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Abstract—Capable of significantly reducing cell size and en-
hancing spatial reuse, network densification is shown to be one of
the most dominant approaches to expand network capacity. Due
to the scarcity of available spectrum resources, nevertheless, the
over-deployment of network infrastructures, e.g., cellular base
stations (BSs), would strengthen the inter-cell interference as
well, thus in turn deteriorating the system performance. On
this account, we investigate the performance of downlink cellular
networks in terms of user coverage probability (CP) and network
spatial throughput (ST), aiming to shed light on the limitation of
network densification. Notably, it is shown that both CP and
ST would be degraded and even diminish to be zero when
BS density is sufficiently large, provided that practical antenna
height difference (AHD) between BSs and users is involved to
characterize pathloss. Moreover, the results also reveal that the
increase of network ST is at the expense of the degradation of
CP. Therefore, to balance the tradeoff between user and network
performance, we further study the critical density, under which
ST could be maximized under the CP constraint. Through a
special case study, it follows that the critical density is inversely
proportional to the square of AHD. The results in this work could
provide helpful guideline towards the application of network
densification in the next-generation wireless networks.

I. INTRODUCTION

Among the possible approaches to fulfill the unprecedented

capacity goals of the future wireless networks, network den-

sification has been shown to be the one with the greatest

potential [1]. The basic principle behind network densification

is to deploy base stations (BSs) or access points (APs) with

smaller coverage to enable local spectrum reuse [2], [3]. As

such, mobile users are served with short-distance transmission

links, thereby facilitating enormous spatial multiplexing gain

and enhancing network capacity. The benefits of network

densification are substantially verified via the experimental

results from Qualcomm [4]. Specifically, it is shown that

over 1000-fold network capacity gain can be harvested by

deploying 144 self-organizing small cells into one macro-

cell, as compared to the macro-only case. Despite the merits,

however, the experimental results in [4] also show that the

benefits of network densification in terms of network capacity

enhancement start to diminish when the number of deployed

small cells is sufficiently large. In other words, network

densification may gradually drain the spatial multiplexing gain

as well. Therefore, the limitation of network densification

remains to be fully explored.

The research on how network densification impacts the

capacity of wireless networks has received extensive attention

in the literature. In [5], [6], the performance of single-tier

cellular networks and multi-tier heterogeneous networks has

been investigated, respectively. Remarkably, it is shown that

the network spatial throughput (ST), an important indica-

tor of network capacity, would linearly increase with the

densification of cellular BSs in both single- and multi-tier

networks. As an encouraging result, it indicates that the

potential spatial multiplexing gain can be sustainably achieved

provided that a sufficient number of BSs are deployed. Nev-

ertheless, the analysis in [5], [6] is made on the premise

that only non-line-of-sight (NLOS) paths exist between the

transmitters (Tx’s) and the intended receivers (Rx’s). Due to

the shorter transmission distance in dense deployment, line-

of-sight (LOS) paths are more likely to appear as well. On

this account, authors in [7]–[9] have captured the impact of

LOS/NLOS transmissions on the performance of downlink

cellular networks. In particular, it has been observed that the

user coverage probability (CP) tends to decay at some density

and network ST grows sublinearly or even decreases with the

increase of BS density [9]. This is mainly due to the fact

that the inter-cell interference power is likely to overwhelm

the desired signal power when LOS paths exist between

interfering BSs and the intended downlink user. Especially,

when BS density further increases, more interfering BSs would

have LOS paths to the intended user, thereby degrading user

and system performance. The results reveal the limitation of

network densification. Furthermore, besides the scaling law

analysis, authors in [10] have quantified the density, beyond

which network ST experiences a notable decrease.

In the aforementioned research, the 2-D distance is applied

to approximate the distance between the antennas of Tx’s and

Rx’s. In sparsely deployed networks where Tx’s and Rx’s are

far from each other, such approximation is of high accuracy

and thus valid. When Tx’s and Rx’s are in proximity, however,

it is apparent that the approximation will lose the accuracy

(see Fig. 1). Hence, it is of great importance to investigate

the performance of ultra-dense networks (UDN) with antenna

height difference (AHD) of Tx’s and Rx’s. Besides, it is

shown from [7]–[10] that the increase of network capacity

(system performance) is at the cost of the deterioration of user

performance (e.g., CP). Since user performance is an important

indicator to evaluate the performance of network densification,

it is crucial to balance the tradeoff between user and network

performance.

