, offloaded

tasks require radio resources for transmissions of the involved

data (i.e., programming states). Importantly, this design is

conducted for the multi-task multi-user multi-cell setting,

which has not been addressed in the literature to the best

of our knowledge. The underlying joint computation task,

subchannel, and operating clock speed assignment problem,

which aims to minimum the maximum weighted consumed

energy subject to delay and resource constraints is a non-

convex and difficult MINLP problem. Therefore, we employ

the bisection search method to solve it where we transform

the underlying non-convex INLP problem into an ILP for

feasibility verification in each iteration. We also propose a

low-complexity algorithm which is based on the decoupled

optimization of the resource assignments for the macrocell

and small cells.

The remaining of this paper is organized as follows. Section

II presents the system model, computation and transmission

energy models and problem formulation. Section III describes

the solution method to solve the studied problem. Section

IV evaluates the performance of proposed algorithms. Finally,

Section V concludes the work.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a two-tier wireless HetNet with M small

cells (SC), one macro cell (MC), and K users (UE). We

assume that each cell is serviced by one base station (BS)

connected to a common cloud provider via a high-speed fiber

cable. Moreover, the cloud is assumed to have unlimited

computing resource to serve offloaded computation demands

from multiple SUs simultaneously. We denote the set of all

BSs as M0 = {0,M}, where 0 denotes the MC BS, and

M = {1, ...,M} denotes the set of SC BSs, and the set of

all users is denoted as K = {K0,K1, ...,KM}, where K0 is

the set of macro users (MUE) and Km is the set of SC users

(SUE) associated with BS m ∈ M.

A. Computation Offloading Model

We assume that UE km ∈ Km, m ∈ M0 has the set of

Lkm
= {1, 2, ..., lkm

} independent tasks for his/her application

and these tasks can be executed locally at the mobile device

or offloaded and executed in the cloud independently over

the time interval T where T is chosen to meet the delay

requirement of the underlying application. Moreover, each task

l ∈ Lkm
has the corresponding number of required CPU cycles

ckm,l (CPUs) and the number of transmission bits of bkm,l

(bits) (i.e., to transmit the involved programming states). We

now introduce a binary offloading decision variable for each

task l ∈ Lkm
as xkm,l, which can be defined as follows:

xkm,l =

{

1, if task l is executed at mobile device

0, if task l is offloaded to the cloud
. (1)

It is further assumed that the processor of UE km ∈ Km has

the DVFS (Dynamic Voltage and Frequency Scaling) capabil-

ity so it can adjust the operating frequency clock speed (FCS)

in the clock speed set fkm
∈ Fkm

= {fkm

1 , fkm

2 , ..., fkm

Vkm
}

(CPU/s) which corresponds to the underlying application re-

quirements [1]. By introducing Vkm
binary variables µkm

v ,

the operating clock speed can be expressed as fkm
=

∑Vkm

v=1 µkm
v fkm

v , where
∑Vkm

v=1 µkm
v = 1. Then, the local

computation energy in Joule at UE km ∈ Km can be expressed

as

Ec(km) =

(βkm,1(fkm
)βkm,2 + βkm,3)

∑

l∈Lkm

xkm,lckm,l

fkm

, (2)

where βkm,1, βkm,2, βkm,3 denote the coefficients specified in

the CPU model [1]. For mobile devices such as Samsung

Galaxy Note or Nexus, the value of βk,2 is in range of [2.7-

3]. In order to satisfy the application QoS, UE km should

complete its program execution within the delay τ1,km
≤ T

if such program is executed locally at the mobile device.

We assume that the cloud has the replicated version of the

execution file of the offloading tasks, which can be, therefore,

executed in the cloud in the offloading case.

B. Transmission Model

We assume that the available spectrum is partitioned into

non-overlapping bands, which are then allocated to the MC

and SC tiers to avoid the cross-tier interference. Moreover,

the spectrum allocated to small cells is assumed to be fully

reused over these cells (i.e., the SC spectrum reuse factor is

one). Moreover, the OFDMA scheme is assumed where the

set of available sub-channels is denoted as N = {1, 2, ..., N}.

