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Abstract—Hybrid precoding has been recently proposed as
a cost-effective transceiver solution for millimeter wave (mm-
wave) systems. The analog component in such precoders, which
is composed of a phase shifter network, is the key differentiating
element in contrast to conventional fully digital precoders. While
a large number of phase shifters with unquantized phases are
commonly assumed in existing works, in practice the phase
shifters should be discretized with a coarse quantization, and
their number should be reduced to a minimum due to cost
and power consideration. In this paper, we propose a new
hybrid precoder implementation using a small number of phase
shifters with quantized and fixed phases, i.e., a fixed phase
shifter (FPS) implementation, which significantly reduces the
cost and hardware complexity. In addition, a dynamic switch
network is proposed to enhance the spectral efficiency. Based
on the proposed FPS implementation, an effective alternating
minimization (AltMin) algorithm is developed with closed-form
solutions in each iteration. Simulation results show that the
proposed algorithm with the FPS implementation outperforms
existing ones. More importantly, it needs much fewer phase
shifters than existing hybrid precoder proposals, e.g., ∼10 fixed
phase shifters are sufficient for practically relevant system
settings.

I. INTRODUCTION

Uplifting the carrier frequency to millimeter wave (mm-

wave) bands has been proposed to meet the capacity re-

quirement of the upcoming 5G networks, and it thus has

drawn extensive attention from both academia and industry

[1]. Thanks to the small wavelength of mm-wave signals,

large-scale antenna arrays can be leveraged at transceivers to

support directional transmissions. As equipping each antenna

element with a single radio frequency (RF) chain is costly,

hybrid precoding has been put forward as a cost-effective

solution, which utilizes a limited number of RF chains to

incorporate a digital baseband precoder and an analog RF

precoder [2].

In contrast to the conventional fully digital precoder, the

additional component in the hybrid one is the analog precoder,

which is usually implemented by a bunch of phase shifters

in the RF domain. Several hybrid precoder structures and

implementations have been proposed in existing works, e.g.,

the fully- and partially-connected structures [3], as well as the

single phase shifter (SPS) [2] and double phase shifter (DPS)

[4] implementations, to provide trade-off between spectral
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efficiency, energy efficiency, and algorithmic complexity. The

main differences among them are the connecting strategies

from RF chains to antennas and the number of phase shifters

in use to compose the beamforming gain for each of the

connected paths. While existing hybrid precoder structures

and implementations enjoy a small number of RF chains,

the number of phase shifters scales linearly with the antenna

size, which is a huge number and thus causes prohibitively

high cost and power consumption. On the other hand, various

hybrid precoding algorithms have been proposed assuming

phase shifters with arbitrary precision, e.g., orthogonal match-

ing pursuit (OMP) [2], manifold optimization [3], and succes-

sive interference canceling [5]. Although considering phase

shifters with programmable high resolution eases the hybrid

precoder design, it will weaken the practicality of the results

since adaptively carrying out arbitrary phase shifts at mm-

wave frequencies is highly impractical [6]. Therefore, it is of

critical importance to develop effective design methodologies

for hybrid precoders with a small number of quantized phase

shifters.

There are a few works that attempted to consider quantized

phase shifters [2], [7]–[11]. The main approach is either to

determine all the phases at once [2], [7]–[10] or update one

phase at a time [11] by ignoring the quantization effect at

first. Then the phases are heuristically quantized into the

finite feasible set according to a certain criterion. However,

a simple quantization step is far from satisfactory, and the

optimality and convergence of the proposed algorithms cannot

be guaranteed [11]. On the other hand, the number of phase

shifters in use was to some extent reduced in [10], which

was determined for achieving a certain precision of the

unquantized ones. Unfortunately, a large number of phase

shifters are still needed for practical settings, i.e., 40 phase

shifters for each RF chain, and the number will vary according

to the precision requirement. More importantly, in existing

works, the phases need to be adapted to the channel states,

which brings high complexity for hardware implementation

and also increases power consumption.