Motivated by above discussions, we investigate the funda-
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mentals of network densification in downlink cellular networks

with the aid of stochastic geometry. To explore the impact of

AHD between BSs and downlink users, we study the scaling

laws of both CP (user performance) and network ST (system

performance) under a generalized multi-slope pathloss model

(MSPM). Surprisingly, it is shown that, considering AHD, both

CP and network ST would be degraded by network over-

densification and even asymptotically approach zero when

BS density is sufficiently large. The results are opposite to

that derived without considering AHD [7]–[10]. Moreover, to

guarantee the quality of service (QoS) of users, we further

analyze the critical density that could maximize the network

ST under the CP constraint. It is observed that the critical

density is much smaller (e.g., 10% or even less under the

typical settings) than the density, under which network ST is

maximized without the CP constraint. The above results could

provide helpful insights and guidelines towards the planning

and deployment of future wireless networks.

For the remainder of this paper, we first describe the system

model in Section II, followed by a preliminary analysis on

CP and ST under a multi-slope pathloss model in Section III.

Afterward, we study the CP and ST scaling laws in Section

IV and investigate the critical density under the CP constraint

in Section V. Finally, conclusions are given in Section VI.

II. SYSTEM MODEL

A. Network Model

Consider a downlink cell network (see Fig. 1), where BSs

(with constant transmit power P ) and downlink users are

distributed in a two-dimension plane R2, in line with two

independent Homogeneous Poisson Point Processes (HPPPs),

ΠBS =
{

BSi
∣

∣BSi ∈ R2
}

and ΠU =
{

Uj

∣

∣Uj ∈ R2
}

(i, j ∈ N), respectively. It is assumed that all the BSs (down-

link users) are equipped with antennas of identical heights.

Meanwhile, denote ∆h as the AHD between BSs and users.

Downlink users are associated with the geometrically nearest

BSs so as to obtain the strongest average signal strength. It

is assumed that the user density λU is much greater than

the BS density λ, i.e., λU ≫ λ, to ensure that all the BSs

are connected and activated. In each time slot, BSs would

randomly select one of the associated users to serve. Besides,

a saturated data model is considered such that users always

require data to download from the serving BSs.

Channel power gain consists of two components: pathloss

and small-scale fading. To comprehensively characterize the

impact of LOS and NLOS components, we have adopted an

MSPM, i.e.,

lN

(

{αn}
N−1
n=0 ;x

)

= Knx
−αn , Rn ≤ x < Rn+1 (1)

where K0 = 1, Kn =
∏n

i=1 R
αi−αi−1

i (n ≥ 1), 0 = R0 <
R1 < · · · < RN = ∞ and 0 ≤ α0 ≤ α1 ≤ · · · ≤ αN−1

(αN−1 > 2 for practical concerns [8]) .

From (1), it follows that different pathloss exponents are

used to characterize the attenuation rates of signal power

within different regions. For instance, when N = 2, MSPM

Cellular BS Downlink user

inactive

3-D

2-D

Figure 1. Illustration of downlink cellular networks. Downlink users are
connected to the geometrically nearest BSs. When BSs are associated with
more than one user, one of them are randomly selected by BSs to serve.
Instead of the 2-D distance ri between BSs and downlink users, the 3-D
distance di between the antennas of them is considered, involving the AHD

∆h. As an example, d0 =

√

r2
0
+∆h2 for typical downlink BS0-U0.

degenerates into the dual-slope pathloss model (DSPM) [8],

[11]

l2 (α0, α1;x) =

{

x−α0 , x ≤ R1

K1x
−α1 , x > R1

(2)

where K1 = Rα1−α0
1 . The DSPM in (2) is applied when an

LOS path and a ground-reflected path exist between Tx and

the intended Rx. As such, signal power attenuates slowly (with

rate α0) within a corner distance R1, while attenuates much

more quickly (with rate α1) with distance out of R1. When

N = 1, MSPM further degenerates into the most widely used

single-slope pathloss model (SSPM) [5], [11]

l1 (α0;x) = x−α0 , x ∈ [0,∞) . (3)

