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Abstract—Low-cost message passing (MP) algorithm has been
recognized as a promising technique for sparse vector recovery.
However, the existing MP algorithms either focus on mean square
error (MSE) of the value recovery while ignoring the sparsity
requirement, or support error rate (SER) of the sparse support
(non-zero position) recovery while ignoring its value. A novel
low-complexity Bernoulli-Gaussian MP (BGMP) is proposed to
perform the value recovery as well as the support recovery.
Particularly, in the proposed BGMP, support-related Bernoulli
messages and value-related Gaussian messages are jointly pro-
cessed and assist each other. In addition, a strict lower bound is
developed for the MSE of BGMP via the genie-aided minimum
mean-square-error (GA-MMSE) method. The GA-MMSE lower
bound is shown to be tight in high signal-to-noise ratio. Numerical
results are provided to verify the advantage of BGMP in terms
of final MSE, SER and convergence speed.

Index Terms—Bernoulli-Gaussian, belief propagation, com-
pressed sensing, sparse vector recovery, factor graph.

I. INTRODUCTION

Recently, with the rapid development of the wireless net-
work, we have entered the age of “Big Data”. Practically,
most interesting data is typically sparse, and thus sparse vector
recovery problems have attracted much interest in many engi-
neering fields [1], such as data collection, network monitoring,
mmWave channel estimation, interest of things (IoT), machine
to machine (M2M) communications, machine learning, cloud-
radio access network (C-RAN), etc.

Sparse vector recovery is a technique for reconstructing a
sparse vector x = [x1, · · · , xK ]T from an underdetermined
noisy measurement y ∈ RM×1:

y = Hx + n, (1)
where H ∈ RM×K is a given measurement matrix, and
n ∼ NM (0, σ2

n) a vector of independent additive white
Gaussian noise (AWGN). It is based on the principle that the
sparsity is exploited to achieve a more efficient sampling than
the classical Shannon-Nyquist scheme [2], [3].

In the past decades, many sparse vector recovery algorithms
have been proposed. One of the most popular schemes is
formulated as the minimization of the squared error ‖y−Hx̂‖2
(where ‖·‖ denotes the Euclidean norm) under the constraint
that the l0 pseudo-norm of x̂ is small. However, it is well
known to be a NP-complete problem [4]. Another well-known
approach is LASSO [5], where l0-norm has been relaxed to
the l1-norm minimization problem:

This work was supported in part by the National Natural Science Foundation
of China under Grants 61671345, and in part by the Singapore A*STAR SERC
Project under Grant 142 02 00043. The first author was also supported by the
China Scholarship Council under Grant 20140690045.

x̂ = arg min
x̂
‖y−Hx̂‖22 + λ‖x̂‖1, (2)

which is convex and can be efficiently solved. However, the l1-
reconstruction is far from the information-theoretic limit [6].

If the vector x is independent and identically distributed
(i.i.d.) with known marginal distribution, and the noise n is
i.i.d. Gaussian with known variance, the maximum a-posterior
probability Bayesian estimation provides a minimum mean-
square-error (MSE) reconstruction, but the computational
complexity will be extraordinarily unacceptable. Hence, from
a belief-propagation perspective, a low-complexity iterative
approximate Bayesian algorithm, named approximate message
passing (AMP) algorithm, is formulated [7], [8]. In [9]–[11],
orthogonal measurement matrices (e.g. discrete Fourier trans-
form (DFT) matrices) are utilized to reduce the computational
complexity and storage memory, and improve the convergence
speed of the sparse vector recovery algorithms. Recently, a
novel orthogonal AMP is proposed for a wide range of sensing
matrices, including ill-conditioned matrices, partial orthogonal
matrices, and general unitarily-invariant matrices [12]. For
the Gaussian-mixed vector with unknown sparsity, mean, and
variance, and the noise as Gaussian with unknown variance, an
expectation-maximization Gaussian-mixture AMP (EM-GM-
AMP) is designed [13]. However, all above works focus on
the MSE of the value recovery while ignoring the sparsity
requirement. The work in [14] focuses on the support (non-
zero position) recovery rather than the MSE of the sparse
vector recovery. Recently, a LSE-MP iterative algorithm is
proposed for both support and value recovery [15]. However,
its computational complexity is high due to the need to
perform matrix inversion in each iteration.

