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Information Theoretic Performance of
Periodogram-based CFO Estimation in Massive

MU-MIMO Systems
Sudarshan Mukherjee and Saif Khan Mohammed

Abstract—In this paper, we study the information theoretic
performance of the modified time-reversal maximum ratio com-
bining (TR-MRC) receiver (presented in [9]) with the spatially
averaged periodogram-based carrier frequency offset (CFO)
estimator (proposed in [7]) in multi-user massive MIMO systems.
Our analysis shows that anO(

√
M) array gain is achieved with

this periodogram-based CFO estimator, which is same as the
array gain achieved in the ideal/zero CFO scenario (M is the
number of base station antennas). Information theoretic perfor-
mance comparison with the correlation-based CFO estimator
for massive MIMO systems (proposed in [6]) reveals that this
periodogram-based CFO estimator is more energy efficient in
slowly time-varying channels.

I. I NTRODUCTION

Large scale antenna systems/massive multiple-input
multiple-output (MIMO) systems has been envisaged as
one of the key technologies in the evolution of the next
generation wireless communication systems [1], [2]. In
massive MIMO, the cellular base station (BS) is equipped
with a large array of antennas (of the order of hundreds) to
serve an unconventionally large number of single-antenna user
terminals (UTs) simultaneously, in the same time-frequency
resource [3]. Increasing the number of BS antennas opens up
more available degrees of freedom, resulting in more effective
suppression of multi-user interference (MUI) compared to
the conventional single-antenna/small scale multi-antenna
systems. It has been shown that for a given number of UTs, in
a coherent multi-user massive MIMO system, with imperfect
channel estimates, the required per-user transmit power in
the uplink (to achieve a fixed desired per-user information
rate) can be reduced as1√

M
with increasingM (i.e. an

O(
√
M) array gain is achieved), whereM is the number of

BS antennas [4].
However these existing results in massive MU-MIMO sys-

tems are based on the assumption of perfect frequency synchro-
nization for coherent multi-user communication. In practice,
carrier frequency offsets (CFOs) exist between the signals
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received at the BS from different UTs and the local oscillator
at the BS. Existence of such CFOs, if unmitigated, would
result in degradation of the information rate performance of
the system. Although various techniques for frequency syn-
chronization (CFO estimation/compensation) in small MIMO
systems exist, it has been observed that those techniques are
not amenable to practical implementation in massive MIMO
systems, due to prohibitive increase in their complexity with
increasing number of UTs [5], [6].

In [5], the authors suggested an approximation to the
joint maximum likelihood (ML) estimator for CFO estimation
in multi-user (MU) massive MIMO systems. However, the
CFO estimation technique presented in [5], requires multi-
dimensional grid search and therefore has an exponential
complexity with increasing number of UTs. Later in [6], a
simple low-complexity (complexity independent of the number
of UTs) correlation-based CFO estimator for massive MU-
MIMO systems has been suggested. This CFO estimator
however requires impulse-like pilots, which are highly suscep-
tible to channel non-linearities (e.g. non-linear power efficient
amplifier (PA) in the transmitters etc.), due to their high PAPR
(peak-to-average-power ratio) characteristics. This problem of
high PAPR pilots is later alleviated using a low-complexity
(complexity linear with the number of UTs) spatially averaged
periodogram-based CFO estimator proposed in [7], which uses
low-PAPR constant envelope (CE) pilots. In [7] it is shown
that while the correlation-based CFO estimator in [6] has less
complexity, the periodogram-based CFO estimator proposed
in [7] is better in terms of the mean squared error (MSE)
performance.

However, while the information theoretic performance with
the correlation-based CFO estimator has already been ana-
lyzed [8], [9], no such result exists for the periodogram-
based CFO estimator. Therefore, in this paper we derive the
information theoretic performance with the periodogram-based
CFO estimator, which also allows us to compare it to the
information theoretic performance with the correlation-based
CFO estimator.