For small-scale fading, although it is more suitable to

use Rice fading when LOS paths exist between Tx’s and

Rx’s, insightful results could hardly be obtained due to the

complicated form. Instead, Rayleigh fading with zero mean

and unit variance h ∼ CN (0, 1) is applied to model small-

scale fading for mathematical tractability. In additional, as will

be shown in Section IV, the application of Rayleigh fading

will not impact the results on CP and ST scaling laws via the

comparison between numerical and simulation results.

B. Performance Metrics

We adopt CP and ST to reflect user performance and system

performance, respectively. To be specific, following the signal-

to-interference ratio (SIR) at the typical downlink user U0
1,

CP is defined as

CP (λ) = P {SIRU0 > τ} , (4)

where τ denotes the decoding threshold. Based on CP in (4),

we further define network ST as

ST (λ) = λP {SIRU0 > τ} log2 (1 + τ) ,
[

bits/
(

s · Hz ·m2
)]

(5)

1Without loss of generality, we evaluate the CP of downlink pair BS0-
U0. Meanwhile, as spectrum resources could be universally reused, inter-cell
interference dominates the performance of downlink networks. Hence, the
impact of noise is ignored.
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which could characterize the number of bits that are success-

fully conveyed over unit time, frequency and area. Hence, ST

serves as an indicator to network capacity.

Notation: If 2F1 (·, ·, ·, ·) is defined as the standard

Gaussian hypergeometric function, denote ω1 (x, αn) =

2F1

(

1, 1− 2
αn

, 2− 2
αn

,−x
)

and ω2 (x, αn) =

2F1

(

1, 2
αn

, 1 + 2
αn

,−x
)

in the rest of the paper.

III. ANALYSIS OF CP AND ST WITH AHD

In this section, we first give preliminary analysis of CP and

ST under the MSPM in (1). Particularly, the impact of the

AHD on the network performance is highlighted.

From (4), CP is defined based on the SIR evaluated at U0.

Therefore, we first characterize the SIR at U0 as

SIRU0 =PHU0,BS0 lN

(

{αn}
N−1
n=0 ; d0

)

/IIC, (6)

where IIC =
∑

BSi∈Π̃BS

PHU0,BSi
lN

(

{αn}
N−1
n=0 ; di

)

denotes

the inter-cell interference suffered by U0, Π̃BS = ΠBS\BS0,

di denotes the distance from the antenna of BSi to that of U0,

and HU0,BSi
denotes the corresponding channel power gain

caused by small-scale fading. Meanwhile, if we denote ri as

the distance from BSi to U0, then di =
√

r2i +∆h2. Note

that HU0,BSi
∼ exp (1) since Rayleigh fading h ∼ CN (0, 1)

is applied to model small-scale fading.

From (6), we can obtain the following results on CP and

ST in Proposition 1.

Proposition 1. Considering the AHD between BSs and down-

link users, the ST in downlink cellular networks under MSPM

in (1) is given by STN (λ) = λCPN (λ) log2 (1 + τ), where

CPN (λ) is given by (7) at the top of Page 4. In (7), C1 =
2τω1(τ,α0)

α0−2 , d0 =
√

r20 +∆h2 and the probability density

function (PDF) of r0 is derived from the contact distribution

[12]

fr0 (x) = 2πλx exp
(

−πλx2
)

, x ≥ 0. (8)

Proof : Please refer to Appendix A.

Despite its complicated form, the result in Proposition 1

could provide a numerical approach to capture the relationship

between system parameters and performance metrics, namely,

CP and ST, under MSPM. Meanwhile, according to the special

case in (7), where N = 1, it follows that both CP and

ST would exponentially decrease with ∆h2. In other words,

the results, without considering the impact of the AHD,

greatly over-estimate the performance of downlink network.

In addition, when N = 2 and MSPM degenerates into DSPM,

the results on CP and ST could be further simplified according

to the following corollary.