To overcome the above limitations, in this paper we propose

a novel hybrid precoder implementation for general multiuser

orthogonal frequency-division multiplexing (OFDM) mm-

wave systems, where only a small number of phase shifters

with fixed phases are available [6], namely the fixed phase
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Fig. 1. A multiuser mm-wave MIMO-OFDM system with FPS hybrid precoder implementation. To simplify the figure, in the analog precoder, each solid
line with a slash represents parallel signals transmission while each dotted line stands for Nt

RF
switches.

shifter (FPS) implementation. To compensate the performance

loss induced by the fixed phases, a switch network is proposed

to provide dynamic mappings from phase shifters to antennas,

which is easily implementable with adaptive switches [6],

[9]. With the proposed FPS implementation, we develop an

alternating minimization (AltMin) algorithm to design the

hybrid precoder [3], where an upper bound of the objective

function is derived as an effective surrogate. In particular,

the large-scale binary constraints introduced by the switch

network are delicately tackled with the help of the upper

bound, which leads to closed-from solutions for both the

dynamic switch network and the digital baseband precoder,

and therefore enables a low-complexity hybrid precoding

algorithm. Simulation results shall demonstrate that the pro-

posed FPS-AltMin algorithm outperforms existing ones and

approaches the performance of the fully digital precoder.

What deserves a special mention is the sharp reduction of

the number of phase shifters compared to existing hybrid

precoder implementations, which indicates that the proposed

FPS implementation is a promising candidate for hybrid

precoding in 5G mm-wave communication systems.

II. SYSTEM MODEL

A. Signal Model

Consider the downlink transmission for a multiuser mm-

wave MIMO-OFDM system as shown in Fig. 1. A base station

(BS) leverages an Nt-size antenna array to serve K users

over F subcarriers using OFDM. Each user is equipped with

Nr antennas and receives Ns data streams from the BS on

each subcarrier. The numbers of available RF chains are N t
RF

and N r
RF for the BS and each user, respectively, which are

restricted as KNs ≤ N t
RF < Nt and Ns ≤ N r

RF < Nr.

The received signal of the k-th user on the f -th subcarrier

is given by

yk,f = WH
BBk,fW

H
RFk

(

Hk,fFRF

K∑

k=1

FBBk,fsk,f + nk,f

)

,

(1)

where sk,f is the transmitted signal to the k-th user on the f -

th subcarrier such that E
[

sk,fs
H
k,f

]

= P
KNsF

INs
, and nk,f is

the circularly symmetric complex Gaussian noise with power

as σ2
n at the users. The digital baseband precoders and com-

biners are denoted as FBBk,f and WBBk,f , respectively, with

dimensions N t
RF ×Ns and N r

RF ×Ns. Since the transmitted

signals for all the users are mixed together by the digital

precoders, and analog RF precoding is a post-IFFT operation,

the RF analog precoder FRF with dimension Nt × N t
RF

is a common component for all the users and subcarriers.

Correspondingly, the Nr ×N r
RF RF analog combiner WRFk

is subcarrier-independent for each user.

B. FPS Implementation

In earlier works on hybrid precoding [2], [3], [5], [7]–

[9], a single phase shifter is adopted to adjust the phase of

each of the paths from RF chains to antennas. Therefore,

NtN
t
RF phase shifters are required, commonly assumed with

arbitrary precision. Recently, it was shown in [4] that the

performance of the hybrid precoder can be greatly improved

by passing each signal through two unquantized phase shifters

and then combining the outputs, which, however, induces high

hardware complexity by employing 2NtN
t
RF adaptive phase

shifters.

In this paper, we propose a hybrid precoder implementation

using Nc phase shifters with fixed phases [6], where Nc ≪
NtN

t
RF, as shown in Fig. 1. Nevertheless, the limited number

of fixed phase shifters, which cannot be adaptively adjusted

according to the channel states, inevitably entail performance

loss. To overcome this drawback brought by the simplified

hardware implementation, we propose to cascade a dynamic

switch network after the fixed phase shifters, which is adapted

to the channel states.

