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Abstract—Massive multiple-input multiple-output (MIMO)
systems need to support massive connectivity for the application
of the Internet of things (IoT). The overhead of channel state
information (CSI) acquisition becomes a bottleneck in the system
performance due to the increasing number of users. An intermit-
tent estimation scheme is proposed to ease the burden of channel
estimation and maximize the sum capacity. In the scheme, we
exploit the temporal correlation of MIMO channels and analyze
the influence of the age of CSI on the downlink transmission
rate using linear precoders. We show the CSI updating interval
should follow a quasi-periodic distribution and reach a trade-
off between the accuracy of CSI estimation and the overhead
of CSI acquisition by optimizing the CSI updating frequency of
each user. Numerical results show that the proposed intermittent
scheme provides significant capacity gains over the conventional
continuous estimation scheme.

I. INTRODUCTION

By applying a large number of antenna elements, the mas-
sive multiple-input multiple-output (MIMO) system exploits
the potentials of spatial multiplexing with tremendous degrees-
of-freedom, and is believed to increase the spectral efficiency
10 times or more as well as improving the radiated energy
efficiency in the order of 100 times [1]. Exploiting the advan-
tages of massive MIMO technique requires the knowledge of
channel state information (CSI) at the base station (BS) side.
The canonical massive MIMO protocol is to operate in time-
division-duplex (TDD) mode in order to acquire CSI through
channel reciprocity [2]. However, the overhead of channel
estimation is still unbearable for the application of the Internet
of things (IoT) [3], where the systems need to serve a vast
quantity of users within the limited channel coherence time.

Many prior works try to exploit the spatial correlation
of channels to reduce the overhead of channel acquisition.
The spatial correlation matrices of users are used to design
inter-cell and intra-cell pilot reuse schemes [4] [5]. Ref. [6]
assumes channel sparsity in spatial domain and estimates
channels based on the compressive sensing theory. Mutual-
information-optimal pilots for minimum mean square error
(MMSE) estimation are proposed in [7]–[9].

Another aspect of the channel statistics worth exploring is
the temporal correlation. The correlation between the current
channel and the previous channel becomes weaker with longer
time elapsed [10]. Under the assumption of the Gilbert-Elliot
channel model, the authors introduce the concept the age of
CSI and study its impact on a general utility function [11]. A

more realistic model to characterize the temporal correlation
of channels is the first-order Gaussian-Markov process [12].
Training techniques and pilot beam design for single user are
discussed under this model [13] [14]. In [15], [16], the authors
study the multiuser dynamic channel acquisition problem
under the block fading channel.

Our work focuses on the multiuser scenario. To ease the
burden of CSI acquisition, we propose an intermittent estima-
tion scheme. Different from the conventional scheme which
continuously estimates channels of the whole users in every
channel block, the proposed scheme exploits the temporal
correlation and requires users to estimate their channels in-
termittently among blocks. The CSI updating interval of each
user is shown to follow a quasi-periodic distribution and the
CSI updating frequency is optimized based on the temporal
correlation coefficient of each user. Hence, the scheme reaches
a trade-off between the accuracy of the CSI and the overhead
of the CSI acquisition to achieve the maximum sum capacity.

The rest of the paper is organized as follows. Section
II describes the system model adopted in this paper. The
influence of aged CSI on the downlink transmission rate is
investigated in Section III. Then we propose the intermittent
estimation scheme in Section IV. The numerical results are
presented in Section V and conclusions are drawn in Section
VI.

II. SYSTEM MODEL

We consider a massive MIMO system with M antenna
elements serving K users. The processes of channel estimation
and data transmission occur periodically in a block of L chan-
nel uses. The system operates in the calibrated time-duplex-
division (TDD) mode so that channel reciprocity is utilized
for channel estimation. More specifically, in the beginning of
every block, a number of T channel uses is spent by the base
station (BS) on estimating uplink channels, afterwards the BS
obtains downlink channel vectors as the transpose of uplink
channel vectors, and transmits precoded data in the remaining
L− T channel uses.