Corollary 1. Considering the AHD between BSs and downlink

users, the ST in downlink cellular networks under DSPM in

(2) is given by ST2 (λ) = λCP2 (λ) log2 (1 + τ), where

CP2 (λ) =Er0∈[0,R1)

[

e−πλ(δ1(α0,d0,τ,R1)+δ2(α0,α1,d0,τ,R1))
]

+Er0∈[R1,∞)

[

e−πλδ3(α1,d0,τ)
]

. (9)

In (9), d0 =
√

r20 +∆h2, δ1 (α0, d0, τ, R1) =

R2
1ω2

(

R
α0
1

τd
α0
0

, α0

)

− d20ω2

(

1
τ
, α0

)

, δ2 (α0, α1, d0, τ, R1) =

2τd
α0
0 R

2−α0
1

α1−2 ω1

(

τd
α0
0

R
α0
1

, α1

)

, δ3 (α1, d0, τ) =
2τd2

0

α1−2ω1 (τ, α1)

and the PDF of r0 is given by (8).

Proof : The proof can be completed by setting N = 2 in

(7) with easy manipulation, and thus omitted due to space

limitation.

Based on Proposition 1 and Corollary 1, we illustrate the

impact of AHD on CP and network ST in detail. In particular,

Fig. 2 shows the CP and ST as a function of ∆h of BSs

and downlink users under different BS densities. It can be

seen from Fig. 2 that both CP and ST would be degraded

by ∆h. This indicates that, although the existence of ∆h
would weaken both desired and interference signal power, the

decrease of the desired signal power overwhelms that of the

interference signal powers. Meanwhile, it is shown that the

impact of ∆h on CP and ST is relatively small under sparse

BS deployment, while the impact is significant under dense

BS deployment. Hence, in dense wireless networks, where

the user antenna heights are basically small, it is preferable

to deploy small cell BSs with smaller antenna heights so as

to reduce the AHD, thereby ensuring the user performance as

well as system performance.

As shown in Fig. 2, it is evident that the existence of ∆h
leads to the performance degradation in terms of CP and ST,

especially in the fully densified networks. Therefore, we have

to further explore the influence of ∆h on the scaling laws of

CP and ST in the following.

IV. CP AND ST SCALING LAWS

In this part, before investigating the fundamental limitation

of network densification by analyzing the CP and ST scaling

laws, results on ω1 (x, y) are first given in the following

Lemma.

Lemma 1. For y > 2, ω1 (x, y) is a decreasing function of x.

Proof : Please refer to the proof for Lemma 1 in [13].

On the basis of Lemma 1 and Proposition 1, we show the

CP and ST scaling laws in Theorem 1.

Theorem 1. When AHD exists between BSs and downlink

users, CP and ST scale with BS density λ as CPN (λ) ∼ e−κλ

and STN (λ) ∼ λe−κλ (κ is a constant), respectively, under

MSPM.

Proof : Please refer to Appendix B.

It is shown from Theorem 1 that both user and system per-

formance would be degraded when BS density is sufficiently

large. This is essentially different from the results in [7]–[10],

where the impact of AHD has not been taken into account in

the scaling law analysis. Particularly, we show the difference

in Fig. 3.

Fig. 3 shows the CP and ST as a function of BS density

λ under different ∆h. It is shown in Fig. 3a that, when

∆h = 0m, CP almost keeps constant with the increasing

λ under SSPM, and slowly decreases with the increasing λ
under DSPM (compared to the DSPM case under ∆h > 0m).
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CPN (λ) =























1
1+C1

exp
(

−πλC1 △ h2
)

, N = 1
N−1
∑

n=0
Er0∈[Rn,Rn+1)

{

exp
[

−πλ
(

R̄2
n+1ω2

(

R̄
αn
n+1

τd
αn
0

, αn

)

− d20ω2

(

τ−1, αn

)

+
N−1
∑

i=n+1

(

R̄2
i+1ω2

(

R̄
αi
i+1

τKid
αn
0

, αi

)

− R̄2
iω2

(

R̄
αi
i

τKid
αn
0

, αi

))

)]}

, N > 1

(7)
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Figure 2. CP and ST varying with AHD ∆h. For system settings, set P =

23dBm and τ = 0dB. For SSPM, set α0 = 4. For DSPM, set α0 = 1.5,
α1 = 4 and R1 = 10m. Lines and markers denote numerical and simulation
results, respectively, in this figure and the remaining figures in this paper.