Let h
(n)
kj ,m

denote the channel gain from UE kj ∈ Kj to BS

m ∈ M0 on subchannel n ∈ N . The transmit power of user

kj ∈ K on each subchannel is assumed to be the constant

PtW , where W is the bandwidth of each subchannel, and

the noise power density on subchannel n at BS m is σ
(n)
m . We

represent the subchannel assignment by a binary variable ρ
(n)
km

,

where ρ
(n)
km

= 1 if subchannel n is assigned to UE km ∈ Km,

and ρ
(n)
km

= 0, otherwise. Then, the transmission rate from UE

km to the BS m can be expressed as

rkm
=

∑

n∈N

ρ
(n)
km

W log2
(

1 + γ
(n)
km

)

, (3)

where γ
(n)
km

=











Pth
(n)
km,m

σ
(n)
m

, if m = 0

Pth
(n)
km,m

∑
j 6=m

∑
kj∈Kj

ρ
(n)
kj

Pth
(n)
kj ,m

+σ
(n)
m

, if m 6= 0
.

The power P required to transmit data related to the

program states from each mobile user comprises two parts,

namely circuit power Pc (W/Hz) and transmit power Pt

(W/Hz), which can be expressed as P = Pc + Pt. Then,

the total required energy related to the transmission of UE

km ∈ Km can be computed as follows:

Et(km) = tkm
PW

∑

n∈N

ρ
(n)
km

, (4)

where tkm
is the transmission time of the program states from

the mobile to its BS, which can be calculated as

tkm
=

1

rkm

∑

l∈Lkm

(1 − xkm,l)bkm,l. (5)

The total latency experienced by an offloaded task comprises

the time required for sending program states/bits to the cloud,

the computation time in the cloud, and the time required

for downloading the results to the mobile. However, cloud

computation time is relatively small due to the high cloud

computation power and the data related to computation results’

download has much smaller size compared to the offloading

data in general. Therefore, we neglect the cloud energy con-

sumption and data download transferred time. Moreover, to

ensure the constrained latency, the transmit time tkm
is re-

quired to be smaller than the maximum delay, i.e., τ2,km
< T .

C. Problem Formulation

We now present the formulation for the considered problem

where our design objective is to minimize the maximum

weighted users’ consumed energy. The energy weight, denoted

as wkm
, represents the priorities or the battery/computation

levels of different users [11]. Then, the joint computation

offloading and resource allocation problem with latency, radio

and computational resource constraints can be stated as

(P1) min
ρ,x,µ

max
km

wkm
(Ec(km) + Et(km))

subject to

(C1) : tkm
≤ τ2,km

, ∀m ∈ M0, ∀km ∈ Km

(C2) :
∑

km∈Km

ρ
(n)
km

+
∑

k0∈K0

ρ
(n)
k0

≤ 1, ∀m 6= 0, ∀n ∈ N



(C3) : ρ
(n)
km

∈ {0, 1}, ∀m ∈ M0, ∀km ∈ Km, ∀n ∈ N

(C4) :

∑

l∈Lkm

xkm,lckm,l

fkm

≤ τ1,km
, ∀m ∈ M0, ∀km ∈ Km

(C5) : xkm,l ∈ {0, 1}, ∀m ∈ M0, ∀km ∈ Km, ∀l ∈ Lkm

(C6) : fkm
=

Vkm
∑

v=1

µkm
v fkm

v , µkm
v ∈ {0, 1}, ∀km ∈ Km

(C7) :

Vkm
∑

v=1

µkm
v = 1, ∀km ∈ Km.

In this problem formulation, constraint (C1) captures the

transmission latency requirements for offloading process. Con-

straint (C2) and (C3) represent the MC and SCs bandwidth

sharing where each subchannel can be allocated to at most

one MUE or one SUE in each SC. Constraint (C4) represents

the delay requirements for local computation. Furthermore,

constraint (C5) captures the binary offloading decisions while

the remaining constraints express the computational capacity

of mobile devices.