In this article, by using the knowledge of message passing
[16]–[19], a low-complexity Bernoulli-Gaussian MP (BGMP)
algorithm considering both the value recovery and the support
recovery is proposed, in which Bernoulli messages (for the
value reconstruction) and Gaussian messages (for the support
reconstruction) are jointly processed and assist each other
iteratively. Our numerical results show that the proposed
BGMP algorithm not only has a limit-approaching MSE in the
value recovery, but also obtains an excellent SER performance
in the support recovery.

II. PROBLEM FORMULATION

In this paper, we consider that the entries of x are i.i.d. and
follows the Bernoulli-Gaussian distribution [9]:

xk ∼
{

0, probability = 1− λ,
N (0, λ−1), probability = λ,

(3)
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where k ∈ K, K = {1, · · · ,K}. In (3), without losing any
generality, the variance of xk is normalized to 1.

In this work, we try to recover the sparse vector, including
positions of the zero components and values of the non-zero
components, via message passing algorithm (MPA). It is well
known that there are a number of MPAs for the recovery
of Gaussian or Bernoulli distributed x, because the message
update rules of Gaussian or Bernoulli random variables can be
easily derived. However, to the best of the authors’ knowledge,
MPA for the recovery of Bernoulli-Gaussian distributed x is
far from solved because of its complex message structure. To
simplify the update of Bernoulli-Gaussian messages, we treat
the Bernoulli-Gaussian random vector as a componentwise
product of Bernoulli random vector b ∼ BK(1, λ) and
Gaussian random vector g ∼ NK(0, λ−1), where g and b
are independent with each other, i.e.

x = g ◦ b, (4)

where g = [g1, · · · , gK ]T , b = [b1, · · · , bK ]T , and x =
[g1b1, · · · , gKbK ]T . Therefore, the recovery of the sparse
vector x is decomposed into recoveries of g and b, which
denote the value recovery and support recovery respectively.

III. BERNOULLI-GAUSSIAN MESSAGE PASSING

In this section, we proposed a novel MPA, which jointly
estimates b and g, for the sparse vector recovery. Since
the proposed algorithm updates both Bernuolli and Gaussian
messages in the process, we call it BGMP algorithm. As
shown in Fig. 1, the BGMP is based on a pairwise factor
graph, which consists of variable nodes, sum nodes, constraint
nodes, and the corresponding edges. Message update in BGMP
algorithm is similar to that of the belief propagation (BP)
decoding process of LDPC code, in which extrinsic messages
are updated on the edges of the factor graph. Similar to
distributed algorithms [20], the complexity of BGMP is very
low since it decomposes the overall processing into many
low-complexity calculations on the factor graph that can be
executed in parallel. Apart from their similarity, there also
exist differences between BGMP and BP or Gaussian message
passing (GMP) [17]–[19]. One is that BGMP updates both
Gaussian and Bernoulli messages on the factor graph, while
the BP deals with only Bernoulli messages and GMP with
Gaussian messages. The other is the different message update
functions on the factor graph. The detailed message updating
rules are derived as follows.

A. Bernoulli-Gaussian Message Update at Sum Node
In the left subfigure of Fig. 2, each sum node is treated as a

multiple-access process, and we derive the Bernoulli-Gaussian
message update at the variable node (VN). Firstly, the received
ym at the m-th SN can be rewritten to

ym = hmkxk +
∑
i∈K/k

hmixi + nm

= hmkgkbk +
∑
i∈K/k

hmigibi + nm︸ ︷︷ ︸
n∗mk

, (5)
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Fig. 1. Factor graph of BGMP for sparse vector recovery.

where m ∈ M, M = {1, · · · ,M}, hmk is an element
of H, and i ∈ K/k denotes i ∈ K and i 6= k. As the
{gi, bi}, i ∈ K are independent with each other, we can
approximate

