
Service Chain (SC) Mapping with Multiple SC
Instances in a Wide Area Network

This is a preprint electronic version of the article submitted to IEEE GlobeCom 2017

Abhishek Gupta∗, Brigitte Jaumard†, Massimo Tornatore∗‡, and Biswanath Mukherjee∗
∗University of California, Davis, USA †Concordia University, Canada ‡Politecnico di Milano, Italy

Email: ∗{abgupta,mtornatore,bmukherjee}@ucdavis.edu †bjaumard@cse.concordia.ca ‡massimo.tornatore@polimi.it

Abstract—Network Function Virtualization (NFV) aims to
simplify deployment of network services by running Virtual
Network Functions (VNFs) on commercial off-the-shelf servers.
Service deployment involves placement of VNFs and in-sequence
routing of traffic flows through VNFs comprising a Service Chain
(SC). The joint VNF placement and traffic routing is usually
referred as SC mapping. In a Wide Area Network (WAN), a
situation may arise where several traffic flows, generated by
many distributed node pairs, require the same SC, one single
instance (or occurrence) of that SC might not be enough. SC
mapping with multiple SC instances for the same SC turns out
to be a very complex problem, since the sequential traversal of
VNFs has to be maintained while accounting for traffic flows in
various directions.

Our study is the first to deal with SC mapping with multiple
SC instances to minimize network resource consumption. Exact
mathematical modeling of this problem results in a quadratic
formulation. We propose a two-phase column-generation-based
model and solution in order to get results over large network
topologies within reasonable computational times. Using such an
approach, we observe that an appropriate choice of only a small
set of SC instances can lead to solution very close to the minimum
bandwidth consumption.

I. INTRODUCTION

Today’s communication networks deploy network services
through proprietary hardware appliances (e.g., network func-
tions such as firewalls, NAT, etc.) which are statically config-
ured. With rapid evolution of applications, however, networks
require more agile and scalable service deployment.

Network Function Virtualization (NFV) [1] offers a solution
for more agile service deployment. NFV envisions hardware
functionality as software modules called Virtual Network
Functions (VNFs). VNFs can be run on commercial-off-the-
shelf hardware such as servers and switches in datacenters
(DCs), making service deployment agile and scalable.

When several network functions are configured to provide a
service, we have a “Service Chain”. The term “service chain”
is used “to describe the deployment of such functions, and
the network operator’s process of specifying an ordered list of
service functions that should be applied to a deterministic set
of traffic flows” [2]. So, a “Service Chain” (SC) specifies a set
of network functions configured in a specific order. With NFV,
we can form SCs where VNFs are configured in a specific
sequence that allows the minimization of the bandwidth usage
in the network (an example is discussed in the next paragaph).

Unfortunately, the fact that VNFs in a single SC need
to be traversed by several distinct traffic flows (i.e., flows

requested by multiple geographically-distributed node pairs)
in a specific sequence makes it difficult to improve network
resource utilization. As an example, let us refer to Figs. 1(a)
and 1(b), where three traffic requests r1 (from node 4 to 13), r2

(from node 6 to 3), and, r3 (from node 14 to 1) demand SC c1
composed of VNF1, VNF2 and VNF3 (to be traversed in this
order VNF1, VNF2 and VNF3). In Fig. 1(a), we see that if we
consider only one mapping occurrence for SC c1, then some
traffic flows (in our example, r3 and r2) will be ineffectively
routed over a very long path. Instead, as shown in Fig. 1(b), if
we use two SC mappings for the same SC, we can significantly
improve network resource utilization, at the expense of a larger
number of VNFs to be deployed/replicated in the network to
serve the same SC. It results in an even more complex problem
when in a Wide Area Network (WAN) a very large number of
distributed node pairs generate traffic flow, creating a heavily-
populated (dense) traffic matrix. Our objective in this work is
to reduce the network resource consumption for a WAN with
a dense traffic matrix.

So the question that arises is: how many SC instances for
the same SC are required to achieve a quasi-optimal network
resource utilization?