The uplink channel of the k-th user in the i-th block is

gk(i) =
√
βkhk(i), (1)

where
√
βk and hk(i) denotes the large and small scale

fading coefficient, respectively. The small scale fading co-
efficient satisfies the complex circularly-symmetric Gaussian
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distribution CN (0, IM ). It stays constant in each block and
evolves between blocks according to the first-order stationary
Gaussian-Markov process [12]

hk(i+ 1) = ρkhk(i) +
√

1− ρ2kek(i), i ≥ 0, (2)

where ρk is the temporal correlation coefficient of channels
between blocks, and ek(i) is the innovation process distributed
as CN (0, IM ). We assume the initial channels gk(0) and the
innovation processes ek(i) of each user are independent, so
the channels of different users are independent in each block.

If the channel is updated in the i-th block, then the channel
after n blocks can be easily derived by iterating (2), which is

hk(i+ n) = ρnkhk(i) +
√

1− ρ2nk ek,n(i), n ≥ 1, (3)

where ek,n(i) ∼ CN (0, IM ) is the equivalent innovation
process in n blocks. The age of CSI [11] is defined as
the number of blocks elapsed since last channel estimation
in our work. We focus on the impact of the CSI updating
frequency and only consider estimation errors caused by aging
of CSI. As the age of CSI n increases, the temporal correlation
between the estimated channel hk(i) and the channel hk(i+n)
of ground truth declines exponentially as ρnk , making the
estimation less accurate.

III. TRANSMISSION RATE WITH AGED CSI

The BS needs to precode the user data before downlink
transmission to support spatial multiplexing. The received
signal of the k-th user is

yk =
√
εkg

T
k vkdk +

K∑
i=1,i6=k

√
εig

T
i vidi + nk

=
√
εkβkh

T
k vkdk +

K∑
i=1,i6=k

√
εiβih

T
i vidi + nk,

(4)

where εk, vk, dk and nk denotes SNR at the transmitter,
precoding vector, data symbol and normalized downlink noise,
respectively. A lower bound of per user SINR at the receiver
can be obtained by using the similar technique as [17, Theorem
1], which is denoted as

γk=
εkβk|EhTk vk|2

1+εkβk(E|hTk vk|2−|EhTk vk|2)+
∑
i 6=k

εiβiE|hTk vi|2
.

(5)
And the downlink transmission rate is obtained:

Rk = log {1 + γk} . (6)

We consider two kinds of linear precoding schemes, namely
matched filter (MF) and zero forcing (ZF). Assume the esti-
mated channel matrix is Ĥk, then the precoding matrix of
matched filter is

V MF
k =

1√
ηMF
k

Ĥ∗k , (7)

Block 1 Block 2 Block 3 Block 4

Channel 
estimation

Data 
transmission

Fig. 1. An example of the intermittent estimation scheme.

where ηMF
k is the normalization coefficient. In the massive

MIMO scenario, the value of ηMF
k tends to be constant due

to the channel hardening effect, which is derived as

ηMF
k =

1

K
Etr{ĤT

k Ĥ
∗
k} = M. (8)

For zero forcing precoding, the precoding matrix becomes

V ZF
k =

1√
ηZFk

Ĥ∗k (ĤT
k Ĥ

∗
k )−1, (9)

where the normalization coefficient is

ηZF
k =

1

K
Etr{(ĤT

k Ĥ
∗
k )−1} =

1

M −K
. (10)

Theorem 1. If the CSI of the k-th user has an age of n blocks,
then the SINR using MF precoding is given by

γMF
k (n) =

εkβkMρ2nk

1 +
∑K
i=1 εiβi

, (11)

and the SINR using ZF precoding is given by

γZF
k (n) =

εkβk(M −K)ρ2nk

1 + (1− ρ2nk )
∑K
i=1 εiβi

. (12)

Proof. See Appendix A.

From the above theorem, we observe the fact that for
both precoding schemes, the SINR functions of the k-th user
monotonically decreases as its age of CSI grows, and are not
affected by the ages of CSI of other users. For the convenience
of expressions, we will use the unified term γk(n), Rk(n) for
the two precoding schemes in the rest of the paper.

IV. INTERMITTENT ESTIMATION SCHEME

A. Scheme Description

The channel estimation overhead increases linearly with
the total number of users. When user number increases to
a certain amount, the channel block can no longer support the
estimation overhead of all users. So we propose an intermittent
channel estimation scheme. In every block, the BS chooses a
subset of users instead of the whole users to estimate their
channels. Afterwards, the BS forms the precoder matrix using
the latest CSI of each user and then transmits data to all users.
The scheme reduces the overhead of channel estimation at the
cost of a decline of the estimation accuracy.