CONTRIBUTIONS: The novel results presented in this paper
are summarized as follows: (i) firstly, we study the information
rate performance of the modified time-reversal maximum
ratio combining (TR-MRC) receiver proposed in [9] with the
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periodogram-based CFO estimation for massive MU-MIMO
uplink in the imperfect CSI scenario. Our study reveals that
even with this new periodogram-based CFO estimator, an
O(

√
M) array gain is achievable (i.e.no loss in array gain

performance compared to the ideal/zero CFO scenario); (ii)
a study of the trade-off between the information rate

performance of the modified TR-MRC receiver (with the
periodogram-based and correlation-based CFO estimators)ver-
sus the CFO estimation complexity reveals that the achievable
information rate with the periodogram-based CFO estimator
can be significantly better than that with the correlation-based
CFO estimator at the cost of higher complexity; and (iii) fur-
ther, it is also revealed that for slowly time-varying channels,
the information rate performance with the periodogram-based
CFO estimator is significantly better compared to that with the
correlation-based CFO estimator, i.e., the periodogram-based
CFO estimator ismore energy efficient in slowly time-varying
channels/low-mobility channels. [Notations: E denotes the
expectation operator and(.)∗ denotes the complex conjugate
operator.]

II. SYSTEM MODEL

Let us consider a single-carrier single-cell massive MIMO
BS, equipped withM antennas, servingK single antenna UTs
simultaneously in the same time-frequency resource. Sincea
massive MIMO BS is expected to operate in time division
duplexed (TDD) mode, i.e., each coherence interval is divided
into an uplink (UL) slot, followed by a downlink (DL) slot.
For coherent multi-user communication, frequency synchro-
nization (i.e. CFO estimation/compensation) is importantin
massive MIMO systems. To this end, we consider a com-
munication strategy, where the CFO estimation is performed
at the BS in a special UL slot before data communication.
In this slot, the UTs transmit special pilots to the BS. After
CFO estimation, in the subsequent UL slots, at the BS, CFO
compensation is performed, prior to channel estimation and
UL receiver processing (see Fig. 1). The special UL slot for
CFO estimation is repeated every few coherence intervals,
depending on how fast the CFOs change.

The CFO estimation/compensation technique presented in
[6], [9] requires high PAPR impulse-like pilots, which are
susceptible to PA non-linearities. Since massive MIMO sys-
tems are expected to be highly energy efficient, it is desired
that we use low PAPR pilots signals for CFO estimation (to
facilitate use of highly energy efficient non-linear PAs). The
periodogram-based CFO estimation technique discussed in [7]
requires low PAPR constant envelope (CE) pilots. Specifically,
for K UTs, the kth UT would transmit a pilotpk[t] =
ej

2π
K

(k−1)t, wherek = 1, 2, . . . ,K and t = 0, 1, . . . , N − 1.
HereN ≤ Nu is the length of the pilot sequence andNu is the
duration of the UL slot. Assuming the channel to be frequency-
selective withL memory taps, the pilot signal received at the
mth BS antenna at timet is given by

UL DL UL DL UL DL UL DL UL DL UL DL

CFO 
Estimation

Data Communication Phase
(CFO compensation is done at the BS prior to channel estimation and detection)

CFO 
Estimation

t = 0
NDKL

Nu Nc -Nu

Pre-amble Post-ambleChannel Estimation Phase UL Data Transmission Phase/block

t = KL-1 t = KL+L-1 t = Nu-1

Nu

t = Nu-L

Fig. 1 The communication strategy: CFO Estimation/Compensation
and Data Communication. HereNc is the duration of coherence
interval and the UL slot for data communication isNu channel uses.

rm[t] =
√
pu

K∑

q=1

L−1∑

l=0

hmq[l] e
j[ 2π

K
(q−1)(t−l)+ωqt] + nm[t]