A possible trivial solution to the problem of SC mapping
in case of multiple node pairs requiring the same SC is to use
one single instance, that would most likely lead to host SCs
at a single node (e.g., a DC) which is centrally located in the
network. However, traffic flows will have to take long paths
in order to reach the node hosting the SC, which results in a
very suboptimal network resource consumption.

The other extreme case would be to use a distinct SC
mapping per each node pair (in other words, the number of SC
instances is equal to the number of traffic node pairs). In such
a way, we can achieve optimal network resource utilization
as each node pair will use an SC effectively mapped along
a shortest path in the network. However, this approach has
the downside of increasing the network orchestration overhead
and increase capital expenditure, as there will be a very large
number of replicated VNF instances across nodes. To reduce
excessive VNF replication, we bound the maximum number
of nodes hosting VNFs. Using the shortest path also has the
added effect of reducing latency for the service chain, but this
aspect is out of scope for this study.

Intuitively, the number of SC instances for a good solution
will be a value between these two extreme points. This

ar
X

iv
:1

70
4.

06
71

6v
1

 [
cs

.N
I]

 2
1

A
pr

 2
01

7

(a) One single SC instance mapping: request r3 and r2 take longer paths (b) Two SC instances mapping: request r3 and r2 take
shorter paths

Fig. 1: Deploying more SC occurrence mappings reduces network resource consumption.

solution will minimize the network resource utilization while
not excessively increasing the number of nodes hosting VNFs.

A reasonable trade-off value is difficult to be optimally
calculated. In fact, it has been shown that the problem of
SC mapping with multiple SC instances results in quadratic
constraints [3], that severely hamper the scalability of the
solution. In this paper, to provide an answer to the ques-
tion above, we propose a two-phase solution, relying on an
ILP column-generation-based model, which provides quasi-
optimal solutions with reasonable computational times. Sub-
optimality comes from the fact that we solve the problem in
two phases: in the first phase we group node pairs that will be
forced to use the same SC instance, in the second phase we
run our scalable column-generation approach to find a solution
starting from the grouping already performed in the first phase.
Applying the proposed approach over two realistic network
topologies, we observe that an appropriate choice of only a
small set of different SC mappings can lead to a solution
very close to the minimum theoretical bandwidth consumption,
even for a full-mesh traffic matrix.

The rest of this study is organized as follows. Section II
overviews the existing literature on the SC mapping problem
and remarks the novel contributions of this study. Section
III formally describes the problem and its input parameters.
Section IV describes a heuristic to cluster groups of node pairs
that will use the same SC instance. We then describe our
column-generation-based solving method in Section V. Sec-
tion VI provides some illustrative examples that demonstrate
that a limited number of SC instances can lead to quasi-optimal
solution of the problem. Section VII concludes the study.

II. RELATED WORK

A number of studies exist on the VNF placement and
routing problem. Mehraghdam et al. [3] were the first to
formally define the problem of VNF placement and routing.
However, they developed a Quadratic Constrained Program
(QCP), making it unscalable beyond small problem instances.
The authors of Ref. [4] study a hybrid deployment scenario
with hardware middleboxes using an Integer Linear Program
(ILP), but do not enforce VNF service chaining explicitly.
Ref. [5] uses an ILP to study trade-offs between legacy and
NFV-based traffic engineering but does not have explicit VNF
service chaining. Ref. [6] models the problem in a DC setting

using an ILP to reduce the end-to-end delays and minimize
resource over-provisioning while providing a heuristic to do
the same. Here too the VNF service chaining is not explicitly
enforced by the model. Ref. [7] models the batch deployment
of multiple chains using an ILP and develops heuristics to
solve larger instances of the problem. However, they enforce
that VNF instances of a function need to be on a single
machine and restrict all chains to three VNFs. Our model
does not impose such constraints, and we allow any VNF
type to be placed on any node and any number of VNFs in a
SC while service chaining VNFs for a SC explicitly. Ref. [8]
accounts for the explicit service chaining of VNFs but focuses
on compute resource sharing among VNFs. Ref. [9] also uses
a column generation model to solve the VNF placement and
routing but considers dedicated SC instances per each traffic
pair, hence solving the second extreme case mentioned in the
introduction, which is a particular case of our approach.

