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Abstract—The training complexity of deep learning-based
channel decoders scales exponentially with the codebook size
and therefore with the number of information bits. Thus, neural
network decoding (NND) is currently only feasible for very
short block lengths. In this work, we show that the conventional
iterative decoding algorithm for polar codes can be enhanced
when sub-blocks of the decoder are replaced by neural network
(NN) based components. Thus, we partition the encoding graph
into smaller sub-blocks and train them individually, closely
approaching maximum a posteriori (MAP) performance per
sub-block. These blocks are then connected via the remaining
conventional belief propagation decoding stage(s). The resulting
decoding algorithm is non-iterative and inherently enables a high-
level of parallelization, while showing a competitive bit error
rate (BER) performance. We examine the degradation through
partitioning and compare the resulting decoder to state-of-the-
art polar decoders such as successive cancellation list and belief
propagation decoding.

I. INTRODUCTION

Non-iterative and consequently low-latency decoding to-
gether with close to maximum a posteriori (MAP) decoding
performance are two advantages of deep learning-based chan-
nel decoding. However, this concept is mainly restricted by
its limited scalability in terms of the supported block lengths,
known as curse of dimensionality [1]. For k information bits,
the neural network (NN) needs to distinguish between 2F
different codewords, which results in an exponential training
complexity in case that the full codebook needs to be learned.
In this work we focus on NN decoding of polar codes and
show that the scalability can be significantly improved towards
practical lengths when the NN only replaces sub-components
of the current decoding algorithm.

List decoding [2] with manageable list sizes and excellent
bit error rate (BER) performance for short block lengths makes
polar codes [3]] a potential candidate for future communication
standards such as the upcoming 5G standard or internet
of things (loT) applications. As polar codes are currently
proposed for the 5G control channel [4], decoding algorithms
for very short block lengths are of practical importance [J5].
Besides that, the rate can be completely flexible adjusted
with a single-bit granularity. However, the price to pay is an
inherently serial decoding algorithm which is in general hard
to accelerate, e.g., through parallel processing [[6]. This leads
to high decoding latency when compared to state-of-the-art
low density parity check (LDPC) codes/decoders [7]. Thus,

there is a demand for alternative decoding strategies. Besides
algorithmic optimizations [[7] of the existing algorithms, mod-
ifying the code structure [8]] can be considered to overcome
this issue. However, once standardized, the encoder cannot be
changed. In this work, we propose an alternative approach by
applying machine learning techniques to find an alternative
decoding algorithm instead of changing the code structure.
Once trained, the final decoding algorithm (i.e., the weights
of a deep neural network) itself is static and can be efficiently
implemented and parallelized on a graphical processing unit
(GPU), field programmable gate array (FPGA), or application-
specific integrated circuit (ASIC).

A first investigation of the topic learning to decode was
already done in [1]. The authors showed that the main dif-
ficulty lies within the curse of dimensionality meaning that
for k information bits 2" classes exist, leading to exponential
complexity during the training phase. In other applications,
such as computer vision, the number of possible output classes
is typically limited, e.g., to the number of different objects. In
contrast to many other machine learning fields, an unlimited
amount of labeled training data is available, since the encoding
function and the channel model are well known. Additionally,
a clear benchmark with existing decoders is possible. Although
very powerful machine learning libraries such as Theano [9]
and Tensorflow [10] are available nowadays and the computa-
tion power increased by order of magnitudes, the exponential
complexity still hinders straight-forward learning of practical
code lengths as shown in [L11]. It was observed in [11], that
there is a certain generalization of NN decoding, meaning that
the NN can infer from certain codewords to others it has never
seen before. This is essential for learning longer codes and
gives hope that neural network decoding (NND) can be scaled
to longer codes. However, to the best of our knowledge, the
naive approach of learning to decode only works for rather
small block lengths.

The authors in [12]] proposed the idea of using machine
learning techniques to train the weights of a belief propagation
factor graph in order to improve its decoding performance for
high density parity check (HDPC) codes. As the Tanner graph
is already given initially and only its weights are refined, their
approach scales very well for larger block lengths and does
not suffer from the curse of dimensionality. However, in this
case, the use of machine learning refines an existing solution.



The decoding algorithm itself is not learned, since the iterative
nature of the BP algorithm is kept.