In consequence, network ST would linearly/sublinearly grow

with λ, as shown in Fig. 3b. In contrast, both CP and ST

asymptotically approach zero when λ is sufficiently large un-

der ∆h > 0m. In practice, AHD would exist between BSs and

cellular users, even when small cell BSs are densely deployed.

Therefore, the results, which ignore the impact of AHD, have

over-estimated the benefits of network densification, while

those in Theorem 1 could shed light on the fundamental

limitation of network densification.

To verify the validity of the scaling law analysis under

Rayleigh fading, we also evaluate the performance of downlink

networks under Rice fading via simulation results in Fig.
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(b) ST.

Figure 3. CP and ST varying with BS density λ. For system settings, set
P = 23dBm and τ = 0dB. For SSPM, set α0 = 4. For DSPM, set α0 = 1.5,
α1 = 4 and R1 = 10m. To reflect the impact of LOS paths on signal
propagation, we set υNC = 1 and υDoF = 12 for Rice fading.

3. Specifically, the channel power gain under Rice fading

channels follows the non-central χ2 distribution with non-

centrality parameter υNC and degrees of freedom υDoF. A

larger υDoF indicates more scattered components. It can be

seen from Fig. 3 that, although gaps exist between the results

under Rice and Rayleigh fadings, it is apparent that the CP

and ST scaling laws under Rice fading are identical as those

under Rayleigh fading.

In addition, it is observed from Fig. 3 that the improvement

of system performance is at the cost of the degeneration of

user experience. For instance, when ∆h > 0m, network ST

grows with BS density at λ = 1× 103BS/km2
(see Fig. 3a),

under which CP already starts to diminish with λ (see Fig.

3b). Therefore, besides ensuring the system performance, it is

also critical to guarantee the user experience when planning

the deployment of cellular networks, the detail of which will

be described in the next section.



5

V. CRITICAL DENSITY UNDER CP CONSTRAINT

In this section, a CP requirement ε is set to guarantee the

QoS of users as

CP (λ) = P {SIRU0 > τ} > ε. (10)

From (10), it is intuitive that whether or not the constraint

could be satisfied greatly depends on the deployment density

of BSs. Nonetheless, as observed from Fig. 3a, the maximal

CP that can be achieved reaches 0.56, irrespective of the BS

density. Therefore, besides BS density, other parameters such

as pathloss exponents, decoding threshold, etc., may impact

whether the CP requirement can be met as well. In this light,

we first analyze the necessary condition to acquire the CP

requirement. Afterward, we derive the critical density, under

which network ST can be maximized under the pre-set CP

requirement.

It is worth noting that, to provide helpful insights towards

the impact of system parameters on necessary regions and

critical density, the results derived in this section are built on

the SSPM in (3). In the following theorem, the results on the

necessary condition are first given.

Theorem 2. Under SSPM in (3), the necessary condition to

satisfy the CP requirement in (10) is given by

2τω1 (τ, α0)

α0 − 2
< ε−1 − 1. (11)

Proof : Please refer to Appendix C.

Theorem 2 provides a direct approach on how to reasonably

adjust system parameters to meet the pre-set CP requirement of

downlink users. Meanwhile, the right-hand-side of (11), i.e.,

g (ε) = ε−1 − 1, implies that g (ε) exponentially decreases

with ε and approaches 0 when ε → 1. Therefore, it is more

difficult to meet the CP requirement especially when ε grows

larger. Aided by Theorem 2, we further obtain the critical BS

density in the following corollary.