Our previous work [10] and most of existing works solve
the problem for multiple SCs but a single instance of the SC.
We remark again that in the current work we consider multiple
SCs, but with multiple instances per SC, hence most of the
existing works represent a particular case of our current work
where, each node pair requesting an SC has its own instance.
Further, we also consider multiple geographically distributed
node pairs which make a heavily-populated (dense) traffic
matrix. Unfortunately, scaling the model to multiple instances
per SC results in quadratic constraints. Hence, we now pro-
pose a novel decomposition model (column generation) for
SC mapping with multiple SC instances (Section IV), that,
together with a traffic-grouping heuristic, allows the solution
of the problem for multiple same-SC requests in the same SC
instance (Section V). Our objective is to minimize network-
resource consumption while keeping a bound on the number
of nodes that can host VNFs.

To the best of our knowledge, this is the first attempt to
address the solution of the complete SC mapping problem (i.e.,
with multiple SC instances) over large network instances.

III. PROBLEM DESCRIPTION

An operator’s network provides multiple services and each
service is realized by traversing a Service Chain (SC). Here,
we assume that, for each service, the operator knows the
ordered sequence of VNFs forming SC. To provide multiple

services, a network operator has to map corresponding SCs
into network. This is the problem of multiple SC mapping.
Most recent works on this topic assume SC mapping with a
single SC instance for each SC i.e., all demands for a SC will
be mapped to a single instance. Our work takes this further
by allowing SC mapping to multiple SC instances, for each
SC, which becomes a more complex problem. We solve this
problem by using a two phases approach that will be explained
in this the following sections.

A. Problem Statement

Given a network topology, capacity of links, a set of network
nodes with NFV support (NFV nodes), compute resources at
NFV nodes, the maximum number of NFV-nodes that can
be used, traffic flows for source-destination pairs requiring a
specific SC with a certain bandwidth demand, set of VNFs,
and, set of SCs, we determine the placement of VNFs and
corresponding traffic routing to minimize network-resource
(bandwidth) consumption. Note that VNFs can be shared
among different SCs.

B. Input Parameters

• G = (V,L): Physical topology of backbone network; V
is set of nodes and L is set of links.

• V NFV ⊆ V : Set of NFV nodes.
• K: number of NFV nodes allowed to host VNFs.
• F , indexed by f : Set of VNFs.
• nCORE: Number of CPU cores present per NFV node.
• nCORE

f : Number of CPU cores per Gbps for function f .
• C: Set of chains, indexed by c.
• nc: Number of VNFs in SC c.
• SD: Set of source-destination (vs, vd) pairs.
• Dc

sd: Traffic demand between vs and vd for SC c.
• σi(c): ID of ith VNF in SC c where fσi(c) ∈ F .
As already mentioned, we are solving this problem consider-

ing that each SC request can map to multiple instances, which
makes the problem quadratic. To avoid quadratic constraints,
our solution approach has two phases:
• Phase 1: We fix the number Nc of instances accepted per

SC (Nc can go from 1 up to the number of demands for
that SC), and then we group the traffic requests in Nc
groups of requests. All the requests in a group are forced
to use the same SC instance (Section IV). Then we pass
the Nc instances as distinct SCs to the next phase.

• Phase 2: We solve the SC mapping problem with one
single instance per SC based on the the inputs of Phase
1. The solution of this simplified (linear, yet still very
complex) problem is based on a column-generation-based
decomposition model (Section V).

IV. PHASE 1: SHORTEST PATH TRAFFIC GROUPING
(SPTG) HEURISTIC

In this section, we propose a Shortest Path Traffic Grouping
(SPTG) heuristic, which forms Nc groups of node pairs
for each SC (given by SDc), to be given as input to the
decomposition model in Section V that will treat them as

distinct SC and decide the best SC mapping for each of the Nc
node-pair groups. As a result, we will have a solution mapping
multiple SC instances per SC.

The logic of the SPTG algorithm below is that groups are
formed among node pairs that share links along their shortest
path(s). SPTG uses the links on the shortest paths of node
pairs to group node pairs together.