∑
i∈K/k

hmigibi + nm as an equivalent Gaussian

noise n∗mk ∼ N
(
u∗mk, v

∗
mk

)
based on central limit theorem:

ym = hmkgkbk + n∗mk. (6)

Let uvk→m(τ) and vvk→m(τ) denote the mean and variance
of the Gaussian variable gk passing from k-th VN to m-th
SN in τ -th iteration. Similarly, pvk→m(τ) denotes the non-zero
possibility of the Bernoulli variable bk passing from kth VN
to mth SN. In τ -th iteration, the mean and variance of the
noise n∗mk can be derived directly:
u∗mk(τ)=

∑
i∈K/k

hmip
v
i→m(τ)uvi→m(τ),

v∗mk(τ)=
∑
i∈K/k

h2mip
v
i→m(τ)[vvi→m(τ)+(1−pvi→m(τ))uv

2

i→m(τ)]+σ2
n,

(7)
where m ∈ M and k ∈ K. Let Vv(τ), Uv(τ) and Pv(τ) be
the matrixes containing the elements vvk→m(τ), uvk→m(τ) and
pvk→m(τ), ∀m ∈ M, ∀k ∈ K, respectively. Then, Vv(0) is
initialized to +∞, Uv(0) to 0, and Pv(0) to 0.5 ∗ 1.

1) Gaussian message update for g: Let usm→k(τ) and
vsm→k(τ) denote the mean and variance of gk, and psm→k(τ)
the non-zero possibility of bk, passing from m-th SN to k-th
VN. Then, the message update of gk at m-th SN for k-th VN
is derived by [u∗mk(τ), v∗mk(τ)]:

usm→k(τ)
(a)
= E [gk|ym, u∗mk(τ), v∗mk(τ), bk = 1]

= h−1mk
(
ym − u∗mk(τ)

)
,

vsm→k(τ)
(b)
= Var [gk|ymu∗mk(τ), v∗mk(τ), bk = 1]

= h−2mkv
∗
mk(τ),

(8)

where E(a|d) and Var(a|d) denote the conditional expectation
and variance of variable a given d, respectively. The equations
(a) and (b) in (8) are obtained by the fact that there is no
information for gk given bk = 0.

2) Bernoulli message update for b: Similarly, the message
update of bk at m-th SN for k-th VN is also derived by
[u∗mk(τ), v∗mk(τ)]:
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Fig. 2. Message update at sum nodes and variable nodes. For the Bernoulli-Gaussian signal, the mean and variance of a Gaussian distribution, and the
non-zero probability of a Bernoulli distribution are passing on each edge. An extrinsic message is updated on each edge via the messages on the other edges
that are connected with the same node.

psm→k(τ) =

[
1 +

P (ym|bk = 0, u∗mk(τ), v∗mk(τ))

P (ym|bk=1, u∗mk(τ), v∗mk(τ))

]−1

=

[
1+

P (ym = n∗mk|u∗mk(τ), v∗mk(τ))

P
(
ym=hmkgk + n∗mk|u∗mk(τ), v∗mk(τ)

)]−1

=

[
1+

f
(
ym|u∗mk(τ),v

∗
mk(τ)

)
f
(
ym|u∗mk(τ)+hmkuv

k→m(τ),v∗mk(τ)+h
2
mkv

v
k→m(τ)

)]−1(9)

where f(x|u, v) is a probability density function (PDF) of a
Gaussian distribution N (u, v), i.e.,

f(x|u, v) =
1√
2πv

e−
(x−u)2

2v . (10)

B. Bernoulli-Gaussian Message Update at Variable Node

In the right subfigure of Fig. 2, each variable node is
treated as a broadcast process, and we derive the Bernoulli-
Gaussian message update at the VN. According to the message
combination rule [16], [18], the messages of the same variable
are combined by a normalized product of the input PDFs. As
the g and b are i.i.d., and independent each other, we update
the messages for {gi, i ∈ K} and {bi, i ∈ K} independently.