III. ALGORITHM DEVELOPMENT

The considered problem (P1) is indeed a non-convex INLP

due to the integer optimization variables for allocating tasks,

frequency clock speeds’ selection and subchannel assignments

and due to the non-convexity of the objective function and

constraint functions in (C1). Therefore, this problem is very

difficult to solve. To have an insightful description, we first

reformulate the min-max objective of (P1) as follows:

(P2) min ζ

subject to

(C8) : wkm
(Ec(km) + Et(km)) ≤ ζ, ∀km

(C1)−(C7).

A. Proposed Algorithm (Optimal alg.)

We can now apply the bisection search method to find the

optimal min-max users’ energy consumption for the reformu-

lated problem (P2). Specifically, the bisection search method

iteratively updates an upper-bound ζmax and a lower-bound

ζmin of the objective value ζ of problem (P2). In particular,

in each iteration, we have to verify the feasibility of problem

(P2) for a given value of ζ based on which we can update

ζmax and ζmin. If the set of constraints is feasible, then upper-

bound of objective function will decrease, and inversely its

lower-bound will increase. This algorithm will terminate when

the difference between upper-bound and lower-bound values

becomes sufficiently small. The proposed algorithm which can

find the optimal solution of (P2) is given in Algorithm 1.

In order to verify the feasibility of problem (P2), we take

three major steps to transform all constraints of problem (P2)
into the linear form. In the first step, we linearize the involved

logarithmic functions in (C1) and (C8). In the second step,

we attempt to determine whether UEs can locally process

their tasks or not for a given value of ζ. In the final step,

we introduce some further auxiliary variables to transform

the product-form of the obtained constraint functions into the

Algorithm 1 Multi-task and Multi-user Computation Offload-

ing and Resource Allocation

1: Initialize: choose ǫ, ζmin = 0 and ζmax =
max

m∈M,km∈Km

Ec(km)|{xkm,l = 1, ∀l ∈ Lkm
}.

2: while ζmax − ζmin < ǫ do

3: Compute ζ = (ζmax + ζmin)/2.

4: for each user km do

5: if optimal value of Pkm

s1 = 0 then

6: neglect user km.

7: else

8: Assign xkm,l = 0 as in Proposition 2.

9: end if

10: end for

11: Check the feasibility of (P2) for users (optimal value

of Pkm

s1 6= 0, ∀km) with the set of available subchannels

N as in Section III.A.3.

12: if feasibility then

13: Assign ζmax = ζ.

14: else

15: Assign ζmin = ζ.

16: end if

17: end while

desirable linear form. The obtained linear program after step

three can then be solved effectively.

These steps are described in more details for a given value

of ζ in the following.

1) Step one: We introduce some auxiliary binary variables

as follows:

α
(n)
k1,k2,...,kM

=

{

1, if
∏

m∈M ρ
(n)
km

= 1, km ∈ Km

0, otherwise
. (6)

The above expression means that the variable α
(n)
k1,k2,...,kM

will

be active if users k1 ∈ K1, k2 ∈ K2, ..., kM ∈ KM transmit

on the same subchannel n. We have to now re-write Et(km)
in (4), which depends on tkm

given in (5). Toward this end,

the transmission rate from SUE km ∈ Km to BS m ∈ M
is re-expressed in (7) which is needed in the expression of

tkm
. We also need (9) to re-write Et(km) in (4). Moreover,

constraint (C2) can be now rewritten as in (8).

2) Step two: For a given ζ, UEs will not offload their tasks

if they can process all tasks locally. Therefore, to determine

whether UEs offload or not, we find the minimum number of

transmission bits of UE km as
∑

l∈LK
(1− xkm,l)bkm,l when

its computing energy is less than ζ. If this value is equal to

zero, UE km can locally execute its application; therefore the

transmission rate rkm
will be qual to zero. This problem is

formulated as follows:

(Pkm
s1

) min
xkm ,µkm

∑

l∈Lkm

(1− xkm,l)bkm,l

subject to

(C9) : wkm
Ec(km) ≤ ζ,

(C4)−(C7).