In particular, Nc multichannel (N t
RF-channel) fixed phase

shifters [12] are deployed in the phase shifter network, each of

which simultaneously processes the output signals from N t
RF

RF chains, i.e., in a parallel fashion. To clearly illustrate the

proposed FPS implementation, we focus on one signal flow

from an RF chain to an antenna, as shown in Fig. 2. The

Nc fixed phase shifters generate Nc signals with different

phases for the output signal of the given RF chain. Inspired

by the idea of doubling phase shifters to achieve high spectral

efficiency, as demonstrated in [4], we propose to adaptively

combine a subset of the Nc signals to compose the analog

precoding gain from the RF chain to the antenna, which is
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Fig. 2. The FPS implementation from an RF chain to each antenna.

implemented with Nc adaptive switches. As Nc switches are

needed for each RF chain-antenna pair, in total NtN
t
RFNc

switches are required in the proposed FPS implementation.

Note that adaptive switches with binary states are easier to

implement in mm-wave bands than adaptive phase shifters

with arbitrary precision [6], [9].

Accordingly, the analog RF precoding matrix FRF can be

expressed as

FRF = SC, (2)

where S ∈ {0, 1}Nt×NcN
t
RF is the switch matrix, and the

boolean constraints are induced by the switches with binary

states. The matrix C ∈ C
NcN

t
RF×Nt

RF stands for the phase

shift operation carried out by the available fixed phase shifters,

given by a block diagonal matrix as

C = diag




c, c, · · · , c
︸ ︷︷ ︸

Nt
RF




 , (3)

where c = 1√
Nc

[
eθ1, eθ2 , · · · , eθNc

]T
is the normalized

phase shifter vector containing all Nc fixed phases {θi}
Nc

i=1.

C. Problem Formulation

It has been shown in [2]–[4], [7], [11] that minimizing

the Euclidean distance between the fully digital precoder and

the hybrid precoder is an effective and tractable alternative

objective for maximizing the spectral efficiency of mm-wave

systems. In this paper, we resort to this approach and the

hybrid precoder design is correspondingly formulated as

P1 :

minimize
S,FBB

‖Fopt − SCFBB‖
2
F

subject to

{

S ∈ B

‖SCFBB‖
2
F ≤ KNsF,

(4)

where Fopt =
[

Fopt1,1, · · · ,Foptk,f , · · · ,FoptK,F

]

is the

combined fully digital precoder with dimension Nt ×KNsF ,

and FBB =
[
FBB1,1, · · · ,FBBk,f , · · · ,FBBK,F

]
is the

concatenated digital baseband precoder with dimension

N t
RF ×KNsF . The set of binary matrices is denoted as B,

and the second constraint is the transmit power constraint.

Note that the combiners at the user side can be designed in

the same way without the power constraint [3], [13] and thus

are omitted due to space limitation.

Remark 1: Since the switch matrix S is with finite possi-

bilities, the cardinality of the constraint set for FRF is finite,

which means the OMP algorithm [2] is applicable to this

problem P1. However, the dimension of the dictionary in

the OMP algorithm is oversize, i.e.,
[
∑Nc

i=1

(
Nc

i

)]Nt

, which

prevents its practical implementation.

Remark 2: Alternating minimization can be directly applied

to P1 where the binary constraints can be tackled with

semidefinite relaxation [3]. However, an NtN
t
RFNc + 1-

dimension semidefinite programming (SDP) problem should

be solved in each iteration, which causes prohibitive computa-

tional complexity. Moreover, the optimality of the relaxation

in each iteration cannot be ensured and hence the overall

convergence of the AltMin algorithm cannot be guaranteed.

As illustrated above, the main difficulty to solve P1 is

the binary constraints of S, and it is the main obstacle for

designing an efficient algorithm with performance guarantee.