In our work, we tackle the problem of completely replacing
the polar code decoder by a machine learning approach. As
it turns out, only small codeword lengths can be trained
efficiently, and thus we divide the polar encoding graph
into several sub-graphs (cf. [13]). We learn sub-block wise
decoding and couple the components by conventional belief
propagation (BP) stages. This scales the results from [11]
towards practical block lengths.

II. POLAR CODES

An encoder for polar codes maps the k information bits
onto the k most reliable bit positions of the vector u of length
N, denoted as information set A, while the remaining N — k
positions are treated as frozen positions. These frozen positions
are denoted as A and must be known at the decoder side.
Now the input block u is encoded according to x = u - Gy,
where G = F®" is the generator matrix and F®" denotes the

" Kronecker power of the kernel F = [} {]. The resulting
encoding circuit is depicted in Fig. [I] for N = 8, which also
defines the decoding graph. This factor graph consists of
n+1=1log,(N) + 1 stages, each consisting of N nodes.

The BER performance of a polar code highly depends on
the type of decoder used and has been one of the most exciting
and active areas of research related to polar coding. There are
two main algorithmic avenues to tackle the polar decoding
problem:

1) successive cancellation-based decoding, following a se-
rial “channel layer unwrapping” decoding strategy [3],

2) belief propagation-based decoding based on Gallager’s
BP iterative algorithm [14].

Throughout this work, we stick with the BP decoder as its
structure is a better match to neural networks and enables par-
allel processing. For details about successive cancellation (SC)
decoding and its list extension called successive cancellation
list (SCL) decoding, we refer the interested reader to [2] and
[3]. The BP decoder describes an iterative message passing
algorithm with soft-values, i.e., log likelihood ratio (LLR)
values over the encoding graph. For the sake of simplicity,
we assume binary phase shift keying (BPSK) modulation and
an additive white Gaussian noise (AWGN) channel. However,
other channels can be implemented straightforwardly. For a
received value y, it holds that

where o~ is the noise variance. There are two types of LLR
messages: the right-to-left messages (L-messages) and the left-
to-right messages (R-messages). One BP iteration consists of
two update propagations:
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1) Left-to-right propagation: The R-messages are updated
starting from the leftmost stage (i.e., the stage of a priori
information) until reaching the rightmost stage.
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Fig. 1: Polar Encoding circuit for N = 8; blue boxes indicate
the independent partitions of the code for M = 2 and green
boxes for M = 4.

2) Right-to-left propagation: The L-messages are updated
starting from the rightmost stage (i.e., the stage of
channel information) until reaching the leftmost stage.

The output from two nodes becomes the input to a specific
neighboring processing element (PE) (for more details we refer
to [15]). One PE updates the L- and R-messages as follows
[L5]:

Lout,l = ( in, 1; in,2 + Rin,2)
Rout,l = f( in,ls 2n,2 + Rin,Q) (1)
Lout,2 = f( in,ls zn,l) + Lin,2
Rout,2 = f( in,ly zn,l) + Rin,?
where i
14 e
b)=In|{ ———
Flan) = ()

For initialization, all messages are set to zero, except for the
first and last stage, where

Lint1 = Licn, and

Lmaz
Ri1 =
1 {0

with L,,,, denoting the clipping value of the decoder (in
theory: Ly, — ©00), as all values within the simulation
are clipped to be within (—Ly,q4, Limas ). This prevents from
experiencing numerical instabilities.
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A. Partitionable Codes

As opposed to other random-like channel codes with close-
to-capacity performance, polar codes exhibit a very regu-
lar (algebraic) structure. It is instructive to realize that the
encoding graph, as visualized in Fig. [I] for N = 8, can
be partitioned into independent sub-graphs [13]], [16]], i.e
there is no interconnection in the first logs (V) stages, where
N, denotes the number of bits per sub-block. We define a
partitionable code in a sense that each sub-block can be
decoded independently (i.e., no interconnections within the
same stage exist; leading to a tree like factor graph). This
algorithm can be adopted to all partitionable codes and is



not necessarily limited to polar codes. Each sub-graph (in
the following called sub-block) is now coupled with the other
sub-blocks only via the remaining polar stages as depicted in
Fig.[I] In order to simplify polar decoding, several sub-blocks
B; can now be decoded on a per-sub-block basis [13]. The
set of frozen bit positions A need to be split into sub-sets A;
corresponding to the sub-blocks B; (with information vector
u;) and, thus, each sub-block might show a different code rate.