An example of the intermittent estimation scheme is illus-
trated in Fig. 1. The system provides data service for total
4 users. The pilot pattern has a period of 4 blocks, and the



system selects 3 users from the whole user set for channel
estimation in each block. In each period of the pilot pattern,
the CSI of blue user is updated twice with an interval of 1
block and once with an interval of 2 blocks. So its average
updating interval is 4/3 blocks and CSI updating frequency
equals 3/4 per block. Similarly, the CSI updating frequencies
of orange, green and purple users are 1, 3/4 and 1/2 per block,
respectively.

For a given user set, we try to maximize the average user
sum rate by choosing the proper user subset for channel esti-
mation in every block. The optimization problem is formulated
as

max
qk(i),T

lim
I→∞

1

I

(
1− T

C

) I−1∑
i=0

K∑
k=1

Rk,i

s.t. qk(i) ∈ {0, 1}, k = 1, · · · ,K∑
k

qk(i) = T,

(13)

where qk(i) indicates whether the k-th user is chosen to do
channel estimation in the i-th block. The sum rate is multiplied
by a discounting factor 1 − T/C where T/C represents the
ratio of estimation overhead.

Since the transmission rate of the k-th user is only affected
by its own age of CSI, rearranging the order of CSI updating
intervals has no influence on the rate performance of the k-th
user. Denote pk as the CSI updating frequency and fk,n as the
distribution CSI updating interval. The CSI updating frequency
is the reciprocal of the average CSI updating interval:

pk =
1∑

n nfk,n
. (14)

We consider a new optimization problem as

max
T,pk,fk,n

(
1− T

C

) K∑
k=1

E{Rk}

s.t. 0 ≤ fk,n ≤ 1, k = 1, · · · ,K∑
n

fk,n = 1, k = 1, · · · ,K∑
k

pk = T,

(15)

which is actually a relaxation of the original problem (13).
The second constraint is relaxed from pilot length in every
block equaling T to average pilot length equaling T . When
the number of users goes to infinity, the pilot length tends to be
the sum of the CSI updating frequencies of all users by the law
of large numbers. Therefore, the relaxation is asymptotically
tight.

The relaxed problem can be solved in three steps. Firstly,
we fix the value of the CSI updating frequency pk and the
pilot length T and try to optimize the distribution fk,n of CSI
updating interval for each user. Then pk is optimized under
fixed value of T . Finally we find the optimal T by a one-
dimensional search.

B. Optimizing the Distribution of CSI Updating Interval

To solve the relaxed problem (15), we firstly consider the
rate performance of a single user, and optimize fk,n under
fixed value of the CSI updating frequency pk. It is formulated
as the following optimization problem,

max
fk,n

E{Rk}

s.t. 0 ≤ fk,n ≤ 1, k = 1, · · · ,K∑
n

fk,n = 1

∑
n

nfk,n =
1

pk
.

(16)

Assume the k-th user has done Nk times of channel
estimations in a total of N blocks, and there are Fk,n CSI
updating intervals with block length of n. The total rate in a
CSI updating interval with block length of n can be calculated
as

Gk(n) ,
n−1∑
i=0

Rk(i), (17)

where Rk(i) = log(1+SINRk(i)) is the transmission rate with
a CSI age of i blocks. Obviously, Rk(i) is a non-increasing
function with respect to i. According to the definition of
pk and fk,n, the limitations limN→∞Nk/N = pk and
limN→∞ Fk,n/Nk = fk,n both hold. Therefore, the average
transmission rate of the k-th user is

E{Rk} = lim
N→∞

1

N

∑
n

Fk,nGk(n) = pk
∑
n

fk,nGk(n).

(18)
We extend Gk(n) to a piecewise function:

Gk(x)=


0 x = 0∑x−1
i=0 Rk(i) x ∈ N+

(1−x+bxc)Gk(bxc)+(x−bxc)Gk(bxc+1) x /∈N , x≥0
(19)

The optimal distribution of CSI updating interval is obtained
according to the following theorem.

Theorem 2. The transmission rate of the k-th user achieves
the maximum value

Sk(pk) = pkGk(
1

pk
), (20)

if the distribution of CSI updating interval is

fk,n =


1− 1

pk
+ b 1

pk
c n = b 1

pk
c

1
pk
− b 1

pk
c n = b 1

pk
c+ 1

0. else.