1) Gaussian message update for g: Let ū = [ū1, · · · , ūK ]T

and v̄ = [v̄1, · · · , v̄K ]T be the prior mean and variance of the
Gaussian vector g, p̄ = [p̄1, · · · , p̄K ]T be the prior non-zero
probability of the Bernoulli vector b. Set M/m is obtained
from set M by excluding the element m. Without loss of
generality, we assume that ūi = 0, v̄i = λ−1 and p̄i = λ
for any i ∈ K. The Gaussian message of gk at k-th VN for
m-th SN is updated by the Gaussian messages from the SN
set M/m.

vvk→m(τ+1) = Var
[
gk|vsk,∼m(τ), v̄k

]
(a)
= [λ+

∑
j∈M/m

vs
−1

j→k(τ)]−1,

uvk→m(τ+1) = E
[
gk|vsk,∼m(τ),usk,∼m(τ), v̄k, ūk

]
(b)
= vvk→m(τ)

∑
j∈M/m

vs
−1

j→k(τ)usj→k(τ),

(11)

where m ∈ M, k ∈ K, usk(τ) = [us1→k(τ), · · · , usM→k(τ)]T ,
vsk(τ) = [vs1→k(τ), · · · , vsM→k(τ)]T , and usk,∼m(τ) and vsk,∼m(τ)
are obtained from usk(τ) and vsk(τ) by excluding their k-th
entries usmk(τ) and vsmk(τ) respectively. Equations (a) and (b)
are obtained by the combination of Gaussian PDFs [16], [18].

2) Bernoulli message update for b: The Bernoulli message
of bk at the k-th VN for the mth SN is derived by the Bernoulli
messages from SN set M/m.
pvk→m(τ+1) = P (bk|psk,∼m(τ), p̄k)

(c)
=

λ Π
j∈M/m

psj→k(τ)

λ Π
j∈M/m

psj→k(τ)+(1−λ) Π
j∈M/m

(1−psj→k(τ))
, (12)

where m ∈ M, k ∈ K, psk(τ) = [ps1→k(τ), · · · , psM→k(τ)]T ,
and psk,∼m(τ) is obtained from psk(τ) by excluding the k-
th entry psmk(τ). Equation (c) is derived by combination of
Bernoulli PDFs [16].

C. Decision and Output of BGMP
The BGMP algorithm iteratively performs the message

update at the SNs and the VNs. When the MSE meets the
requirement or the number of iterations reaches the limit, we
output the ûk and v̂k as the final estimate and deviation of gk,
and the non-zero probability p̂k of bk.

v̂k =
(
λ+

∑
m∈M

vs
−1

m→k(τ)
)−1
,

ûk = v̂k
∑

m∈M
vs
−1

m→k(τ)usm→k(τ),

p̂k =

λ Π
m∈M

psm→k(τ)

λ Π
m∈M

psm→k(τ) + (1−λ) Π
m∈M

(1−psm→k(τ))
,

(13)

where k ∈ K. Then, final estimate of b is given by

b̂k =

{
1, if p̂k ≥ 0.5,
0, if p̂k < 0.5,

(14)

for k ∈ K. Let û = [û1, · · · , ûK ]T , p̂ = [p̂1, · · · , p̂K ], and
b̂ = [b̂1, · · · , b̂K ]T . The final a-posterior estimate of the sparse
vector x is

x̂ = p̂ ◦ û ◦ b̂, (15)



and its mean square error (MSE) is

msex̂ = p̂ ◦
(
v̂ + (1− p̂) ◦ û(2)

)
. (16)

D. LLR-based BGMP

The message updates for the Bernoulli vector always over-
flow due to the probability multiplications. To avoid the over-
flow, the following log-likelihood ratios (LLRs) are utilized to
replace the non-zero probabilities in BGMP.

lsm→k(τ)=L
(
psm→k(τ)

)
, lvk→m(τ)=L

(
pvk→m(τ)

)
, l̄k=L

(
p̄k
)
,

for any k ∈ K and m ∈ M, where L(p) = − log(1 − p−1).
Then, the LLR-based BGMP algorithm is rewritten as follows.