=
√
pu

K∑

q=1

Hmq e
j[ 2π

K
(q−1)+ωq ]t + nm[t], (1)

whereHmq
∆
=

L−1∑
l=0

hmq[l] e
−j 2π

K
(q−1)l andωq is the CFO of

the qth UT. Herepu is the average power transmitted by each
UT in the uplink andhmk[l] ∼ CN (0, σ2

hkl) is the independent
channel gain coefficient from the single-antenna of thek-th UT
to them-th antenna of the BS at thel-th channel tap. Also,
{σhkl > 0}, (l = 0, 1, . . . , L−1; k = 1, 2, . . . ,K) is perfectly
known at the BS and models the power delay profile (PDP)
of the channel.

A. Low-Complexity CFO Estimation Using Spatially Averaged
Periodogram [7]

From (1) it is clear that the signal received at the BS is
simply a sum of complex sinusoids with additive Gaussian
noise. Specifically, the frequency of the sinusoid receivedfrom
the kth UT is 2π

K
(k − 1) + ωk, whereωk is the CFO of the

kth UT. Intuitively, an estimate of this CFO of thekth UT,
i.e., ω̂k would be the difference between the frequency of the
transmitted pilot (i.e.2π

K
(k − 1)) and the estimated frequency

of the sinusoid received at the BS from thekth UT. An
attractive low-complexity alternative to the joint ML frequency
estimation is the periodogram technique [10], which simply
computes the periodogram of the received signal and chooses
the K largest peaks as the estimate of theK frequencies.
Since in massive MIMO systems, the required received power
at the BS is expected to be small, spatial averaging of the
periodogram computed at each of theM BS antennas is
performed [7].

We also assume that the CFOs from all UTs lie in the range
[−∆max,∆max] (where∆max is the maximum CFO for any
UT). Therefore the frequency of the sinusoid received from
thekth UT would lie in the interval[ 2π

K
(k−1)−∆max,

2π
K
(k−

1) + ∆max]. For ∆max <
π
K

, these intervals for different UTs



are non-overlapping,1 and therefore we need to compute the
periodogram for thekth UT only in the interval[ 2π

K
(k− 1)−

∆max,
2π
K
(k−1)+∆max] over a fine grid of discrete frequencies.

Thus the CFO estimate for thekth UT is given by [7]

ω̂k = argmax
θ∈Ξ

Spatial
averaging︷ ︸︸ ︷
1

M

M∑

m=1

Periodogram computed at themth BS antenna︷ ︸︸ ︷
1

N

∣∣∣
N−1∑

t=0

rm[t] e−j[ 2π
K

(k−1)+θ]t
∣∣∣
2

︸ ︷︷ ︸
∆
=Φk(θ)

, (2)

whereΞ
∆
= {Ω(i)

∆
= 2π

Nα i
∣∣∣|i| ≤ T0}, T0

∆
= ⌈∆max

2π Nα⌉ and

Ω(i) denotes the discrete frequencies where the periodogram
is computed. Note that the parameterα controls the resolution
of the discrete frequencies in the setΞ. Therefore it follows
that with increasingα and fixedN , the MSE of CFO estima-
tion, i.e.,ǫ(α)

∆
= E[(ω̂k − ωk)

2] would decrease [7].

III. I NFORMATION RATE ANALYSIS

After the CFO estimation phase, the conventional data com-
munication starts att = 0 of the next UL slot (see Fig. 1). The
UTs transmit pilots for channel estimation sequentially intime
for the first KL channel uses. The UL data communication
starts att = KL+L−1 and continues for the nextND channel
uses (i.e. fromt = KL+L−1 till t = KL+ND+L−2). The
channel estimation phase and the UL data transmission phase
are separated by a preamble sequence ofL− 1 channel uses.2

Since the duration of the UL slot isNu channel uses, it follows
thatNu = KL+(L−1)+ND+(L−1) and henceND = Nu−
KL−2(L−1). For channel estimation, we assume that thekth