Algorithm 1 SPTG(c)

Require: G, SDc, Nc
Ensure: PARTITION ← partition of node pairs (vs, vd) into

groups
1: PARTITION ← ∅
2: numberOfGroups← 0
3: SDLEFT

c ← SDc . list of (vs, vd) for c
4: while numberOfGroups < Nc & SDLEFT

c 6= ∅ do
5: for (vs, vd) in G do
6: CLUSTERsd ← set of traffic pairs whose shortest

path passes through (vs, vd)
7: end for
8: largestCluster ← max

(vs,vd):Dcsd>0
CLUSTERsd

9: SDLEFT
c ← SDLEFT

c \ largestCluster . remove traffic
pairs of largestCluster from SDLEFT

c

10: Add largestCluster to PARTITION
11: numberOfGroups← numberOfGroups+ 1
12: end while
13: if SDLEFT

c 6= ∅ then
14: for trafficPair ∈ SDLEFT

c do
15: add trafficPair to GROUP ∈ PARTITION, such

that the (vs, vd) associated with GROUP provides the
shortest path for provisioning trafficPair

16: end for
17: end if

If Algorithm 1 terminates with SDLEFT
c = ∅ and a number

of groups that is < Nc, partition some of the groups in order
to reach Nc groups.

V. PHASE 2: COLUMN-GENERATION APPROACH

To present the decomposition a.k.a column generation
model, we use the following notation for SC representation.
Each SC, denoted by c, is characterized by an ordered set of
nc functions:

[SC c] fσ1(c) ≺ fσ2(c) ≺ · · · ≺ fσnc (c) (1)

Each deployment of SC c is defined by a set of VNF locations,
and a set of paths, from the location of first VNF to location
of last VNF.

Our decomposition model is based on a set of SC configu-
rations where each configuration is associated with a potential
provisioning of a SC c and a potential node placement of its
functions. Let Γ be the set of configurations, and Γc be the
subset of configurations associated with service chain (note
that, to keep the problem linear, only one configuration per
SC must be selected) c ∈ C: Γ =

⋃
c∈C

Γc.

As the number of potential configurations grows exponen-
tially with network size, we find the problem to fit naturally
in the column-generation framework [11].

Column generation (CG) is a decomposition technique,
where the problem (called Master Problem - MP) to be
solved is divided into two sub-problems: restricted master
problem (RMP) (selection of the best configurations) and
pricing problems (PP SC(c))c∈C (configuration generators for
each chain). The CG process involves solving the RMP,
querying the dual values of RMP constraints, and using them
for PP SC(c) objective. Each improving solution (i.e., with
a negative reduced cost) of PP SC(c) is added to RMP,
and previous step is repeated until optimality condition is
reached (see [11], [12]), with the PP SC(c) explored in a
round robin fashion. A chain configuration is characterized
by the following parameters:
• Location of the functions: aγvi = 1 if ith function fi ∈ c

is located in v in configuration; 0 otherwise.
• Connectivity of the locations: path from the location of

current VNF to next VNF in SC c. If link ` is used in
the path from the location of fσi(c) to the location of
fσi+1(c), then bγi` = 1; 0 otherwise.

A. Restricted Master Problem (RMP)

RMP selects the best γ ∈ Γc for each SC c. Also it finds a
route from vs (source) to first VNF of c and from last VNF
of c to vd (destination).

An illustration of the constraint splitting between RMP and
PP SC(c) is depicted in Fig. 2. Nodes circled in purple are
NFV nodes, yellow nodes do not host VNFs at present but have
NFV support, and orange nodes currently host VNFs. Figure
2(a) has f1 located at v1. When a different configuration is
selected in Fig. 2(b) and f1 is located at v2, then RMP finds
the path from vs to location of f1. Similarly, RMP finds the
path from last VNF to vd, i.e., f5 to vd here.

Variables:
• zγ = 1 if configuration γ is selected; 0 otherwise.
• xciv = 1 if ith function of c is located in v; 0 otherwise.
• yfirst(c),sd

` = 1 if ` is on path from vs to location of first
VNF in c; 0 otherwise.

• ylast(c),sd
` = 1 if ` is on path from location of last VNF in
c to vd; 0 otherwise.