Corollary 2. With the CP constraint ε, the critical BS density

λ∗, under which network ST is maximized, is given by

λ∗ =

(α0 − 2) ln

[

ε−1
(

1 + 2τω1(τ,α0)
α0−2

)−1
]

2πτω1 (τ, α0)△ h2
. (12)

Without the CP constraint, the critical BS density λ†, under

which network ST is maximized, is given by

λ† =
α0 − 2

2πτω1 (τ, α0)△ h2
. (13)

Proof : It is straightforward to obtain λ∗ following (27) in

Appendix C and λ† by solving
∂ST1(λ)

∂λ
= 0, where ST1 (λ)

is given by Proposition 1.

The influence of system parameters on critical densities

is captured using the closed-form expression in Corollary 2.

Especially, it is observed that both λ∗ and λ† are inversely

proportional to the square of AHD, i.e., ∆h2. Meanwhile,

we extend the results into the case with DSPM applied.

Specifically, we plot the critical density as a function of

∆h under both SSPM and DSPM in Fig. 4. Due to space
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Figure 4. Critical densities λ
∗ and λ

† varying with the AHD ∆h. For system
settings, set P = 23dBm and τ = 0dB. For SSPM, set α0 = 5. For DSPM,
set α0 = 1.5, α1 = 5 and R1 = 10m.

limitation, numerical results on the critical densities under

DSPM are not presented and only simulation results (drawn

by markers) are given.

We observe from Fig. 4 that the CP constraint greatly

limits the maximal deployment density of BSs in downlink

networks. For instance, the critical density is reduced by 3.6

and even 9.7 folds when ε = 0.5 and ε = 0.6, respectively,

given ∆h = 2m under the settings in Fig. 4. Meanwhile,

critical densities λ∗ and λ† would exponentially decrease with

∆h under single-slope and dual-slope models. Therefore, the

above results also reveal the essential impact of AHD on the

BS deployment in downlink cellular network. In particular, it

indicates that, in densely deployed scenarios (e.g, stadium and

open gathering), the antenna height of small cell BSs should

be lowered, thereby facilitating the maximization of network

ST while ensuring the QoS of downlink users.

VI. CONCLUSION

In this paper, we have explored the fundamental limits of

network densification in downlink cellular networks under a

generalized multi-slope pathloss model. Specifically, consider-

ing the AHD between BSs and downlink users, it is shown that

the network ST first increases, then decreases with network

densification and finally approaches zero when BSs are over-

deployed. Meanwhile, it is observed that the CP of downlink

users starts to diminish with the BS density when network

ST is increased. Therefore, to strike a balance between user

and system performance, we have derived the critical density,

under which network ST can be maximized with the pre-

set CP constraint. The results in this work could provide

helpful guidance for the network deployment and application

of network densification in future wireless networks.
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APPENDIX

A. Proof for Proposition 1

Substitute (6) into (4), we have

CPN (λ) =P {HU0,BS0 > sNIIC}

(a)
=Ed0,Π̃BS,HU0,BSi





∏

BSi∈Π̃BS

e−sNPHU0,BSi
lN (di)





(b)
=Ed0,Π̃BS





∏

BSi∈Π̃BS

1

1 + sNPlN (di)



 , (14)

where sN = τ
P lN (d0)

. In (14), (a) and (b) are due to

HU0,BSi
∼ exp (1) and the independence of HU0,BSi

. Aided

by the probability generating functional (PGFL) of Poisson

point process (PPP) [12], CPN (λ) in (14) further turns into

CPN (λ) =Ed0

[

e
−λ

∫

∞

d0

(

1− 1
1+sNPlN (x)

)

d(πx2)
]

,

=Ed0

[

e
−2πλ

∫

∞

d0
x
(

1− 1
1+sNPlN (x)

)

dx

]

. (15)

Given N = 1, it is straightforward to obtain s1 =
τd

α0
0

P
and

CP1 (λ) =Ed0

[

exp

(

−
2πλτω1 (τ, α0)

α− 2
d20

)]

=Er0

[

exp

(

−
2πλτω1 (τ, α0)

α− 2

(

r20 +∆h2
)

)]

(a)
=

1

1 + C1
exp

(

−πλC1 △ h2
)

, (16)

where (a) follows because the PDF of r0 is given by (8).