UT transmits an impulse of amplitude
√
KLpu at t = (k−1)L

and zero elsewhere.3 Thus the received pilot at themth BS
antenna at timet = (k − 1)L + l is given byrm[(k − 1)L +
l] =

√
KLpuhmk[l] e

jωk[(k−1)L+l] +nm[(k− 1)L+ l], where
m = 1, 2, . . . ,M , l = 0, 1, . . . , L− 1 andk = 1, 2, . . . ,K. To
estimate the channel gain coefficient, we first perform CFO
compensation for thekth UT by multiplying rm[(k− 1)L+ l]
with e−jω̂k[(k−1)L+l] and then compute the ML channel esti-
mate aŝhmk[l]

∆
= rm[(k−1)L+ l]e−jω̂k[(k−1)L+l]/

√
KLpu =

1Note that the frequency range for two consecutive users (e.g. the kth

UT and the (k − 1)th UT) would be non-overlapping if and only if the
maximum CFO∆max satisfy the following inequality

∣∣ 2π
K

(k−1)−∆max
∣∣ >∣∣ 2π

K
(k−2)+∆max

∣∣ =⇒
∣∣∆max

∣∣ < π
K

. For a massive MIMO system with
carrier frequencyfc = 2 GHz, communication bandwidthBw = 1 MHz and
maximum CFO of0.1 (= κ) PPM offc [11], the maximum CFO is given by
2πκ fc/Bw = π

2500
. Clearly with K = 10 and maximum delay spread of

5µs, i.e.,L = 5µs×Bw = 5, we have∆max =
π

2500
≪ π

KL
≪ π

K
= π

10
,

i.e., the frequency intervals of consecutive users are non-overlapping.
2The symbols transmitted in the pre-amble and post-amble sequences (see

Fig. 1) are independent and identically distributed (i.i.d.) and are assumed to
have the same distribution as the information symbols transmitted during the
data communication phase, in order to ensure the correctness of the computed
achievable information rate.

3Note that the use of impulse-like pilots for channel estimation is essential
in order to have a fair comparison between the information rate achieved by
the modified TR-MRC receiver with the periodogram-based CFOestimator
(computed in this paper) and that with the correlation basedCFO estimator
(computed in [9]).

h̃mk[l] +
1√

KLpu
ñm[(k − 1)L + l]. Here ñm[(k − 1)L +

l]
∆
= nm[(k − 1)L + l]e−jω̂k[(k−1)L+l] ∼ CN (0, σ2) and

h̃mk[l]
∆
= hmk[l]e

−j∆ωk[(k−1)L+l] ∼ CN (0, σ2
hkl) is the

effective channel gain coefficient and∆ωk
∆
= ω̂k − ωk is the

residual CFO after compensation.4

A. TR-MRC Receiver Processing

After the channel estimation phase and the preamble trans-
mission, the UL data communication starts. Letxk[t] ∼
CN (0, 1) be the i.i.d. information symbol transmitted by
the kth UT at the tth channel use andpu be the average
power transmitted by each UT. Therefore the received signal
at the mth BS antenna at timet is given by rm[t] =√
pu
∑K

q=1

∑L−1
l=0 hmq[l]xq[t − l]ejωqt + nm[t], where t =

KL + L − 1, . . . , (ND + KL + L − 2). To detectxk[t], we
use the modified TR-MRC receiver described in [9], i.e., we
first perform CFO compensation for thekth UT and then pass
the CFO compensated signal through the TR-MRC receiver.
With TR-MRC processing of the CFO compensated signal,
the detected information symbol for thekth UT at time t is
given by

x̂k[t] =
√
pu

M∑

m=1

L−1∑

l=0

ĥ∗
mk[l] rm[t+ l]e−jω̂k[t+l]

︸ ︷︷ ︸
CFO Compensation

=
√
pu

( M∑

m=1

L=1∑

l=0

∣∣h̃mk[l]
∣∣2
)
e−j∆ωk[t−(k−1)L] xk[t]