In this paper, by deriving an effective surrogate and adopting

alternating minimization, we shall come up with a low-

complexity hybrid precoding algorithm that well tackles the

binary constraints.

III. HYBRID PRECODER DESIGN IN SINGLE-CARRIER

SYSTEMS WITH THE FPS IMPLEMENTATION

In this section, we first present the hybrid precoder design

in single-carrier systems1, i.e., when F = 1. In particular,

an upper bound of the objective function is firstly derived,

based on which an alternating minimization algorithm is then

developed.

A. Objective Upper Bound

In [3], [4], [13], imposing a semi-orthogonal structure for

FBB is shown to achieve near-optimal performance. Inspired

by these results, we take a similar approach. In single-carrier

systems, the digital precoder matrix FBB is with dimension

N t
RF×KNs. Recall that the number of RF chains is limited

as KNs ≤ N t
RF < Nt, which forces FBB as to be tall matrix,

and thus the semi-orthogonal constraint is specified as

FH
BBFBB = α2FH

DDFDD = α2IKNs
, (5)

where FBB = αFDD and FDD is a semi-unitary matrix. Then,

the objective function in P1 can be rewritten as

‖Fopt‖
2
F
− 2αℜ tr

(
FDDF

H
optSC

)
+ α2 ‖SCFDD‖

2
F . (6)

Note that, according to (3), the phase shifter matrix C is

also a semi-unitary matrix, i.e., CHC = INt
RF

. Therefore, we

can derive an upper bound for the last term in (6), given by

‖SCFDD‖
2
F = tr

(
FH

DDC
HSHSCFDD

)

(a)
= tr

([
IKNs

0

]

KHSHSK

)

< tr
(
KHSHSK

)
= ‖S‖

2
F ,

(7)

where (a) follows the singular value decomposition (SVD)

of CFDDF
H
DDC

H = Kdiag (IKNs
,0)KH by utilizing the

1In this paper, single-carrier systems refer to single-carrier transmissions
assuming flat-fading channels. The choice of such systems is for the ease of
presentation, and the algorithm will be later extended to the more realistic
multicarrier case with frequency-selective fading channels.



semi-unitary property of CFDD. Thus, we obtain an upper

bound for the original objective function, expressed as

‖Fopt‖
2
F
− 2αℜ tr

(
FDDF

H
optSC

)
+ α2 ‖S‖

2
F . (8)

B. Alternating Minimization

By adopting the upper bound (8) as the surrogate objective

function and dropping the constant term ‖Fopt‖
2
F

, the hybrid

precoder design problem is reformulated as

P2 :

minimize
α,S,FDD

α2 ‖S‖
2
F − 2αℜ tr

(
FDDF

H
optSC

)

subject to

{

S ∈ B

FH
DDFDD = IKNs

.

(9)

Alternating minimization, as an effective tool for optimiza-

tion problems involving different subsets of variables, has

been widely applied and shown empirically successful in

hybrid precoder design [3], [4], [13]. In this section, we apply

it this effective rule of thumb to the hybrid precoder design

with the FPS implementation.

In each step of the AltMin algorithm, one subset of the

optimization variables is optimized while keeping the other

parts fixed. When the switch matrix S and α are fixed, the

optimization problem can be written as

maximize
FDD

αℜ tr
(
FDDF

H
optSC

)

subject to FH
DDFDD = IKNs

.
(10)

According to the definition of the dual norm [14], we have

αℜ tr
(
FDDF

H
optSC

)
≤
∣
∣tr
(
αFDDF

H
optSC

)∣
∣

(b)

≤
∥
∥FH

DD

∥
∥
∞
∥
∥αFH

optSC
∥
∥
1

=
∥
∥αFH

optSC
∥
∥
1
=

KNs∑

i=1

σi,

(11)

where ‖·‖∞ and ‖·‖1 stand for the infinite and one Schatten

norms [14], and (b) follows the Hölder’s inequality. The

equality is established only when

FDD = V1U
H , (12)

where αFH
optSC = UΣVH

1 follows the SVD and Σ is a

diagonal matrix with non-zero singular values σ1, · · · , σKNs
.