1) Message Update at SN: The Bernoulli-Gaussian mes-
sage update at SN is the same as that in (8) and (9), with
pvk→m(τ) = 1/(1+e−l

v
k→m(τ)), m ∈M and k ∈ K. Let Lv(τ)

be a matrix containing lvk→m(τ), m ∈ M and k ∈ K. Then,
Lv(0) is initialized as 0.

2) LLR Update at VN: The Bernoulli message update at
k-th VN for m-th SN is rewritten to

lvk→m(τ+1) = l̄k +
∑

j∈M/m

lsj→k(τ), m ∈M, k ∈ K. (17)

3) LLR Output: When the MSE of the BGMP meets the
requirement or the number of iterations reaches the limit, we
output the final LLR l̂k of the Bernoulli variable bk.

l̂k = l̄k +
∑
j∈M

lsj→k(τ), k ∈ K. (18)

Then, final estimate of b is given by

b̂k =

{
1, if l̂k ≥ 0

0, if l̂k < 0
(19)

for k ∈ K. Let l̂ = [l̂1, · · · , l̂K ]T , and p̂k = (1 + e−l̂k)−1.
Then, b is recovered by an indicate function, i.e., b̂ = I l̂. The
final a-posterior estimate of the sparse vector x is x̂ = p̂◦û◦b̂,
and its mean square error msex̂ = p̂ ◦

(
v̂ + (1− p̂) ◦ û(2)

)
.

E. BGMP in Matrix Form

Note: We let AM×N ◦ BM×N = [aijbij ]M×N , AM×N
BM×N

=

[aij/bij ]M×N , Exp(AM×N ) = [eaij ]M×N , D{AN×N} =

[aii]N×1, 1M×N = [1]M×N , and A
(k)
M×N =

[
akij
]
M×N .

Assume l̄ = [l̄1, · · · , l̄K ]T , Us(τ) = [usm→k(τ)]M×K ,
Vs(τ) = [vsm→k(τ)]M×K , Ls(τ) = [lsm→k(τ)]M×K , Uv(t) =
[uvk→m(τ)]K×M , Vv(τ) = [vvk→m(τ)]K×M , Lv(τ) =
[lvk→m(τ)]K×M , and Pv(τ) = [pvk→m(τ)]K×M . Algorithm 1
shows the detailed process of matrix-form BGMP.
F. Approximated Bernoulli message update at SN

Due to the fact that vvk→m(τ) << vsm→k(τ), Bernoulli
message update at SN (9) can be approximated to

psm→k(τ)=
[
1+Exp

(
−zsmk(τ)

(
uvk→m(τ)+0.5zsmk(τ)vvk→m(τ)

))]−1
,

where zsmk(τ) = vs
−1

m→k(τ)u
s
m→k(τ), and its LLR to

Ls(τ)=Zs(τ)◦
[
UT
v(τ)+0.5Zs(τ)◦V(−1)

s (τ)
]
,Zs(τ)=V(−1)

s (τ)◦Us(τ).

Algorithm 1 BGMP Algorithm
1: Input: H, Vx, σ2

n, λ∈(0, 1), ε>0, Nite and H(2), H(−1), H(−2).
2: Initialization: τ = 0, Uv(0) = 0, Vv(0)=+∞, and Lv(0)=0.
3: Do
4: Pv(τ)=

(
1K×M+ e−Lv(τ)

)(−1), Ũ∗(τ)=HT ◦Pv(τ) ◦Uv(τ),
5: Ṽ∗(τ)=H(2)T◦Pv(τ)◦

(
Vv(τ) + (1K×M−Pv(τ)) ◦U(2)

v (τ)
)
.