+MUINk[t] , (5)

where MUINk[t] comprises of the inter-symbol interference
(ISI), multi-user interference (MUI), channel estimationerror
and AWGN noise. In massive MIMO systems, it can be
shown that withM → ∞, the term

∑M

m=1

∑L−1
l=0 |h̃mk[l]|2

becomes almost deterministic5 due to channel hardening [3],
[12]. Therefore an efficient communication strategy is to
replace the effective channel gain component in the first term
in the second line of R.H.S. of (5) by its mean value, i.e.,

ESk[t]
∆
=

√
pu E

[
M∑

m=1

L=1∑
l=0

∣∣h̃mk[l]
∣∣2 e−j∆ωk[t−(k−1)L]

]
xk[t]

and create an additional term which would contain
its variance around the mean, i.e., SIFk[t]

∆
=(√

pu

M∑
m=1

L=1∑
l=0

∣∣h̃mk[l]
∣∣2 e−j∆ωk[t−(k−1)L] xk[t] − ESk[t]

)
.6

Since CFO estimation is carried out in a separate special
coherence interval, the residual CFO error is independent of

4Both hmk [l] andnm[(k− 1)L+ l] have uniform phase distribution (i.e.
circular symmetric) and are independent of each other. Clearly, rotating these
random variables by fixed angles (for a given realization of CFOs and its
estimates) would not change the distribution of their phases and they will
remain independent. Therefore the distribution ofh̃mk [l] andñmk [(k−1)L+
l] would be same as that ofhmk[l] andnm[(k − 1)L+ l] respectively.

5As M → ∞, the ratio of the standard deviation of
M∑

m=1

L−1∑
l=0

|h̃mk[l]|
2

to its mean converges to zero.
6Here E[.] is taken across multiple coherence intervals and also across

multiple CFO estimation phases.



x̂k[t] = M
√
pu

( L−1∑

l=0

σ2
hkl

)
E

[
e−j∆ωk[t−(k−1)L]

]
xk[t]

︸ ︷︷ ︸
=ESk[t]

+
√
pu

M∑

m=1

L−1∑

l=0

∣∣h̃mk[l]
∣∣2 e−j∆ωk[t−(k−1)L] xk[t] − ESk[t]

︸ ︷︷ ︸
= SIFk[t]

+MUINk[t]

(3)

SINRk[t]
∆
=

E
[
|ESk[t]|2

]

E [|EWk[t]|2]
=

(
E
[
e−j∆ωk[t−(k−1)L]

])2
[
1−

(
E

[
e−j∆ωk[t−(k−1)L]

])2
]

︸ ︷︷ ︸
∆
=E[|SIFk[t]|2]

+
1

MKγ2θ2k
+

1

Mγ

(
1 +

1

Kθ2k

K∑

q=1

θq

)
+

1

Mθk

K∑

q=1

θq

︸ ︷︷ ︸
∆
= E[|MUINk[t]|2]

(4)

the effective channel gain coefficient̃hmk[l]. Therefore we

have ESk[t] = M
√
pu

(L−1∑
l=0

σ2
hkl

)
E
[
e−j∆ωk[t−(k−1)L]

]
xk[t]

and SIFk[t] =
√
pu

( M∑
m=1

L−1∑
l=0

∣∣h̃mk[l]
∣∣2 e−j∆ωk[t−(k−1)L] −

M
L−1∑
l=0

σ2
hkl E

[
e−j∆ωk[t−(k−1)L]