• hv = 1 if v is used as a location for a VNF; 0 otherwise.

Objective: Minimize bandwidth consumed:

min
∑
γ∈Γ

Overall traffic using c︷ ︸︸ ︷ ∑
(s,d)∈SD

Dc
sd

Number of links
in the route of c︷ ︸︸ ︷(∑
`∈L

∑
i∈I

bγi`

)
︸ ︷︷ ︸

COSTγ

zγ+

∑
c∈C

∑
`∈L

∑
(s,d)∈SD

Dc
sd

(
y
f1(c),sd
` + y

fnc (c),sd
`

)
. (2)

Total bandwidth consumed in placing multiple SCs depends
on configuration γ selected for each SC c. Each γ for c

(a) A first configuration (γ1) for c

(b) A second configuration (γ2) for c

Fig. 2: Two configuration examples for chain c = (f1 ≺ f2 ≺
f3 ≺ f4 ≺ f5).

locates VNFs of c and gives the route to traverse these VNF
locations. So, bandwidth consumed when going from vs to vd
and traversing the SC depends on selected γ.
Constraints:∑

γ∈Γc

zγ = 1 c ∈ C (3)

∑
c∈C

∑
γ∈Γc

∑
(vs,vd)∈SD

Dc
sd (

nc∑
i=1

aγviδ
c
fin

CORE
f) zγ ≤ nCORE

v ∈ V NFV (4)∑
c∈C

∑
(vs,vd)∈SD

Dc
sdyf1(c),sd

` + y
fnc (c),sd
` +

∑
γ∈Γc

nc−1∑
i=1

bγi` zγ

≤ CAP` ` ∈ L (5)∑

γ∈Γc

aγvizγ = xciv fi ∈ F (c), c ∈ C, v ∈ V NFV (6)

Mxvf ≥
∑

c∈C:f∈c

∑
i∈{1,2,...,nc}:fi=f

xciv ≥ xvf

v ∈ V NFV, fi ∈ F (7)

Mhv ≥
∑
f∈F

xvf ≥ hv v ∈ V NFV (8)∑
v∈V NFV

hv ≤ K. (9)

Constraints (3) guarantee that we select exactly one γ for SC
c and forces c to have a single instance. Each γ is associated
with a set of aγvi (from PP SC(c)) required to be consistent
with xciv in RMP, which is resolved by Eqs. (6).

Constraints (4) ensure that each NFV node has a sufficient
number of CPU cores for hosting f . Those constraints also ac-
counts for increase in compute resource due to traffic increase.
Eq. (5) enforces link-capacity constraints for the complete
route for SC c from vs to vd for all (vs, vd) ∈ SD : Dc

sd > 0).
Eq. (7) is used to keep track of VNF replicas. Eq. (8) is used

to keep track of NFV nodes used for hosting VNFs while Eq.
(9) enforces the number of NFV nodes allowed to host VNFs.

Route from vs to first function location:∑
`∈ω+(vs)

y
f1(c),sd
` = 1− xc,1vs c ∈ C,

(vs, vd) ∈ SD : Dc
sd > 0 (10)∑

`∈ω−(v)

y
f1(c),sd
` ≥ xc,1v c ∈ C,

(vs, vd) ∈ SD : Dc
sd > 0, v ∈ V NFV \ {vs} (11)∑

`∈ω+(v)

y
f1(c),sd
` −

∑
`∈ω−(v)

y
f1(c),sd
` = −xc,1v

c ∈ C, (vs, vd) ∈ SD : Dc
sd > 0, v ∈ V NFV \ {vs} (12)∑

`∈ω+(v)

y
f1(c),sd
` −

∑
`∈ω−(v)

y
f1(c),sd
` = 0

c ∈ C, (vs, vd) ∈ SD : Dc
sd > 0, v ∈ V \ (V NFV ∪ {vs}). (13)

We assume that a unique route exists from vs to first VNF
location. This is imposed by selecting exactly one outgoing
link from vs unless first VNF is located at vs. We account
for these scenarios using Eq. (10). To find the route from vs
to first VNF, flow conservation needs to be enforced at the
intermediate nodes which may or may not have NFV support.
Eqs. (12) and (13) enforces flow-conservation constraints at
nodes with and without NFV support, respectively.