While we can divide the optimization of the two variables

α and S into two separate subproblems, we propose to

update them in parallel to save the number of subprob-

lems involved in the AltMin algorithm and therefore reduce

the computational complexity. By adding a constant term
∥
∥ℜ
(
FoptF

H
DDC

H
)∥
∥
2

F
to the objective function of P2, the

subproblem of updating α and S can be recast as

minimize
α,S

∥
∥ℜ
(
FoptF

H
DDC

H
)
− αS

∥
∥
2

F

subject to S ∈ B.
(13)

Proposition 1. The optimal solution to (13) is given by

α⋆ = arg min
{x̃i,x̄i}n

i=1

{f(x̃i), f(x̄i)} , (14)

S⋆ =







1

{

ℜ
(
FoptF

H
DDC

H
)
> α

2 1Nt×NcN
t
RF

}

α > 0

1

{

ℜ
(
FoptF

H
DDC

H
)
< α

2 1Nt×NcN
t
RF

}

α < 0,

(15)

where x = vec
{
ℜ
(
FoptF

H
DDC

H
)}

, 1(·) is the indicator

function, and 1m×n denotes an m×n matrix with all entries

equal to one. The objective function in (13) can be rewritten

as f(α) as (26) in the proof. In addition, x̃i is the i-th smallest

entry in x, and2

x̄i ,







∑
i
j=1

x̃j

i
α < 0 and

∑
i
j=1

x̃j

i
∈ [2x̃i, 2x̃i+1]∑

n
j=i+1

x̃j

n−i
α > 0 and

∑
n
j=i+1

x̃j

n−i
∈ [2x̃i, 2x̃i+1]

+∞ otherwiese.

(16)

Proof: See Appendix A.

Basically, the optimal α⋆ is obtained via a closed-form

solution by comparing the optimal solutions of α in all the

intervals {Ri}
n
i=1, where Ri , [2x̃i, 2x̃i+1]. Nevertheless,

since the number of intervals that need to compare is n =
NtNcN

t
RF, it will incur high computational complexity when

Nt is large in mm-wave systems. In the following lemma, we

show that there is no need to compute the optimal α in all

the intervals Ri, which will further reduce the complexity of

the proposed algorithm.

Lemma 1. The optimal α⋆ is obtained at one of the points

{x̄i}
n
i=1.

Proof: See Appendix B.

Lemma 1 indicates that any endpoint of the intervals cannot

be the optimal solution for α. Therefore, we only need to

pick the x̄i’s that have finite values of f(x̄i), i.e., the ones

that satisfy the first two conditions in (16), denoted as a set

X , and the optimal solution for α is given by

α⋆ = arg min
x̄i∈X

f(x̄i). (17)

By Lemma 1, the number of intervals we need to compare

to obtain the optimal α⋆ is shrunk from n to |X |, which is

empirically shown to be less than 5 via simulations in Section

V and hence further reduces the computational complexity of

the proposed AltMin algorithm.

Remark 3: It is shown that, with the help of the upper

bound derived in (7), the large-scale binary switch matrix S

can be efficiently optimized by a closed-form solution, which

verifies the benefits and superiority of the surrogate objective

function adopted in P2.

With the closed-form solutions derived in (12), (15), and

(17) at hands, the AltMin algorithm for the FPS implemen-

tation is summarized as FPS-AltMin Algorithm. The FPS-

AltMin algorithm is essentially a block coordinate descent

(BCD) algorithm with two blocks that have globally optimal

solutions in Steps 3 and 4, and the algorithm is guaranteed

to converge to a stationary point of P2 [15]. The algorithm

may be sensitive to the initial point F
(0)
DD. Note that the fully

2f(α) is a coercive function, i.e., f(+∞) → +∞.