])
xk[t]. Thus from (5) we

get (3), where ESk[t] is treated as the useful signal term, and
we relegate SIFk[t] to the effective interference and noise

term EWk[t], i.e., EWk[t]
∆
= SIFk[t] +MUINk[t]. Hence from

(5) we havex̂k[t] = ESk[t] + EWk[t]. Note that the statistics
of both ESk[t] and EWk[t] are functions oft. However for a
given t, the realization of EWk[t] is i.i.d. across multiple UL
data transmission blocks (i.e. coherence intervals). Therefore
for eacht, the effective channel between thekth UT and the
BS reduces to a single-user SISO (single-input single-output)
non-fading channel with additive noise, when viewed across
multiple coherence intervals. Thus forND channel uses, we
would haveND SISO channels with distinct channel statistics.
We therefore have separate codebooks, one for each of these
ND channel uses. The data received in thetth channel use of
every coherence interval is jointly decoded at the BS.7

B. Achievable Information Rate

Since information symbolxk[t], residual CFO error∆ωk =
ω̂k − ωk and effective channel gain coefficienth̃mk[l] are
all independent random variables, it can be shown that
E [ESk[t]EW∗

k[t]] = 0, i.e., the useful signal term is uncorre-
lated to the effective noise. Hence with Gaussian information
symbols, the worst case uncorrelated noise (in terms of mu-
tual information) would also be Gaussian with same mean
and variance as EWk[t] [14]. Thus we have the following
lower bound on the mutual information, i.e.,I(x̂k[t];xk[t]) ≥
log2 (1 + SINRk[t]), where SINRk[t] is defined in (4) at the
top of the page (note thatθk

∆
=
∑L−1

l=0 σ2
hkl andγ = pu

σ2 is the
transmit SNR).8 Therefore an achievable information rate for
the kth UT is given by

7This coding strategy has also been used in [8], [9], [13].
8This is due to the fact thatE [EWk[t]] = 0, sincexk[t] and the AWGN

noise are both zero mean.
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Fig. 2 Plot of the variation inE
[

e−j∆ωk(t−(k−1)L)
]

with increasing
number of BS antennas,M for fixed K = 10, N = 2000, Nu =
5000, L = 5, t = KL+ND + L− 2 andk = 1, with the transmit
SNR γ decreasing∝ 1√

M
with increasingM , starting atγ = −14

dB for M = 20.

Ik =
1

Nu

Nu−L∑

t=KL+L−1

log2(1 + SINRk[t]). (6)

Remark1. (Achievable Array Gain)Analysis of the variances
of various components of EWk[t] shows thatE

[∣∣EWk[t]
∣∣2
]
=

E

[∣∣SIFk[t]
∣∣2
]
+ E

[∣∣MUINk[t]
∣∣2
]

depends on the residual

CFO error only through the variance of SIFk[t].9 We note
that both the variances of ESk[t] and SIFk[t] depend on
E
[
e−j∆ωk[t−(k−1)L]

]
, which in turn depends on the statistical

distribution of (ω̂k − ωk). From exhaustive numerical simu-
lations, it can be easily shown that with the transmit SNR
γ ∝ 1√

M
, the termE

[
e−j∆ωk(t−(k−1)L)

]
would converge to a

constant value with increasingM → ∞ (see Fig. 2). Therefore
the variances of ESk[t] and SIFk[t] would also converge to a
fixed value with increasingM → ∞ and γ ∝ 1√

M
. Further

from (4), we observe that the variance of MUINk[t] converges
to a non-zero positive constant value with increasing number
of BS antennasM → ∞ andγ = pu

σ2 ∝ 1√
M

.
Thus from the above discussion, it follows that SINRk[t]

would converge to a constant asM → ∞ with γ ∝ 1√
M

.

9It can be shown thatE
[
SIFk[t]MUIN∗

k
[t]
]
= 0, since∆ωk, xk[t] and

h̃mk[l] are all independent of each other.