In a more abstract view, we follow the spirit of [17]. Their
simplified successive cancellation (SSC) algorithm partitions
the decoding tree into single-parity checks (SPC) and repeti-
tion codes (RC). This turns out to be a very efficient way
of improving the overall throughput, as the SPC and RC
sub-decoders can be efficiently implemented. Our approach
replaces these partitions by NNs.

B. Deep-Learning for Channel Coding

For the fundamentals of deep learning, we refer the reader
to [18]]. However, for the sake of terminology, we provide a
brief overview on the topic of machine learning. For a more
detailed explanation how to train the sub-block NND we refer
to [L1]. Feedforward NNs consist of many connected neurons
which are arranged in L layers without feedback connections.
The output y of each neuron depends on its weighted inputs
0;z; and its activation function g, given by

y=g <Z ;i + 90) . 3)

The whole network composes together many different func-
tions £ of each layer [ and describes an input-output mapping

w=f(v;0) =t (2 (L (£0v)))) @)

where v, w and ® denote the input vector, output vector and
the weights of the NN, respectively. It was shown in [19] that
such a multi-layer NN with L = 2 and nonlinear activation
functions can theoretically approximate any continuous func-
tion on a bounded region arbitrarily closely—if the number
of neurons is large enough. A training set of known input-
output mappings is required in order to find the weights ©
of the NN with gradient descent optimization methods and
the backpropagation algorithm [20]. After training, the NN is
able to find the right output even for unknown inputs which
is called generalization.

As described in [[11], we use a feed-forward deep NN that
can learn to map a noisy version of the codeword to its
corresponding information bits. Each hidden layer employs
rectified linear unit (ReLLU) activation functions and the final
stage is realized with a sigmoid activation function [18] in
order to obtain output values in between zero and one giving
the probability that the output bit is “1”. In order to keep the
training set small, we extend the decoder NN with additional
layers which model an abstract channel [[L1], i.e., a training set
containing every codeword is sufficient to train with as much
training samples as desired.

It was shown in [11], that it is possible to decode polar
codes with MAP performance for small block lengths. The

BER performance gap between a NND and MAP decoding is
shown in Fig. [2| It illustrates that learning to decode is limited
through exponential complexity as the number of information
bits in the codewords increases.
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Fig. 2: Scalability shown by the gap to MAP performance
in dB at BER = 0.01 for 32/64 bit-length polar codes with
different code rates for fixed learning epoches.

III. PARTITIONED POLAR NEURAL NETWORK DECODING

Instead of using sequential SCL sub-block decoders as in
[13], we replace them by NN decoders. Every sub-block
NN, covers k; information bits. As the number of possible
encoder output states (i.e., different codewords) is 2k | efficient
training is only possible for small sub-blocks, containing a
small amount of information bits k; [11]. The advantage of
this concept is that each sub-block NN decoder can be trained
independently. However, each NN has its own corresponding
frozen bit positions A; and a specific block lengths NV;. As we
deal with man made signals, the training and validation dataset
can be created by random input data, a conventional polar
encoder and a channel. Thus, an infinite amount of labeled
training data is available.

Now, the NN decoder can be efficiently trained offline to
MAP performance [L1], since the effective block-size per sub-
block N; reduces by the number of sub-blocks M. Each NN
decoder outputs the decoded codeword (and/or the extracted
information bits) either as soft-values, i.e., probabilities, or
after a hard-decision which might require re-encoding. These
bits are now treated as known values.

Our proposed decoder consists of two stages (see Fig. [I]and
Fig. B):

1) M deep learning blocks, trained to decode the corre-
sponding sub-codeword with length N; and frozen bit
position vector A;

2) A conventional BP part, when the already decoded sub-
blocks are propagated via the coupling stages of the
remaining polar encoding graph.