6: [
U∗(τ)
V∗(τ)

]
=

[
D{1M×K · Ũ∗(τ)}

σ2
n·1M×1+D{1M×K ·Ṽ∗(τ)}

]
·11×K−

[
Ũ∗T(τ)

Ṽ∗T(τ)

]
,

7:Us(τ)Vs(τ)
Ls(τ)

=


H(−1) ◦ (y · 11×K −U∗(τ))

H(−2) ◦V∗(τ)

−1
2
log
[
1+

VT
v(τ)

Vs(τ)

]
+

VT
v(τ)◦V

(−1)
s (τ)◦Us(τ)

(2)−UT
v(τ)◦(2Us(τ)−UT

v(τ))
2
(
Vs(τ)+VT

v (τ)
)

,
8:Vv(τ+1)
Uv(τ+1)
Lv(τ+1)

=

[
λ·1K×M+D{1K×M·V(−1)

s (τ)}·11×M−V(−1)T

s (τ)
](−1)

Vv(τ+1)◦
[
D{1K×M·

(
V

(−1)
s (τ)◦Us(τ)

)
}·11×M−V(−1)T

s (τ)◦UTs(τ)
]

[
D{1K×M · Ls(τ)}+ l̄

]
· 11×M − L

T

s (τ)

,
9: τ = τ + 1.

10: While
(
(|Uv(τ+1)−Uv(τ)|<ε&|Lv(τ+1)−Lv(τ)|<ε) or τ≤Nite

)
11: v̂û

l̂

=

[
λ · 1K×1 +D{1K×M ·V(−1)

s (τ)}
](−1)

v̂ ◦ D{1K×M ·
(
V

(−1)
s (τ)◦Us(τ)

)
}

l̄ +D{1K×M · Ls(τ)}

.
12: p̂ = (1K×1 + e−l̂)(−1), b̂ = I l̂, x̂ = p̂ ◦ û ◦ b̂, and

msex̂ = p̂ ◦
(
v̂ + (1− p̂) ◦ û(2)

)
.

13: Output: b̂, x̂, and msex̂ .

G. Complexity of BGMP

The matrix form of BGMP permits a parallel processing
and further reduces the complexity and latency. In each itera-
tion, it costs about 20KM multiplications (or divisions) and
2KM exponents (or logarithms). If we use the approximated
Bernoulli message update (III-F), the complexity can be fur-
ther reduced to 15KM multiplications and KM exponents per
iteration, which saves 25 percent of the multiplications and 50
percent of the exponents. Therefore, the complexity of BGMP
is as low as O(KMNite) multiplications and O(KMNite)
exponents, where Nite is the number of iterations. The scalar
operation at each node in BGMP avoids the large-scale matrix
calculations, which is the key reason resulting in a lower
complexity of BGMP.

H. GA-MMSE Bound of BGMP

Proposition 1: If the entries of H are i.i.d. with a normal-
ized distribution N (0, 1/K), the average MSE of BGMP is
bounded by that of the genie-aided MMSE (GA-MMSE), i.e.,

MSEbgmp > MSEga−mmse, (20)

where
MSEga−mmse ≈ 1− 0.25F(λKM , σ2

n), (21)
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Fig. 4. MSE comparison between the simulated BGMP and genie-aided
MMSE method. K = 8192, M = 5734(≈0.7K), and λ = 0.4.

and F(a, c) =
(√

(1 + 1/
√
a)2 + c−

√
(1− 1/

√
a)2 + c

)2
.

Proof: Let x+ be the non-zero subvector of x, and H+

the corresponding sub-measurement matrix of H. Hence, y =
H+x++n. Consider the following GA-MMSE method, where
the non-zero index of b is known.

x̂+ =
(
HT

+H+ + σ2
nλI
)−1

HT
+y. (22)

Obviously, the MSE of GA-MMSE is strictly less than that of
BGMP, and thus is a strict lower bound of the MSE of BGMP.
Similarly, the MSE of GA-MMSE is calculated by [21]

MSEga−mmse=
1

K
Tr{
(
σ−2n HT

+H++λI
)−1}≈1−0.25F(β+, σ

2
n),

(23)
Hence, we have Proposition 1.