Hence from (6) it can be concluded that the information
rate of the modified TR-MRC receiver with the periodogram-
based CFO estimation/compensation, converges to a constant
with γ ∝ 1√

M
as M → ∞. In other words, with a fixed

desired information rate and fixed number of UTs, the required
transmit SNRγ would decrease roughly by1.5 dB with every
doubling in the number of BS antennasM , i.e., anO(

√
M)

array gain is achieved (see the variation in the required
transmit SNRγ for M = 320 and M = 640 in Table I).
This showsthe interesting new resultthat the periodogram-
based CFO estimator does not degrade the achievable array
gain in the residual CFO scenario (i.e., same as that for the
correlation-based CFO estimator [8], [9]), when compared to
the ideal/zero CFO scenario.

IV. N UMERICAL RESULTS AND DISCUSSIONS

In this section, we study the information rate performance-
complexity trade-off for the TR-MRC receiver with the
periodogram-based CFO estimator. For Monte-Carlo simula-
tions, we assume the following values for system parameters:
carrier frequencyfc = 2 GHz, communication bandwidth
Bw = 1 MHz and a maximum CFO equal to0.1 (= κ) PPM
of fc, i.e., ∆max = 2πκfc/Bw = π

2500 . Also, we assume that
the maximum delay spread of the channel isTd = 5µs, i.e.,
the number of channel memory tapsL = TdBw = 5. At
the start of every CFO estimation phase, the CFOsωk (k =
1, 2, . . . ,K) assume new values (independent of the previous
ones), uniformly distributed in the interval

[
− π

2500 ,
π

2500

]
. The

PDPs are also assumed to be the same for all UTs and is given
by σ2

hkl = 1/L, wherel = 0, 1, . . . , L−1 andk = 1, 2, . . . ,K.
The number of UTs are assumed to beK = 10.

In Fig. 3, we plot the variation in the total computational
complexity (i.e. the number of complex floating point oper-
ations required for CFO estimation) versus the information
rate of the1st UT for a fixed transmit SNRγ = −12 dB,
fixed number of BS antennasM = 80, fixed duration of
the UL slotNu = 5000 and pilot length for CFO estimation
N = 500, 1000 and2000 respectively.

The increase in the information rate (for a fixed transmit
SNRγ, fixedM , K andN ) corresponds to the increase inα,
since with increasingα the resolution of the CFO estimation
in (2) increases, thereby reducing the MSE of CFO estimation.
Reduction in the MSE of CFO estimation reduces the variance
of the SIF term in the denominator in (4) and this leads to an
increase in the information rate. However, the informationrate
does not increase unboundedly with increasingα and is seen
to saturate for values ofα beyond a critical value. This is

TABLE I M INIMUM REQUIRED TRANSMIT SNR γ = pU

σ2 TO
ACHIEVE A FIXED PER-USER INFORMATION RATE Ik = 1 BPCU,
K = 10, N = 2000, L = 5 AND UL SLOT DURATION Nu = 5000
CHANNEL USES.

M 40 80 160 320 640
SNR -9.9 -12.53 -14.7 -16.6 -18.38

Per-User Informaton Rate (bpcu)
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Fig. 3 Plot of the variation in the number of complex operations
with increasing per-user information rate for fixedK = 10, L = 5,
SNR = −12 dB, M = 80, Nu = 5000 andN = 500, 1000 and
2000 respectively.

observed in Fig. 3, where forN = 1000, the increase in the
information rate is only≈ 4.35%, whenα is increased from
1.6 to 1.8, though the complexity increases rapidly by a factor
of approximately4 (see Fig. 3). Therefore from the point of
view of the complexity-performance trade-off, it appears that it
is optimal to operate withα equal to this critical value. In this
paper, we have defined this critical valueα⋆ as the smallest
possible value ofα for a fixed transmit SNRγ, M , K and
N , such that|(Ik(α)− Ik(α+∆α))/Ik(α)| < δ, for a given
δ = 0.02 and∆α = 0.1.