After initializing the rightmost stages with the received

channel LLR-values, messages are propagated from stage to
stage according to the BP update rules in (I)) until the first NN
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Fig. 3: Partitioned neural network polar decoding structure.

decoder stage nnn (see Fig. [I). Then, the first NN decoder
estimates the received sub-block NN;. After having decoded
the first sub-block, the results are propagated via conventional
BP decoding algorithms through the remaining coupling stages
(see Fig. [T] and [3). Thus, this algorithm is block-wise sequen-
tial where M sub-blocks NN, are sequentially decoded from
top to bottom. The detailed decoding process works as follows:

1) Initialize stage n + 1 with received channel LLR-values

2) Update stages nnn to n + 1 according to BP algorithm
rules (propagate LLRs)

3) Decode next sub-block (top to bottom)

4) Re-encode results and treat results as perfectly known,
i.e., as frozen bits

5) If not all sub-blocks are decoded go to step 2

The interface between the NND and the BP stages depends
on the trained input format of the NN. Typically, the NN
prefers normalized input values between 0 and 1. Fortunately,
it was observed in [11]] that the NN can handle both input
formats and effective training is possible.

In summary, the system itself can be modeled as one large
NN as well. Each BP update iterations defines additional
layers, which are deterministic and thus do not effect the
training complexity, similar to regularization layers [[18]]. This
finally leads to a pipelined structure as depicted in Fig. [ As
each NN is only passed once and to emphasize the difference
compared to iterative decoding, we term this kind of decoding
as one-shot-decoding.

A. Further Optimizations

As it can be seen in Fig. [2] the limiting parameter is the
number of information bits per sub-block k;, since it defines
the number of possible estimates of the NND. One further
improvement in terms of sub-block size can be done by merg-
ing multiple equally-sized sub-blocks such that 3. k; < kmax,
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Fig. 4: Pipelined implementation of the proposed PNN de-
coder.

leading to an unequal sub-block size. This helps to obtain as
few as possible sub-blocks. The results for M = 8 partitions
are shown in Fig. [

Additionally, finetuning-learning can be applied to the
overall network in order to adjust the independently trained
components to the overall system. This means that the whole
decoding setup is used to re-train the system such that the
conventional stages are taken into consideration for decoding.
This prevents from performance degradation due to potentially
non-Gaussian NN-input distributions, which was assumed
during the training. Such an effect can be observed whenever
clipping of the LLRs is involved. However, the basic structure
is already fixed and thus only a small amount of the 2* possible
codewords is sufficient for good training results. The required
training set is created with the free-running decoder.

The coupling could be also done by an SC stage (as orig-
inally proposed in [13]]) without having additional iterations.
However, the BP structure suits better to the NN structure as
both algorithms can be efficiently described by a graph and
their corresponding edge weights. Thus, the BP algorithm is
preferred.

For cyclic redundancy check (CRC) aided decoding (a CRC
check over the whole codeword) the CRC check can be split
into smaller parts as in [13]], where each CRC only protects
one sub-block, i.e., the CRC can be considered by the NN
decoders and thus straightforwardly learned. However, this
requires at least some larger NN-sub-blocks, otherwise the
rate-loss due to the CRC checks becomes prohibitive and is
thus not considered at the moment.

IV. COMPARISON WITH SCL/BP

In general, a fair comparison with existing solutions is
hard, as many possible optimizations need to be considered.
We see this idea as an alternative approach, for instance in
cases whenever low-latency is required. The BER results for
N = 128 and different decoding algorithms are shown in
Fig. ] As shown in Tab [l the size of the partitions is chosen
such each partition does not contain more than kg, = 12
information bits, which facilitates learning the sub-blocks. If



TABLE I: Number of information bits k; for each sub-block

sub-block 1 2 3 4 5 6 7 8
sub-block size N; 32 16 16 16 16 8 8 16
information bits k; 1 3 11 5 13 7 8 16
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Fig. 5: BER performance of the proposed partitioned NN
decoder for N = 128 and M = 8 partitions with variable size
in comparison to state-of-the-art SC, BP and SCL (L = 32)
decoding.

the sub-block does not contain any frozen bits, a simple hard-
decision decoder is used. Basically, the concept of partitioning
polar codes helps to scale NND to longer codes.

We denote a partitioned neural network (PNN) with M
partitions as PNNM. Although each NN in the PNN can be
learned to approximately MAP performance, there is a loss A
between PNN decoding and conventional SCL decoding with
list size L. We limit ourselves in this work to L = 32. The
loss A can be explained by two main reasons:

1) Loss through partitioning A as the concept only
applies sub-block MAP decoding.