FPS-AltMin Algorithm: A Low-Complexity Hybrid Pre-

coding Algorithm for the FPS Implementation

Input: Fopt

1: Construct an initial point for F
(0)
DD and set k = 0;

2: repeat

3: Fix F
(k)
DD, optimize α(k) and S(k) according to (17) and

(15), respectively;

4: Fix S(k) and α(k), update F
(k)
DD with (12);

5: k ← k + 1;

6: until convergence.

7: Compute the additional BD precoder at the baseband to

cancel the inter-user interference [4].

8: For the digital precoder at the transmit end, normalize

FBB =
√
KNsF

‖SCFDD‖F

FDD.

digital precoding matrix Fopt can be decomposed as follows

according to its SVD Fopt = UΣVH , i.e,

Fopt =
[
UΣ F

]
[
VH

0

]

, (18)

where UΣ is an Nt ×KNs full rank matrix, VH is a KNs

dimension square matrix, and F is an arbitrary Nt× (N t
RF−

KNs) matrix. In (18), the fully digital precoding matrix Fopt

is decomposed into two matrices that satisfy the dimensions

of FRF and FDD, respectively. In this way, we propose to

construct the initial point F
(0)
DD as

F
(0)
DD =

[
V 0KNs×(Nt

RF
−KNs)

]H
. (19)

To cancel the inter-user interference, similar to [4], we cas-

cade an additional block diagonal precoder at the baseband

in the Step 7 based on the effective channel including the

hybrid precoder and physical channel. In the final step, we

normalize the digital precoder to maximize the signal to noise

ratio (SNR) while satisfying the transmit power constraint.

IV. HYBRID PRECODER DESIGN IN MULTICARRIER

SYSTEMS WITH THE FPS IMPLEMENTATION

Multicarrier techniques such as OFDM are often utilized

to overcome the multipath fading caused by the large avail-

able bandwidth in mm-wave systems. Compared with the

narrowband hybrid precoder design in Section III, the main

difference in OFDM systems is that the analog precoder

is shared by all the subcarriers. In particular, the digital

precoding matrix FBB ∈ CNt
RF×KNsF in P1 is no longer a

tall matrix since KNsF ≥ N t
RF for practical OFDM system

settings.

In this section, we modify the FPS-AltMin algorithm for

OFDM systems. Similar to (5), we enforce a semi-orthogonal

constraint on the digital precoding matrix, i.e.,

FBBF
H
BB = α2FDDF

H
DD = α2INt

RF
. (20)

In this way, the upper bound of the objective function derived

in (7) still holds since

‖SCFDD‖
2
F = tr

(
CHSHSC

)

(c)
= tr

([
INt

RF

0

]

KHSHSK

)

< tr
(
KHSHSK

)
= ‖S‖

2
F ,

(21)

where (c) comes from the SVD of CCH since C is a semi-

unitary matrix. In the AltMin algorithm, the update of α and

S is the same as that in Section III-B. Since the dimension of

FDD is different in OFDM systems, the optimization of FDD

is modified as

FDD = VUH
1 , (22)

where FH
optSC = U1ΣVH and Σ is a diagonal matrix with

non-zero singular values σ1, · · · , σNt
RF

, which is the SVD of

FH
optSC. Correspondingly, the construction of the initial F

(0)
DD

is given by

F
(0)
DD = VH

[1:Nt
RF

], (23)

where Fopt = UΣVH is the SVD of Fopt and the subscript

[1 : n] denotes the first to the n-th columns of a matrix.

By substituting (23) and (22) into the Steps 1 and 4,

we obtain the FPS-AltMin algorithm for OFDM mm-wave

systems.