IV. NUMERICAL RESULTS

In this section, we report the numerical results of the pro-
posed BGMP for sparse vector recovery. For all experiments,
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Fig. 5. SERs of the GBMP. K = 8192, M = 5734(≈ 0.7K), λ =
0.4, and Nite = 1 ∼ 50.
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Fig. 6. SERs of the GBMPA. K = 8192, M = 5734(≈ 0.7K), λ =
0.4, and Nite = 1 ∼ 50.

we set signal-to-noise ratio to SNR = 1
σ2
n

, average SER to
SER = 1

K ·‖b−b̂‖1, average MSE to MSE = 1
K ·E[‖x−x̂‖22],

and the entries of H are i.i.d. with a normalized distribution
N (0, 1/K). All the SERs and MSEs are averaged over 100
realizations.

A. MSE Performance of the Value Recovery

In Fig. 3, we compare the MSE of the simulated BGMP,
general MMSE and GA-MMSE, where K = 8192, M =
5734(≈ 0.7K), λ = 0.4, and Nite = 1 ∼ 50. We see
that the proposed BGMP always outperforms the general
MMSE method. In addition, after 50 iterations, the MSE of the
proposed BGMP is approaching that of the GA-MMSE lower
bound (the gap is less than 2dB) when SNR ≥ 40dB. Fig. 4
presents the convergence of the BGMP under different SNRs.
It shows that the gap between MSE of BGMP and GA-MMSE
decreases with the increase of SNR, and their gap is less than
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Fig. 7. Noiseless empirical phase transition curve for BGMP algorithm with
i.i.d. Gaussian measurement matrix H ∼ NM×K(0, 1/K), vector length
K = 1000, and Nite = 100 iterations. Here, λK is the number of nonzero
components in x.

6 × 10−6 when SNR = 50dB. Furthermore, the required the
number iterations increases with SNR.

B. SER Performance of the Support Recovery

Fig. 5-6 show the SER of the simulated BGMP, where K =
8192, M = 5734(≈ 0.7K), λ = 0.4, and Nite = 1 ∼ 50.
We see that after 50 iterations, the proposed BGMP recovers
sparse positions with a very low error probability (less 10−2)
when SNR ≥ 40dB. In addition, the SER decreases with
the increase of SNR, and the required number of iterations
increases with SNR.

C. Noiseless Phase Transition

The experiment results of the noiseless empirical phase
transition curve (PTC) are described in Fig. 7. To com-
pute each empirical PTC, a 30 × 30 grid of sampling rate
M
K ∈ [0.05, 0.95] and sparsity λK

M ∈ [0.05, 0.95] for fixed
vector length K = 1000 is constructed. At each grid point,
we perform 100 independent realizations of a Bernoulli-
Gaussian vector x and an M×K measurement matrix H with
i.i.d. N (0,K−1) entries. We consider the noiseless case that
y = Hx, and the proposed BGMP is used for the recovery
of vector x. A recovery x̂ in each realization is defined a
success if MSE = 1

K ‖x̂ − x̂‖22 < 10−6, and the average
success rate is defined as Ps = S

100 , where S is the number of
success recovery in the 100 realizations. The empirical PTC is
then plotted, using Matlab’s contour command, as the contour
Ps = 0.5 over the sparsity-sampling grid.

V. CONCLUSION

In this paper, we have proposed a low-complexity BGMP
algorithm for sparse vector recovery, where Gaussian messages
and Bernoulli messages perform the value estimation and
support estimation respectively. In addition, a GA-MMSE
lower bound has been provided for the MSE of BGMP. Our

numerical results showed the tightness of the GA-MMSE
lower bound in high SNR, the excellent MSE performance in
value recovery, and out-standing SER performance in support
recovery. Particularly, the MSE curve of BGMP is less than
2dB away from the GA-MMSE lower bound at MSE = 10−4,
and less than 6×10−6 away from the GA-MMSE lower bound
at SNR = 50dB. Besides, the SERs of the proposed BGMP
is less than 10−2 when SNR ≥ 40dB.
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