Given N > 2 and d0 ∈
[

R̄n, R̄n+1

)

with R̄n =
√

r20 +R2
n,

∫∞

d0
xk−1

(

1− 1
1+sNPlN (x)

)

dx in (15) turns into

∫ ∞

d0

x

(

1−
1

1 + sNPlN (x)

)

dx

=

∫ R̄n+1

d0

x

(

1−
1

1 + τdαn

0 x−αn

)

dx

+

N−1
∑

i=n+1

∫ R̄i+1

R̄i

x

(

1−
1

1 + τKid
αn

0 x−αi

)

dx

=
1

2

[

R̄2
n+1ω2

(

R̄αn

n+1

τdαn

0

, αn

)

− d20ω2

(

τ−1, αn

)

]

+

N−1
∑

i=n+1

[

R̄2
i+1

2
ω2

(

R̄αi

i+1

τKid
αn

0

, αi

)

−
R̄2

i

2
ω2

(

R̄αi

i

τKid
αn

0

, αi

)]

Hence, the proof is completed.

B. Proof for Theorem 1

From Proposition 1, it follows that the proof for the scaling

laws of CP and ST under the SSPM is straightforward and

thus omitted due to limitation. Then, we focus on the proof

for the case with N > 2, and some useful notations are first

given in the following.

Denote g1 (x) and g2 (x) as two functions on the subset of

real numbers. We write g1 (x) = Ω (g2 (x)) if ∃m > 0, x0,

∀x > x0, m |g2 (x)| ≤ |g1 (x)|, and g1 (x) = O (g2 (x)) if

∃m > 0, x0, ∀x > x0, |g1 (x)| ≤ m |g2 (x)|.
Given N > 2, the CP in (7) can be expressed as

CPN (λ)

=Er0∈[R0,RN−1)

[

e
−2πλ

∫

∞

d0
x
(

1− 1
1+sNPlN (x)

)

dx

]

+Er0∈[RN−1,RN )

[

e
−2πλ

∫

∞

d0
x
(

1− 1
1+sNPlN (x)

)

dx

]

. (17)

Then, it can be directly obtained that

CPN (λ) >Er0∈[RN−1,RN )

[

e
−2πλ

∫

∞

d0
x
(

1− 1
1+sNPlN (x)

)

dx

]

.

(18)

As d0 =
√

r20 +∆h2, R̄N−1 =
√

R2
N−1 +∆h2 and RN =

∞, when d0 ∈
[

R̄N−1,∞
)

, sN = τ

PKN−1d
−αN−1
0

and

lN (x) = KN−1x
−αN−1 , the integral in (18) turns into

∫ ∞

d0

x

(

1−
1

1 + τd
αN−1

0 x−αN−1

)

dx

=τω1 (τ, αN−1) d
2
0

=τω1 (τ, αN−1)
(

r20 +∆h2
)

. (19)

Next, we derive the lower bound of CPN (λ) as

CPN (λ) >CP
L
N (λ)

=Er0∈[RN−1,∞)

[

e−2πλτω1(τ,αN−1)(r20+∆h2)
]

(a)
=

e−πλ[R2
N−1+2τω1(τ,αN−1)(R2

N−1+∆h2)]

1 + 2τω1 (τ, αN−1)
, (20)

where (a) is due to the PDF of r0 given in (8). Therefore, it

can be shown that ∃ 1
1+2τω1(τ,αN−1)

> 0, ∀λ > 0,

∣

∣

∣
CP

L
N (λ)

∣

∣

∣
≥

e−πλ[R2
N−1+2τω1(τ,αN−1)(R2

N−1+∆h2)]

1 + 2τω1 (τ, αN−1)
. (21)

Hence, CPL
N (λ) = Ω

(

e−πλ[R2
N−1+2τω1(τ,αN−1)(R2

N−1+∆h2)]
)

holds true.