We can enforce same functionality as Eqs. (10), (12), (13),
and (11), on route from location of last VNF to vd. For the
interested reader, similar details are provided in [13].

B. Pricing Problem

Mapping computations for each SC c (c ∈ C) correspond
to the solution of pricing problems. The number of pricing
problems to be solved equals the sum of the number of SC
instances to be deployed.

Pricing problem PP SC(c) generates: (i) A set of locations
for VNFs of c; and (ii) a sequence of paths from the location
of VNF fi to the location of VNF fi+1, for i = 1, 2, . . . , nc−1
for chain c. Each solution that is generated by PP SC(c) with
a negative reduced cost, leads to a new potential γ for c of
interest. Please refer to [13] for similar details.

C. Solution Scheme

The PP SC(c) are solved in a round-robin fashion and the
final RMP is solved as an ILP, as in [11], [12].

VI. ILLUSTRATIVE NUMERICAL EXAMPLES

We first tested our two-phase optimization process on a
14 node NSFNet WAN topology [13] with a complete traffic
matrix, i.e., with traffic flows between all node pairs, assuming
all nodes can be made NFV nodes. The link capacity is
sufficient to support all flows. Each traffic flow is 1 Gbps
and demands the same 3 VNF service chain (SC). Compute
resource (CPU) at each node is sufficient to support all VNF
placements. The second run of the model is on a 11 node
COST239 WAN topology [14] under the same specifications
as above.

Figure 3(a) shows the bandwidth consumption as the num-
ber of SC instances increases. Here, we allow all nodes
(K=14) to host VNFs. We find that as the number of de-
ployed SC instances increases, the bandwidth consumption
decreases. Indeed, with a higher number of instances, groups
of traffic node pairs are able to take short paths. We see
that at 34 instances, we achieve minimum possible bandwidth
consumption, meaning traffic flow is taking the shortest paths.
Note that the number of traffic node pairs in the network is
182, requiring a priori 182 different instances (solving the
problem for 182 instances would be equivalent to obtaining
a solution with existing models as in Ref. [5][6][7]). Instead,
our approach with 34 instances already achieves optimized
bandwidth consumption. This is very important as a lower
number of instances lowers the orchestration overhead for
network operators.

Further, the number of NFV nodes increases as the number
of SC instances increases. Indeed, as SC mappings become
more distributed, more nodes are being used for hosting
virtual functions. In Fig. 3(a) 11 nodes are NFV enabled for
34 different SC mappings. For a network operator, capital
expenditure in making 11 out of 14 nodes capable of hosting
VNFs is very high. So, operators may want to minimize the
number of NFV nodes while also trying to reduce bandwidth
consumption by using multiple SC mapping instances. This led
us to explore how the bandwidth consumption varies when the
numbers of NFV nodes are limited.

Figure 3(b) shows the bandwidth consumption for SC
mapping instances for various K values. When K = 1, all
traffic flows have to traverse the one node in the network
and hence, the number of instances does not affect bandwidth
consumption. At K = 2, deploying more than 8 instances
does not improve bandwidth utilization. For K = 3 and
16 instances we are able to achieve close to 10% of the
minimum bandwidth utilization. Similarly, at K = 4 and
24 instances, we reach within 5% of the optimal bandwidth
consumption. The bandwidth consumption comes to within 1%
of the optimal when K=5 and 36 instances. Thus, we establish
that we can achieve near-to-optimal bandwidth consumption
by a using a relatively small number of instances and nodes.

Figures 3(c) and 3(d) corroborate our findings in Figs. 3(a)
and 3(b). With the COST239 network too, we can achieve
near-to-optimal bandwidth consumption with a small number
of SC instances and nodes.

(a) NSFNET K=14 (b) NSFNET K=1,2,3,4,5,14

(c) COST239 K=11 (d) COST239 K=1,2,3,4,5,11

Fig. 3: Bandwidth vs. Number of NFV Nodes in NSFNET and COST239 networks.