V. SIMULATION RESULTS

In this section, we will evaluate the performance of the

proposed FPS-AltMin algorithm via simulations. The BS and

each user are equipped with 144 and 16 antennas, respectively,

while all the transceivers are equipped with uniform planar

arrays (UPAs). Four users and 128 subcarriers are assumed

when considering multiuser OFDM systems. To reduce the

cost and power consumption, the minimum number of RF

chains is adopted according to the assumptions in Section II-

A, i.e., N t
RF = KNs and N r

RF = Ns. The phases of the

available fixed phase shifters are uniformly separated within

[0, 2π] by Nc equal length intervals. Furthermore, the Saleh-

Valenzuela model is adopted in simulations to characterize

mm-wave channels [2], [3]. The nominal SNR is defined as
P

KNsFσ2
n

, and all the simulation results are averaged over 1000

channel realizations.

A. Single-User Single-Carrier (SU-SC) Systems

As a great number of previous efforts have been spent on

point-to-point systems, it is intriguing to test the performance

of the proposed algorithm by comparing with existing works

as benchmarks. The OMP algorithm proposed in [2] has been

widely used as a low-complexity algorithm with the analog

precoder selected from a predefined set. The MO-AltMin

algorithm was then proposed in [3] to improve the perfor-

mance of the OMP algorithm, yet with high computational

complexity of performing the manifold optimization. Both

of these algorithms are applied with the SPS implementa-

tion. Fig. 3 shows that the proposed FPS-AltMin algorithm

achieves the highest spectral efficiency with the simulation

time comparable to the OMP algorithm. The performance
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RF
= Nr

RF
= Ns = 4 and Nc = 30.
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Fig. 4. Spectral efficiency achieved by different hybrid precoding algorithms
in MU-MC systems when Nt

RF
= 8, Nr

RF
= Ns = 2, and Nc = 30.

gain is mainly attributed to the proposed FPS implementation,

where the unit modulus constraints in the SPS implementation

are relaxed. Furthermore, the proposed algorithm leads to an

effective design of the dynamic switch network, and provides

a better approximation of the fully digital precoder than

existing algorithms.

B. Multiuser Multicarrier (MU-MC) Systems

In [4], the DPS implementation was proposed for MU-

MC systems to approach the performance of the fully digital

precoder by sacrificing the hardware complexity of employing

a large number of phase shifters, i.e., 2NtN
t
RF phase shifters.

As shown in Fig. 4, the proposed FPS-AltMin algorithm

only entails little performance loss compared to the DPS

implementation when only 30 fixed phase shifters are adopted.

On the other hand, it enjoys significant improvement in terms

of spectral efficiency compared to the OMP algorithm. This

result demonstrates the effectiveness of both the newly pro-

posed implementation and algorithm. In addition, it indicates

that the number of phase shifters can be sharply reduced even

if the analog precoder is shared by all the subcarriers and users

in MU-MC systems.
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Fig. 5. Spectral efficiency achieved by different hybrid precoding algorithms
in mm-wave MIMO systems given SNR = 0 dB.

C. How Many Phase Shifters Are Needed?

Fig. 5 plots the spectral efficiency achieved with different

numbers of fixed phase shifters, i.e., Nc. The simulation

parameters are the same as those in Figs. 3 and 4 for SU-

SC and MU-MC systems, respectively. Fig. 5 shows that in

SU-SC systems 15 phase shifters are enough for achieving

a satisfactory performance as the spectral efficiency almost

saturates when we further increase the number of fixed

phase shifters. By contrast, 576 phase shifters are needed

in the SPS implementation. Moreover, the OMP algorithm

achieves a lower spectral efficiency and the MO-AltMin

algorithm suffers from the high computational complexity.

A similar phenomenon is found in MU-MC systems, i.e.,

around 10 fixed phase shifters are sufficient, which has not

been revealed in existing works. Although the performance of

the DPS implementation slightly outperforms the proposed

FPS-AltMin algorithm, it employs 200 times more phase

shifters. This illustrates that the proposed FPS implementation

is much more cost-effective than existing hybrid precoder

implementations, and with satisfactory performance.

VI. CONCLUSIONS

In this paper, we proposed a cost-effective hybrid precoder

implementation with a small number of fixed phase shifters.