In the following, we analyze the upper bound of

CPN (λ). When r0 ∈ [Rn, Rn+1) or equivalently d0 ∈
[

R̄n, R̄n+1

)

(n = 0, 1, . . . , N − 2), sN =
τd

αn
0

PKn
holds. As

such,
∫∞

d0
x
(

1− 1
1+sNPlN (x)

)

dx in the first term of (17) can

be manipulated as
∫ ∞

d0

x

(

1−
1

1 + sNPlN (x)

)

dx

(a)
>

∫ ∞

R̄N−1

x



1−
1

1 + τKN−1

Knd
−αn
0

x−αN−1



 dx

=
τKN−1R̄

2−αN−1

N−1 dαn

0

Kn (αN−1 − 2)
ω1

(

τKN−1d
αn

0

KnR
αN−1

N−1

, αN−1

)

(b)
>

τKN−1R̄
2−αN−1

N−1 ∆hαn

Kn (αN−1 − 2)
ω1

(

τKN−1

Kn

, αN−1

)

=q1 (n) , (22)
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where (a) follows due to d0 < R̄N−1, and (b) follows because

d0 > ∆h, dαn

0 < R
αN−1

N−1 and ω1 (x, αN−1) is a decreasing

function of x (see Lemma 1). Using (22) and the PDF of r0
in (8), we have

Er0∈[R0,RN−1)

[

e
−2πλ

∫

∞

d0
x
(

1− 1
1+sNPlN (x)

)

dx

]

<

N−2
∑

n=0

Er0∈[Rn,Rn+1)

[

e−2πλq1(n)
]

=

N−2
∑

n=0

e−2πλq1(n)
(

e−πλR2
n − e−πλR2

n+1

)

. (23)

When r0 ∈ [RN−1,∞), the second term of (17) is already

given by CP
L
N (λ) in (20). Hence, it is easy to obtain

CPN (λ) <
N−2
∑

n=0

e−2πλq1(n)
(

e−πλR2
n − e−πλR2

n+1

)

+ CP
L
N (λ)

<
N−2
∑

n=0

e−2πλq1(n)e−πλR2
n + CP

L
N (λ)

<
N−2
∑

n=0

e−2πλq1(n) + e−πλR2
N−1

=CP
U
N (λ) . (24)

In (24), If n ∈ C (C = {0, 1, . . . , N − 2}), which enables

2q1 (n) > R2
N−1, then the inequality e−2πλq1(n) < e−πλR2

N−1

holds. Then, CPU
N (λ) in (24) turns into

CP
U
N (λ) =

N−2
∑

n=0

e−2πλq1(n) + e−πλR2
N−1 <Ne−πλR2

N−1 ,

which indicates that ∃N > 0, ∀λ > 0,

∣

∣

∣CP
U
N (λ)

∣

∣

∣ <Ne−πλR2
N−1 . (25)

If n ∈ C† (C ⊆ {0, 1, . . . , N − 2}), which enables

2q1 (n) ≤ R2
N−1, then we denote n = N †, which makes

e−2πλq1(N†) ≥ e−2πλq1(n) (0 ≤ n ≤ N − 2). It is apparent

that e−2πλq1(N†) ≥ e−πλR2
N−1 holds as well. Then, we have

N−2
∑

n=0

e−2πλq1(n) + e−πλR2
N−1 <Ne−2πλq1(N†).

In this case, ∃N > 0, ∀λ > 0,

∣

∣

∣CP
U
N (λ)

∣

∣

∣ < Ne−2πλq1(N†). (26)

Combining (25) and (26), CP
U
N (λ) = O

(

e−πλR2
N−1

)

or

CP
U
N (λ) = O

(

e−2πλq1(N†)
)

holds true.

According to the above proof for the scaling laws of

CP
U
N (λ) and CP

L
N (λ), it is easy to show that there exists

a constant κ, which makes CPN (λ) scale with λ as e−κλ.

Therefore, based on the definition of ST in (5), STN (λ) scales

with λ as λe−κλ.

C. Proof for Theorem 1

Substituting the special case of CP (N = 1) in (7) into

(10), we have 1
1+C1

exp
(

−πλC1 △ h2
)

> ε. Through easy

manipulation, the following inequality can be obtained

λ < −
ln [ε (1 + C1)]

πC1 △ h2
. (27)

To make the inequality in (27) valid, we have to guarantee

ln [ε (1 + C1)] < 0. Hence, the proof is complete.
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