To solve problem Pkm
s1

, we re-express one term in compu-

tation energy expression as follows:



rkm
=

∑

n∈N

∑

k1∈K1

...
∑

km−1∈Km−1

∑

km+1∈Km+1

...
∑

kM∈KM

α
(n)
k1,k2,...,kM

W log2(1 +
Pth

(n)
km,m

∑

j∈M\m Pth
(n)
kj ,m

+ σ
(n)
m

). (7)

∑

k1∈K1

...
∑

kM∈KM

α
(n)
k1,k2,...,kM

+
∑

k0∈K0

ρ
(n)
k0

≤ 1, ∀n ∈ N . (8)

∑

n∈N

ρ
(n)
km

=
∑

n∈N

∑

k1∈K1

...
∑

km−1∈Km−1

∑

km+1∈Km+1

...
∑

kM∈KM

α
(n)
k1,k2,...,kM

. (9)

rkm

Vkm
∑

v=1

∑

l∈Lkm

µkm
v F km

v xkm,lckm,l +
∑

l∈Lkm

(1− xkm,l) bkm,lPW
∑

n∈N

ρ
(n)
km

≤
ζrkm

wkm

, if rkm
> 0, ∀km. (10)

(βkm,1(fkm
)βkm,2 + βkm,3)

fkm

=

Vkm
∑

v=1

µkm
v F km

v , (11)

where F km
v =

(βkm,1(f
km
v )βkm,2+βkm,3)

f
km
v

for fkm
v > 0 and

F km
v = 0 for fkm

v = 0. The constraint (C9) now is the sum

of the product of two binary variables, which can be given as

(

Vkm
∑

v=1

µkm
v F km

v )(
∑

l∈Lkm

xkm,lckm,,l) ≤
ζ

wkm

. (12)

We now deal with the non-convex term zkm,v,l = µkm
v xkm,l

in (12). In general, the product of binaries variables can

be converted to the linear inequalities as suggested in [12].

Particularly, the 0/1-variable y =
n
∏

i=1

si can be expressed

equivalently as















y ∈ {0, 1}, si ∈ {0, 1}, ∀i

y ≥
n
∑

i=1

si − n+ 1

y ≤ min{si}

. (13)

Then applying (13), we can transform the non-convex term

zkm,v,l = µkm
v xkm,l to linear form of zkm,v,l, µ

km
v and xkm,l.

In addition, constraints (C4) can be easily converted to a linear

form as:
∑

l∈Lkm

xkm,lckm,,l − τ1,km

∑Vkm

v=1 µkm
v fkm

v ≤ 0.

Using these expressions, the considered problem can be

transformed into an ILP with optimization variables x, z, µ

which can be solved effectively by using the interior-point

method or the solver CVX-Gurobi [12].

3) Step three - feasibility verification for problem P2: We

now state some important results in the following two propo-

sitions, which correspond to two cases where the offloading

decision variables xkm,l are zero and one, respectively.

Proposition 1: If there exists a feasible solution for P2

given ζ and the optimal value of Pkm
s1

is 0, then the offloading

decision variables xkm,l, ∀l ∈ Lkm
are set equal to 1 and this

will form a feasible solution.

Proof. It is clear that the efficient optimization for xkm
, µkm

in P2 must allocate the smallest amount of radio resources

to meet the fixed energy level ζ. In fact, if any user, who

has computing energy less than ζ and has execution time

satisfying the computing delay time, offloads its tasks to

the cloud, it will occupy the radio resources of other users

demanding for computation offloading, which results in the

increase of transmit energy of those users. This proves the

proposition. �

Proposition 2: If there exists a feasible solution for P2 given

ζ and the optimal value of Pkm
s1

is positive, then the offloading

decision variable xkm,l is set equal to 0 if the optimal solution

xkm,l of Pkm
s1

equals to 0 and this will form a feasible solution.

Proof. If the optimal value of Pkm
s1

is greater than 0, it means

that the local computational energy must be less than ζ
wkm

since the total computation and transmission energy must be

less than or equal to ζ
wkm

. Because the objective of Pkm
s1

is

to minimize the number of transmission bits, UE km will

consume the least transmission energy with a given radio

resource. Therefore, the task offloading decision variables

must be set equal to 0 (offload to cloud) if the solution of task

allocation of Pkm
s1

is equal to 0. Note that when the optimal

value of Pkm
s1

is positive, the transmission rate rkm
must be

greater than 0 to offload data to the cloud. Therefore, we can

rewrite the fractional constraint functions of (C8) into non-

fractional form as (10). �

Using the results in Proposition 1, we can set the zero rate

for users with xkm,l equal to one for all tasks l. For remaining

users whose optimal xkm,l are equal zero for at least one task

according to Proposition 2, we solve problem Ps2 to determine

the computation offloading and resource allocation solution.