To enhance the performance, a dynamic switch network was

adopted, for which a low-complexity AltMin algorithm was

developed. The proposed implementation is able to approach

the performance of the fully digital precoder, remarkably,

with small numbers of RF chains and phase shifters. Thus,

this proposal stands out as a promising candidate for hybrid

precoders for 5G mm-wave systems.

APPENDIX A

PROOF OF PROPOSITION 1

Note that each entry in the switch matrix S is either 0
or 1, and we discover that they can be optimally determined

individually once α is given. In particular, to minimize the ob-

jective function, sm,n should take value 1 if the corresponding

(m,n)-th entry in the matrix ℜ
(
FoptF

H
DDC

H
)

is closer to



f(α) = ‖x̃− αs‖
2
2

=







i∑

j=1

(x̃j − α)2 +
n∑

j=i+1

x̃2
j α < 0 and

α

2
∈ Ri

i∑

j=1

x̃2
j +

n∑

j=i+1

(x̃j − α)2 α > 0 and
α

2
∈ Ri

=







iα2 − 2

i∑

j=1

x̃jα+

n∑

j=1

x̃2
j α < 0 and α ∈ [2x̃i, 2x̃i+1]

(n− i)α2 − 2

n∑

j=i+1

x̃jα+

n∑

j=1

x̃2
j α > 0 and α ∈ [2x̃i, 2x̃i+1]

(26)

α than 0 in the Euclidean space, and take value 0 otherwise,

as given in (15).

The remaining problem is to choose an optimal α that

minimizes the objective function. Since S ∈ B is an element

wise constraint, to simplify the notations, it is equivalent to

consider the vectorization version of (13), given by

minimize
α,s

‖x− αs‖
2
2

subject to s ∈ {0, 1}n,
(24)

where n = NtNcN
t
RF, x , vec

{
ℜ
(
FoptF

H
DDC

H
)}

, and

s = [s1, s2, · · · , sn] , vec {αS}.
First, we sort the entries of x in the ascending order as

x̃ = [x̃1, x̃2, · · · , x̃n], where x̃1 ≤ x̃2 ≤ · · · ≤ x̃n. Then all

the entries split the real line into n+1 intervals {Ii}
n
i=0, where

Ii , [x̃i, x̃i+1]. Furthermore, we can obtain some insights

from (15) to optimize α. Specifically, if α
2 falls into a certain

interval Ii, the corresponding optimal s can be determined as

{sk}
i−1
k=1 =

{

0 α > 0

1 α < 0,
{sk}

n
k=i =

{

1 α > 0

0 α < 0.
(25)

Therefore, the objective function in (13) can be rewritten as

(26) at the top of this page. Note that within each interval

Ri = [2x̃i, 2x̃i+1], the objective function is a quadratic

function in terms of α, and hence it is easy to give the optimal

solution for α in Proposition 1.

APPENDIX B

PROOF OF LEMMA 1

We prove Lemma 1 by contradictory. Since in each interval

Ri the objective function is a quadratic function of α. The

optimal α⋆ can only be obtained at the two endpoints of Ri

or at the axis of symmetry if the objective is not monotonic

in Ri. When α < 0, the axis of symmetry of the quadratic

function is given by

x̄i =

∑i

j=1 x̃j

i
, (27)

which is the mean value of the first i entries in x̃.

A hypothesis is firstly made that a certain endpoint x̃i is

the optimal solution to α. It means that the axis of symmetry

of the objective function in Ri−1 is on the right hand side of

x̃i, and the axis of symmetry of the objective function in Ri

is on the left hand side of x̃i, i.e.,

x̄i < x̃i < x̄i−1. (28)

Note that the entries in x̃ are ordered in the ascending order.

Hence, x̄i, as the mean value of the first i entries in x̃, is an

increasing function with respect to i, i.e., x̄i ≥ x̄i−1, which

is contradictory with (28) and completes the proof for α < 0.

The scenario of α > 0 can be similarly proved.
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