(21)

Proof. See Appendix B.

The theorem requires the CSI updating interval to be quasi-
periodic. More specifically, if 1/pk is an integer, the CSI
should be updated every 1/pk blocks. Otherwise the CSI
should be updated every b1/pkc or b1/pkc + 1 blocks with
an average updating interval of 1/pk blocks.



C. Optimizing the CSI Updating Frequency

After optimizing fk,n, the transmission rate of the k-th user
is Sk(pk). We need to allocate the total estimation resource
of T channel uses to all users by optimizing the CSI updating
frequency. The problem is formulated as

max
pk

(
1− T

C

) K∑
k=1

Sk(pk)

s.t. 0 ≤ pk ≤ 1, k = 1, · · · ,K∑
k

pk = T.

(22)

Theorem 3. The problem (22) is a concave optimization
problem.

Proof. See Appendix C.

The concavity guarantees the global optimality of any local
maximum we find. However, the problem is still hard to
solve since the function Gk(x) is non-differentiable. So we
consider to approximate Gk(x) by replacing its function value
by a parabola in each interval (n − δ, n + δ), n ∈ N+. The
approximation function is denoted by Ĝk(x) as (23). It can
be validated that Ĝk(x) is concave and differentiable, whose
derived function is denoted by Ĝ′k(x) as (24).

Similarly, we approximate the rate function Sk(pk) by
Ŝk(pk) = pkĜk(1/pk). And its derived function is

Ŝ′k(pk) = Ĝk(
1

pk
)− 1

pk
Ĝ′k(

1

pk
). (25)

When δ → 0, the solution to the approximated version of
the optimization problem (22) tends to be the real solution.

We use the gradient projection method to solve the ap-
proximated problem, which is an iterative method. In the t-th
iteration step, we find a new value for CSI updating frequency
in the direction of the gradient of

∑K
j=1 Ŝk(pj):

x
(t)
k = p

(t)
k + a

Ŝ′k(p
(t)
k )√∑K

k=1 Ŝ
′2
k (p

(t)
k )

, (26)

where a is the iteration step size.
The point x = (x1, x2, · · · , xK) ∈ RK may lie beyond the

constraint space P = {p|
∑K
k=1 pk = T, 0 ≤ pk ≤ 1, k =

1, · · · ,K}, So we need to project x to the space P . The
projection is equivalent to solving the optimization problem

max
p(t+1)

||p(t+1) − x(t)||2

s.t. p(t+1) ∈ P.
(27)

By deriving the KKT conditions of (27), we get

pk = xk + ν + λk − µk, (28)

where λi ≥ 0, µi ≥ 0, ν are the Lagrange multipliers of (27).
If we arrange {xi} in ascending order as {xa(i)}, then the
elements of its projection vector {pa(i)} are also in ascending
order. We maintain i, j as the indexes of the first value larger

than 0 and the last value less than 1 in {pa(i)}, respectively.
Summing up (28) from i to j gets

ν =
T − (K − j)−

∑j
l=i xl

j − i+ 1
. (29)

We initialize i = 1, j = K and test whether the constraints
0 ≤ pa(k) ≤ 1 are met. If not, we either increase i or
decrease j, according to the value of xa(i)+xa(j). The detailed
projection method is described by Algorithm 1.

Algorithm 1 Projection Algorithm for (27)
1: Sort {xk} in ascending order as {xa(k)}.

Initialize i = 1, j = K.
2: while i < j do
3: ν =

T−(K−j)−
∑j

l=i xl

j−i+1
4: if xi + ν ≥ 0 and xj + ν ≤ 1 then
5: for k = i, i+ 1, · · · , j do
6: pa(k) = xa(k) +

T−(K−j)−
∑j

l=i xl

j−i+1
7: end for
8: Break.
9: else

10: if xa(i) + xa(j) ≥ 1 then
11: pa(j) = 1
12: j = j − 1
13: else
14: pa(i) = 0
15: i = i+ 1
16: end if
17: end if
18: end while

D. Optimizing the Pilot Length

The optimization problem (15) is finally solved by finding
the maximum sum rate provided by the solution of (22) for
each value of T ∈ {0, 1, · · · ,K}.