2) Loss due to sub-optimality of the NND Ann, due to
insufficient training or non-Gaussian input distributionsﬂ

For further analysis of this problem, we replace the NNDs
in each partition by SCL decoders with list size L = 32 as
n [13] and obtain a partitioned successive cancellation list
(PSCL) decoder. As before, PSCLM terms a PSCL decoder
with M partitions. This enables the investigation of larger
partition sizes and thus the effect of partitioning, which is
currently not possible with NNs due to the limited training
length. Since SCL decoding approximates MAP performance

'We did not focus on how to find the best NN structure for each NN because
we want to introduce the concept of partitioned polar codes in order to scale
NND. We expect that for sufficient training and hyperparameter tuning [21]
this loss vanishes.
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Fig. 6: Effect of the partitioning on the BER performance.
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Fig. 7: Normalized error NEpgcr. due to Apa (blue) and NEpny
due to Ay~ (green) for fixed size of partitions IV; = 16.

for properly chosen parameters [2], the PSCL gives a lower
bound on the expected BER according to the actual number
of partitions. This enables to observe Ay and Ay separately.

In order to quantify the loss, we introduce a similar concept
as in [[L1]: the normalized error (NE) for a decoding concept,
e.g., PNN, PSCL, which is given by

D

B~ 53 BBRse (4] ®
SCL Pt
where p; is a certain signal to noise ratio (SNR) value,
BER (p;) denotes the decoders BER for this specific SNR and
BERgcy (pt) is the corresponding BER of the SCL decoder,
respectively. Thus, NE compares the decoding performance
over a range of D different SNR values p1, ..., pr.

It can be observed in Fig. @ that NEpgcy, increases with the
number of partitions, i.e., decreases with the partition sizes.
Fig. [/| relates the effect of Ay and Ann. It can be observed
that the main error originates from partitioning and only a
small part from suboptimal NNs. The amount of sub-blocks
with larger k; increases with larger codelength and at the
same time it is more difficult to achieve MAP performance
for these blocks [[11]. Therefore, the loss Ayy becomes more
important for longer codes. The training complexity limits the
feasible sub-block size of PNN decoding and thus long codes
require a lot of partitions. The larger the number of partitions,
the larger Ap.;. However, the fast progress in the machine
learning domain might enable larger sub-blocks, which should
improve Apy and therefore the overall performance of the
PNN concept.
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different polar decoding approaches.

In order to approximate the decoding latency in Fig. [§] we
count the number of synchronization steps as operations can
be done in parallel, but need to be synchronized after each
synchronization step. The latency of the SCL algorithm can
be described by O (N log N) because it estimates each bit
sequentially. Thus, the number of required synchronization
steps is

SSCL =N log N.

The BP algorithm scales much better with O (log V') because
synchronization is required after each BP stage but depends
on the number of iterations I, namely,

SBP = 2[10g N.

The PNN decoder enforces less BP updates and the NNDs
itself only synchronize after each layer

SpNN = NﬁpNH + %QIOg%
where Np and Np respectively denote the size of each
partition and the number of hidden layers in the NN. Fig. [§]
is given for Np = 16 and Ny = 3. To sum up, our
approach enables latency reduction of BP decoding, while
being competitive with the SC and BP BER performance.

V. CONCLUSION

In this work, we have shown that one way to reach
scalability of deep-learning based channel decoding can be
described by replacing sub-components of an existing decoder
by NN-based components. This enables scalability in terms
of block length and number of information bits towards
practical lengths. Meanwhile, the length is still limited to short
codes as the degradation through partitioning limits the overall
performance of this concept. The BER performance of our
decoder turns out to be similar to the SC and BP perfor-
mance. However, the latency reduces a lot when the inherent
parallel structure of this algorithm is exploited, since one-
shot-decoding (i.e., non-iterative decoding) becomes possible.

We have shown that the performance degradation is mainly a
result of the small partitions, as the sub-block size is currently
strictly limited by the training. Nonetheless, the proposed setup
would scale very well for larger sub-blocks, therefore future
work needs to be done on potential improvements of the NN
structure such that larger components become available.
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