The remaining thing is to verify the feasibility of the result-

ing equivalent problem of the original problem P2. Applying

the same technique as in (13) for UEs having transmission

rate rkm
> 0, we transform the product-form of (10) into

linear-form of xkm,l, µkm
v , α

(n)
k0,0, q

(n)
k0,v,l

, u
(n)
k0,l

, α
(n)
k1,...kM

,

q
(n)
k1,k2,...,kM ,v,l and u

(n)
k1,k2,...,kM ,l, where q

(n)
k1,k2,...,kM ,v,l =

µkm
v xkm,lα

(n)
k1,k2,...,kM

, u
(n)
k1,k2,...,kM ,l = xkm,lα

(n)
k1,k2,...,kM

for

SUEs, q
(n)
k0,v,l

= µk0
v xk0,lρ

(n)
k0

, and u
(n)
k0,l

= xk0,lρ
(n)
k0

for MUEs.

Using these transformations, the set of constraints of

problem (P2) can be converted to the linear form of

xkm,l, µ
km
v , α

(n)
k0,0, q

(n)
k0,v,l

, u
(n)
k0,l

, α
(n)
k1,...kM

, q
(n)
k1,k2,...,kM ,v,l and

u
(n)
k1,k2,...,kM ,l. Therefore, the feasibility verification of the

transformed problem can be done effectively by a standard

solver.



B. Low-complexity Algorithm with Decoupled MC-SC Opti-

mization (LC alg.)

We now present a low-complexity algorithm, which can

perform well in large-scale wireless HetNets. In this algorithm,

we first determine the minimum number of subchannels so that

all MC UEs (MUEs) can meet the energy consumption level

ζ, which can be stated as follows:

(Ps2) min
∑

n∈N

∑

k0∈K0

ρ
(n)
k0

subject to

(C1), (C3)−(C8), for m = 0.

After solving problem Ps2 by using the above transforma-

tions for MUEs, the set of remaining subchannels that SC UEs

(SUEs) can use can be written as NSC = N \ {n|ρ
(n)
k0 (Ps2)

=

1, ∀k0 ∈ K0}.

We can then allocate these remaining subchannels (n ∈
NSC ) by solving problem P2 with only SUEs km ∈
Km, ∀m ∈ M (i.e., we remove any terms related to MUEs

in this problem). This problem can be solved by using the

proposed Algorithm 1 for only SUEs with the available

subchannels NSC . The number of optimization variables in

this algorithm now decreases
|N |

|NSC|
times in compassion with

the case where the joint subchannel allocation optimization for

MC and SCs is conducted.

IV. NUMERICAL RESULTS
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Fig. 1: Network topology and user placement in the numerical

examples.

The network setting used in our simulations is shown in

Fig.1, where there are 12 MUEs in macrocell and 2 SUEs

for each small cell. The MC and SC coverage radius are

400m and 30m, respectively. All UEs have 11 levels of

operating clock frequency uniformly chosen in 0 − 2 GHz.

For convenience, we assume that all users has 3 tasks and total

CPU requirement for each user is 0.2 Gcycles. The maximum

tolerable computing delay is set equal to T for all users

while the transmission delay is set randomly in 0.7T − 0.9T .

The number of transmission bits/task and CPU cycles/task are

illustrated in Fig.2, which are used in scenario 1 (presented in

Fig. 3) in which the ratio of bkm,l/ckm,l is chosen randomly in

10−5−10−3 (as in Fig. 2). The energy weight is set randomly

in 0.8 − 1. The energy coefficients are set for all users as

βkm,1 = 0.34(10−9)βkm,2 , βkm,2 = 3 and βkm,3 = 0.35 [1].
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Fig. 2: Computation - transmission relation of computation

tasks.