In Fig. 3, we also plot the required number of complex op-
erations for CFO estimation using the correlation-based CFO
estimator proposed in [6]. Note that while this CFO estimator
is indeed superior to the periodogram-based CFO estimator
proposed in [7] in terms of complexity, the information rate
performance of the TR-MRC receiver with the periodogram-
based CFO estimator is comparatively better than that of the
TR-MRC receiver with correlation-based CFO estimator when
α is sufficiently large. For instance, withN = 1000 and
α = α⋆ = 1.6, the information rate with the periodogram-
based CFO estimator is approximately20% more than that of
the correlation-based CFO estimator (see Fig. 3).

Subsequently, in Fig. 4 we plot the variation in the achiev-
able information rate for the first user with increasing duration
of UL data transmission block (ND), for a fixed transmit SNR
γ = −10 dB for M = 40 antennas and fixed SNRγ = −12
dB for M = 80 antennas. We consider the following three
scenarios: (a) the ideal/zero CFO scenario (solid line withno
marker); (b) the residual CFO scenario with the periodogram-
based CFO estimator in [7] (dashed line with filled circles);
and (c) the residual CFO scenario with the correlation-based
CFO estimator in [6] (solid line with filled diamonds). For
the residual CFO scenario with the periodogram-based CFO
estimator, we setα to its critical valueα⋆ (defined in the
discussion for Fig. 3). Note that in each scenario, the infor-
mation rate initially increases with increasingND, due to the
increase in the fraction of UL slot used for data transmission.
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Fig. 4 Plot of the variation of achievable per-user information rate
versus duration of UL data transmission block,ND channel uses with
fixed N = 2000, K = 10, L = 5, SNR = −10 dB for M = 40
andSNR = −12 dB for M = 80.

However for the residual CFO scenarios, with further increase
in ND, the information rate starts to decrease. This decrease
is due to the fact that the channel estimates acquired at
the beginning of UL slot become stale (i.e. the accumulated
phase error due to residual CFO becomes significantly large
with increasing time-lag between the channel estimation phase
and the time instances when the information symbols are
received). Interestingly, it is observed that with increasing
ND, this performance degradation is much more pronounced
with the correlation-based CFO estimator, compared to the
periodogram-based CFO estimator. For instance whenNu =
2000 (i.e. ND = Nu −KL− 2(L− 1) = 1942) andM = 40,
the loss in the information rate w.r.t. the ideal/zero CFO
scenario is1.12% and 5% for the periodogram-based CFO
estimator and the correlation-based CFO estimator respectively.
However, whenND is increased to4942 (i.e.Nu = 5000), this
loss in the information rate performance increases to2.87%
and23.62% for the periodogram-based CFO estimator and the
correlation-based CFO estimator respectively. It is therefore
observed that the periodogram-based CFO estimator is more
robust to the residual CFO when compared to the correlation-
based CFO estimator. Similar observations can be made from
Fig. 4 whenM = 80.

This robustness of the periodogram-based CFO estimator is
due to the fact that for a fixed transmit SNRγ, M andK,
the MSE of the correlation based CFO estimator is∝ 1/N
(see equation (1) in [6]), while the MSE of the periodogram
based CFO estimator is proportional to1/N3 for sufficiently
large N , as can be verified from Fig. 5.10 This shows that
whenND is large, i.e., in slowly time-varying channels/low-
mobility channels, the periodogram-based CFO estimator (α =
α⋆) can yield a better information rate performance than the
correlation-based CFO estimator for the same transmit power.

10In Fig. 5 we have plotted the MSE (α = α⋆) as a function of the pilot
lengthN , on a log-log scale for fixedM = 80, K = 10, L = 5 and transmit
SNRγ = −10 dB. It is observed that the slope of the curve is approximately
−3 for sufficiently largeN .
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Fig. 5 Plot of the variation in the MSE (α = α⋆) with increasing
pilot length for CFO EstimationN for the periodogram-based CFO
Estimator. Fixed Parameters:K = 10, M = 80, L = 5, transmit
SNR γ = −10 dB.

Hence, the periodogram-based CFO estimator is expected to
be more energy efficient in slowly time-varying channels.
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