When T = 0, the CSI updating frequencies of all users
are 0. As a result, the sum rate is

∑K
k=1 Sk(pk) = 0. In this

case, the system spends no resource on channel estimation,
therefore the precoding process is meaningless.

When T = K, the CSI updating frequencies of all users are
1, which means the system applies conventional continuous
estimation scheme and estimates the channels of the whole
users in every block. The sum rate can be calculated as (1−
K/C)

∑K
k=1Rk(0).

V. NUMERICAL RESULTS

In this section we evaluate the performance of the proposed
estimation scheme.

We assume the same path loss coefficient for each user.
The BS splits the total power equally to each user in order to
ensure fairness. So the receive SNR of each user is the same.
The temporal correlation coefficient of each user is uniformly
distributed in the interval [0.6, 0.9].

Fig. 2 shows the allocation of estimation resource to users
with different temporal correlation coefficients. When the



Ĝk(x)=

{
R(n)−R(n−1)

4δ (x−n)2+R(n)+R(n−1)
2 (x−n)+Gk(n) + δ(R(n)−R(n−1))

4 n−δ<x<n+δ, n∈N+

Gk(x) else
(23)

Ĝ′k(x)=


R(0) 0 ≤ x ≤ 1− δ
R(n) n+ δ ≤ x ≤ n+ 1− δ, n ∈ N+
R(n)−R(n−1)

2δ (x−n) + R(n)+R(n−1)
2 n−δ<x<n+δ, n∈N+

(24)

0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.05

0.1

0.15

0.2

0.25

Temporal Correlation Coefficient

C
S

I U
pd

at
in

g 
F

re
qu

en
cy

 

 

MF,T=5
ZF,T=5

0.65 0.7 0.75 0.8 0.85 0.9 0.95
0.4

0.6

0.8

1

Temporal Correlation Coefficient

C
S

I U
pd

at
in

g 
F

re
qu

en
cy

 

 

MF,T=30
ZF,T=30

Fig. 2. CSI updating frequency vs. temporal correlation coefficient under
different pilot length. M = 64,K = 40, C = 50, per user SNR is 10 dB.
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Fig. 3. Sum rate vs. pilot length. M = 64,K = 40, C = 50.

total available pilot length is extremely low (T = 5), the
proposed scheme allocates zero estimation resource to users
with temporal correlation coefficients below a certain threshold
to leave the limited resource to users with better temporal
correlation. The threshold of ZF precoder is higher than the
threshold of the MF precoder, because it suffers more severely
from the aged CSI. On the other hand, when the available
pilot length is sufficiently high (T = 30), both MF and ZF
precoder estimate allocation the maximum estimation resource
to the users with poor temporal correlation by setting the CSI
updating frequency to 1.

The relationship between sum rate and pilot length is
depicted in Fig. 3. The sum rate of ZF outperforms that of
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Fig. 4. The sum rate and optimal pilot length of the proposed scheme using
ZF precoding. M = 64, C = 50, per user SNR is 10 dB.

MF in high SNR region and loses its advantage in low SNR
region. The optimal pilot length of ZF is larger than that of MF
under the same receive SNR. The sum rate of the conventional
continuous estimation scheme is achieved at the point where
pilot length is K = 40, and our proposed scheme improves
the performance by about 74% using ZF precoder when the
per user receive SNR is 10 dB.

Finally we investigate the influence of user number on
the proposed scheme using ZF precoding, which is shown
in Fig. 4. The results using MF precoding are omitted due
to similarity. As the user number grows, the sum rate of
the proposed scheme (IES) experiences the process of first
increasing and then declining, which means the system first
enjoys user diversity and then becomes overwhelmed by the
excessive users. The performance gap between our scheme
and the continuous estimation scheme (CES) increases with
the growing number of users. When user number equals the
length of channel block, CES fails to transmit any data while
our scheme still obtains about 86% of the peak sum rate. On
the other hand, the optimal pilot length increases all the time,
but its growth rate is much lower than the growth rate of user
number.

VI. CONCLUSION

In this paper, we investigate the influence of the age of
CSI on the channel capacity of massive MIMO systems and
derive closed-form expressions for transmission rate under
two linear precoders, namely matched filter and zero forcing.
The intermittent estimation scheme is proposed to reduce



the overhead of CSI acquisition. We show the CSI updating
intervals should follow a quasi-periodic distribution and obtain
the optimal CSI updating frequency for each user to maximize
sum capacity in the limited block length. The numerical results
shows a great performance gain of the proposed scheme
compared to the conventional continuous estimation scheme.