We set the number of subchannels as 20, and the bandwidth

per subchannel is 180 kHz, and the noise power density equal

to −140 dBm/Hz. The transmission power Pt is set equal

to −33 dBm/Hz and −43 dBm/Hz for MUEs and SUEs,

respectively and the circuit power Pc = Pt/2. The subchannel

gains are generated according to h
(n)
km,m = ξ(n)gkm,m where

ξ(n) is a random value generated according to the exponential

distribution and gkm,m denotes the pathloss defined according

3GPP technical report as gk0,0 = −128.1− 37.6 log 10(dk0,0)
(dB) for MUEs and gkm,m = −127−30 log10(dkm,m), ∀m 6=
0 (dB) for SUEs [13] where dkm,m is the geographical distance

between UE km and BS m (km). The stop condition of

bisection search is set as ǫ = 10−3.
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Fig. 3: Min-max weighted energy consumption.

Fig. 3 shows the min-max weighted energy required to

execute the applications of all UEs, which is obtained by

averaging the result over 15 system realizations under the

proposed optimal (Optimal alg.) and low-complexity (LC alg.)

and no computation offload (No offload). The ratio of bits

per CPU cycle (BPC) in scenario 2 is 50 percent higher

than that in scenario 1. These results show that the smaller

the BPC, the smaller the consumed energy for all schemes.

For the computation load of 0.2 Gcycles per user, the min-

max weighted energy without offloading is much higher than

that due to the proposed schemes under both scenarios. In

particular, the proposed optimal algorithm can reduce the

energy about 55% compared with the “No offload” scheme

in scenario 1. Moreover, the energy consumption in the LC

scheme is nearly equal to the global optimal solution due to

the “Optimal alg.”.



0 5 10 15 20 25

Mobile user index

0

0.5

1

1.5

2

C
om

pu
ta

tio
n 

al
lo

ca
tio

n 
(c

yc
le

s)

×108

Local computation
Cloud computation

Fig. 4: Computation allocation with latency of 0.1s.

The computation allocation using LC alg. for different users

with T = 0.1s in one system realization is illustrated in Fig.

4. This figure shows that the computation load is distributed

fairly equal between users thanks to min-max weighted energy

design objective. Moreover, some UEs, having small BPC

tasks or high SINR ratio, offload all tasks to the cloud. This

figure also shows that the worst UE can offload 0.06 (Gcycles),

then its FCS decreases about 30 percent leading to the decrease

of computation energy by nearly 2.4 times.
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Fig. 5: Min-max weighted energy versus bits per 1 CPU cycle.

Fig. 5 shows the min-max weighted energy consumption

when the number of cycles per task is fixed by 0.2/3 (Gcycles)

while the BPC is set the same for all UEs. When this parameter

is small, the performance gap in terms of min-max energy

consumptions between the proposed offloading (“offload”)

design and “No offload” scheme is quite large. This means

that the proposed scheme can result in great energy reduction.
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Fig. 6: Min-max weighted energy consumption for 0.2 Gcycles

computation load.

Fig. 6 shows the achievable min-max weighted energy for

scenarios where each user has 2, 4 and 6 tasks and the total

computation load is 0.2 Gcycles per user, maximum tolerable

latency T = 0.12s while the BPC is fixed at 5 × 10−4. It

can be observed that the min-max weighted energy decreases

quite drastically as the number of tasks increases. Moreover,

if there are two tasks then users send at least one task to the

cloud until N = 22 subchannels while if there are 4 tasks then

users can send at least one task to the cloud when N ≥ 16.

However, in all cases, if sufficient radio resources are available,

the UE with largest weighted energy prefers to offload first to

achieve the lowest min-max weighted energy. Therefore, the

“No offload” have the worst performance in term of energy

consumption comparing with the proposed schemes.

V. CONCLUSION

In this paper, we have proposed a general framework

for multi-task multi-user multi-cell computation offloading.

Considering the practical discontinuity of operating frequency

clock speed of real-world chipsets, and the partitioning of

computation load into individual tasks, we have formulated

the problem which minimizes the maximum weighted en-

ergy consumption while maintaining the application latency

requirement. We have then developed the optimal and low-

complexity algorithms to tackle this problem. Numerical re-

sults have confirmed the desirable performance of the proposed

algorithms for wireless HetNets which can lead to great saving

of the energy consumption.
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