VII. CONCLUSION

We introduce the problem of multiple service chain (SC)
mapping with multiple SC instances in high traffic. We de-
veloped a column generation model along with a Shortest
Path Traffic Grouping (SPTG) heuristic which results in a
scalable linear model, thereby solving this complex problem
in a relatively small amount of time. Further, we demonstrate
that a near-to-optimal network resource consumption can be
achieved with a relatively small number of SC instances and
NFV nodes. This is critical in order to reduce the network
operator’s orchestration overhead and capital expenditures.

ACKNOWLEDGMENT

This work was supported by NSF Grant No. CNS-1217978.

REFERENCES

[1] ETSI, “Network functions virtualisation: Introductory white paper,”
portal.etsi.org/NFV/NFV White Paper.pdf, 2012.

[2] IETF, “Network service chaining problem statement,” https://tools.ietf.
org/html/draft-quinn-nsc-problem-statement-00, 2013.

[3] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in IEEE International Conference on
Cloud Networking (CloudNet), 2014, pp. 7–13.

[4] H. Moens and F. De Turck, “VNF-P: A model for efficient placement
of virtualized network functions,” in 10th International Conference on
Network and Service Management (CNSM), Nov. 2014, pp. 418–423.

[5] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network
functions placement and routing optimization,” https://hal.inria.fr/hal-
01170042/, 2015.

[6] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P.
Gaspary, “Piecing together the NFV provisioning puzzle: Efficient
placement and chaining of virtual network functions,” in IFIP/IEEE IM,
May 2015, pp. 98–106.

[7] M. Bari, S. Chowdhury, R. Ahmed, and R. Boutaba, “On orchestrating
virtual network functions in NFV,” Computing Research Repository,
vol. abs/1503.06377, 2015. [Online]. Available: http://arxiv.org/abs/
1503.06377

[8] M. Savi, M. Tornatore, and G. Verticale, “Impact of processing costs on
service chain placement in network functions virtualization,” in IEEE
NFV-SDN, 2015.

[9] N. Huin, B. Jaumard, and F. Giroire, “Optimization of Network
Service Chain Provisioning.” [Online]. Available: https://hal.inria.fr/
hal-01476018

[10] A. Gupta, M. Habib, P. Chowdhury, M. Tornatore, and B. Mukherjee,
“Joint Virtual Network Function Placement and Routing of Traffic in
Operator Networks,” Technical Report, UC Davis, 2015.

[11] B. Jaumard, C. Meyer, and B. Thiongane, “On column generation
formulations for the RWA problem,” Discrete Applied Mathematics, vol.
157, pp. 1291–1308, 2009.

[12] B. Jaumard and M. Daryalal, “Efficient spectrum utilization in large
scale RWA problems,” IEEE/ACM Transactions on Networking, pp. 1 –
16, 2017.

[13] A. Gupta, B. Jaumard, M. Tornatore, and B. Mukherjee, “Multiple
Service Chain Placement and Routing in a Network-enabled Cloud,”
CoRR, vol. abs/1611.03197, 2016.

[14] M. F. Habib, M. Tornatore, M. De Leenheer, F. Dikbiyik, and B. Mukher-
jee, “Design of disaster-resilient optical datacenter networks,” Journal
of Lightwave Technology, vol. 30, no. 16, pp. 2563–2573, 2012.

portal.etsi.org/NFV/NFV_White_Paper.pdf
https://tools.ietf.org/html/draft-quinn-nsc-problem-statement-00
https://tools.ietf.org/html/draft-quinn-nsc-problem-statement-00
http://arxiv.org/abs/1503.06377
http://arxiv.org/abs/1503.06377
https://hal.inria.fr/hal-01476018
https://hal.inria.fr/hal-01476018

	I Introduction
	II Related Work
	III Problem Description
	III-A Problem Statement
	III-B Input Parameters

	IV Phase 1: Shortest Path Traffic Grouping (SPTG) Heuristic
	V Phase 2: Column-Generation Approach
	V-A Restricted Master Problem (RMP)
	V-B Pricing Problem
	V-C Solution Scheme

	VI Illustrative Numerical Examples
	VII Conclusion
	References