APPENDIX A
PROOF OF THEOREM 1

According to the Gaussian-Markov process, we know the
correlation between the estimated channel and the channel of
ground truth reads

hk = ρnk ĥk +
√

1− ρ2nk ek. (30)

When the MF precoding scheme is applied, the random
variable ĥHk vk satisfies the chi square distribution with 2M
degrees of freedom by a scale factor of 1/(2ηMF

k ), so we can
obtain the expectation of effective channel, the variation of
effective channel and the interference as

εkβk|EhTk vk|2 = εkβkMρ2nk , (31)

εkβk(E|hTk vk|2 − |EhTk vk|2) = εkβk, (32)∑
i6=k

εiβiE|hTk vi|2 =
∑
i 6=k

εiβi, (33)

respectively. We get the expression for SINR under MF
precoding scheme by substituting (31), (32) and (33) into (5).

Similarly, we calculate the expectation of effective channel,
the variation of effective channel and the interference under
ZF precoding scheme as

εkβk|EhTk vk|2 = εkβk(M −K)ρ2nk , (34)

εkβk(E|hTk vk|2 − |EhTk vk|2) = εkβk(1− ρ2nk ), (35)∑
i6=k

εiβiE|hTk vi|2 = (1− ρ2nk )
∑
i 6=k

εiβi, (36)

respectively. and the SINR is derived by substituting (34), (35)
and (36) into (5).

APPENDIX B
PROOF OF THEOREM 2

Firstly, we show that the function Gk(x) is concave in its
domain of definition D = {x ∈ R|x ≥ 0}.

Assume x1, x2, x3, are three arbitrary different real numbers
in D. We arbitrarily choose θ ∈ [0, 1] and get x3 = θx1+(1−
θ)x2. Without loss of generality, we assume x1 < x2 < x3.

According to the definition of function Gk(x), we have

Gk(xi) = (1−ti)Gk(bxic)+tiGk(bxic+1), i = 1, 2, 3, (37)

where ti = xi − bxic, i = 1, 2, 3.
When bx1c = bx2c, we have

Gk(x2)−Gk(x1)

x2 − x1
= Rk(bx2c). (38)

When bx1c < bx2c, we can get the following inequality
due to the monotonicity of Rk(i):

Gk(x2)−Gk(x1)

x2 − x1

=
t1Rk(bx1c)+

∑bx2c−1
i=bx1c+1Rk(i)+(1− t2)Rk(bx2c))

x2 − x1
≥Rk(bx2c)).

(39)

Similarly, we obtain

Gk(x3)−Gk(x2)

x3 − x2
≤ Rk(bx2c). (40)

So the inequality

Gk(x3)−Gk(x2)

x3 − x2
≤ Gk(x2)−Gk(x1)

x2 − x1
(41)

holds, which proves the concavity of the function Gk(x).
Then, by Jensen’s inequality [18], the transmission rate of

the k-th user satisfies the inequality

E{Rk} = pk
∑
n

fk,nGk(n) ≤ pkGk

(∑
n

fk,n

)
= pkG

(
1

pk

)
,

(42)
where the equality holds when {fk,n} satisfies (21).

APPENDIX C
PROOF OF THEOREM 3

We only need to prove the function Sk(pk) = pkGk(1/pk)
is concave with respect to pk.

Arbitrarily select two real numbers pk1, pk2 from the inter-
val [0, 1] , for any θ ∈ [0, 1] we have

Gk

(
θpk1

θpk1+θ̄pk2

1

pk1
+

θpk2
θpk1+θ̄pk2

1

pk2

)
≤ θpk1
θpk1+θ̄pk2

Gk

(
1

pk1
)+

θpk2
θpk1+θ̄pk2

Gk(
1

pk2

)
,

(43)

due to the concavity of Gk(x) from the proof of Theorem 2,
where θ̄ = 1− θ.

The above inequality can be simplified as

(θpk1 + θ̄pk2)Gk

(
1

θpk1 + θ̄pk2

)
≤θpk1Gk

(
1

pk1

)
+ θ̄pk2Gk

(
1

pk2

)
,

(44)

which proves the concavity of the function Sk(pk).
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