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Abstract—Millimeter-wave systems are characterized by the
use of highly directional antennas and the presence of blockages,
which significantly alter the path-loss and small-scale fading
parameters. The received power of each interferer depends on
the direction it points and whether it is line-of-sight (LOS),
non-LOS (i.e., partially blocked), or completely blocked. While
interferers that are sufficiently far away will almost certainly
be completely blocked, a finite number of interferers in close
proximity will be subject to random partial blockages. Previous
attempts to characterize mmWave networks have made the
simplifying assumption that all interferers within some radius,
called the LOS ball, are unblocked, while interferers beyond that
radius are non-LOS. However, compared to simulation results,
the LOS ball assumption tends to overestimate outage. In this
paper, we present an accurate yet tractable analysis of finite
mmWave networks that dispenses with the LOS ball assumption.
In the analysis, each interferer has a distribution that is selected
randomly from several possibilities, each representing different
blockage and directivity states. First, the exact outage probability
is found for a finite network with interferers in fixed locations.
Then, the spatially averaged outage probability is found by
averaging over the interferer locations. While the focus is on
device-to-device networks, the analysis is general enough to find
applications outside of the present mmWave framework.

I. INTRODUCTION

Millimeter-wave (mmWave) has emerged in recent years as

a viable candidate for both device-to-device (D2D) communi-

cations as well as infrastructure-based (i.e., cellular) systems

[1–9]. At mmWave frequencies, signals are prone to blocking

by objects intersecting the propagation paths. While the path

loss could be high, it can be compensated through the use

of highly directional antennas, which also helps to isolate

interference. Blocking can significantly impact the distribution

of the small-scale fading (i.e., resulting in a non line-of-

sight state) and if severe enough, cause the signal to be lost

completely (i.e., resulting in an outage state) [2]. The power

of each received signal, whether it be a desired signal or an

interfering signal, is thus highly dependent on the relative

orientations of the transmit and receive antennas and the

presence of objects blocking the paths. Any meaningful anal-

ysis of mmWave systems must therefore account for antenna

orientation and blockage, and typically these are modeled as

appropriate random processes.

An effective methodology to study wireless systems in

general, and mmWave systems in particular, is to embrace the

tools of stochastic geometry to analyze the outage, coverage,

and rate of wireless networks [10]. With stochastic geometry,

the locations of the interferers and blockages are assumed to be

drawn from an appropriate point process. Stochastic geometry

has been applied to mmWave cellular systems in [3–6] and

mmWave D2D systems in [7, 8].

A survey of mathematical models and analytical techniques

is provided in [6] with a section devoted to blockage models.

Random shape theory, which is an offshoot of stochastic

geometry, is applied in [11] to carefully consider blockage

effects. When blocking is modeled as a random process,

the probability that a link is line-of-sight (LOS), i.e., not

blocked, is an exponentially decaying function of link distance.

The distance-dependent blocking probability causes significant

challenges to the application of stochastic geometry. This chal-

lenge can be overcome by making a simplifying assumption

that all interferers within some radius, called the LOS ball,

are unblocked, while interferers beyond that radius are non-

LOS. The LOS ball assumption has been applied to mmWave

cellular in [3, 4] and D2D in [8]. Meanwhile, a two-ball

approximation was applied to mmWave multi-tier cellular sys-

tems in [5]. While it aids tractability, the LOS ball assumption

causes a non-negligible loss in accuracy. For instance, in

[8], the LOS ball approximation caused the distribution of

coverage to be underestimated by a few decibels.

In this paper, we propose an analytical framework for

mmWave networks that explicitly accounts for the blockage

probabilities, thereby dispensing with the need for a LOS ball.

The key to the analysis is to break it into two steps. In the first

step, the interferers are placed in fixed locations and the outage

probability found conditioned on the interferers’ locations.

Each interferer is characterized by a fading distribution that

can take on a plurality of states, depending on the random

orientation of the antennas and random blockage probabilities.

In the second step, the distribution of the outage is found by

taking the spatial average of the conditional outage probability

over the distribution of the interferer locations. Simulation

results confirm the accuracy of the strategy and demonstrate

its superiority over the LOS ball assumption.

The focus of the paper is on D2D networks, whereby the

interferers transmit with a common power in a uniformly

distributed direction. However, the analysis could be extended

to the more complicated case of a cellular network, where each

interferer’s transmit power and direction are correlated with

the location of its serving base station. The analysis is generic

enough that it could find applications outside of mmWave,

such as in the area of frequency hopping [12].

The remainder of the paper is organized as follows. Section

II gives a system model and provides a general problem

formulation. Section III derives an expression for the outage

probability conditioned on the location of the interferers, and

Section IV applies it to a D2D mmWave network. Section

V provides an approach for obtaining the spatially averaged

outage probability. Finally, the paper concludes in Section VI.
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II. SYSTEM MODEL

Consider a wireless network with a reference receiver, a

reference transmitter, and K interferers located within some

area A. While the network itself may have an infinite extent

and therefore an infinite number of interferers, we assume that

very distant interferers are fully attenuated and therefore do

not contribute directly to the interference power (though they

could contribute to the noise floor). Only a finite number (K)

of interferers are close enough to contribute to the interference

power, though the contribution of each will depend critically

on whether or not its signal is LOS or non-LOS. Moreover, the

number of interferers K could itself be random. For instance,

if the interferers are drawn from a Poisson point process (PPP),

then the number of interferers in A will be a Poisson variable.

Define the variable S to represent the signal-to-interference

and noise ratio (SINR) at the reference receiver. Our goal is

to find an expression for the outage probability as a function

of an SINR threshold β, which is the cumulative distribution

function (CDF) of S; i.e, FS(β). The variable S can be

expressed as

S =
Y0

c+
∑K

i=1 Yi

. (1)

where c is a constant related to the noise power, Y0 is the

received power of the reference transmitter, and {Yi}, i ∈
{1, ...,K}, are the received powers of the K interferers. We

assume that Y0 is a Gamma distributed random variable with

a fixed shaping parameter m0 and scale parameter η0.

The value of c is selected so that the signal-to-noise ratio

SNR is the mean value of S when the interference is turned

off; i.e.

SNR = E

[

Y0

c

]

=⇒ c =
E[Y0]

SNR
. (2)

The other Yi, i ∈ {1, ...,K}, each have a distribution that

depends on a variety of factors including the distance to

the interferer, the relative orientations of the transmit and

receive antennas, the random transmission activity (e.g., use

of an Aloha-like protocol), and the blockage process. We thus

assume that each Yi, i ∈ {1, ...,K}, is drawn from one of J+1
power distributions, each corresponding to a different state that

encapsulates the blockage and directivity conditions. This is

done by drawing a discrete random variable ai ∈ {0, 1, ..., J},

which indicates the chosen power distribution. Let pi,j rep-

resent the probability that ai = j for i ∈ {1, 2, ...,K} and

j ∈ {0, 1, ..., J}. The probabilities {pi,j} could depend on the

location Xi of the ith interferer. For instance, if a random

blockage model is assumed, then the probabilities associated

with blockage states will be functions of the distance to the

interferer.

Let ai = 0 represent the specific case that the interferer is

turned off (or not using the same resource as the reference

transmitter). It follows that Yi = 0 when ai = 0, and thus

the corresponding power distribution has probability density

function (PDF) fYi
(y|ai = 0) = δ(y). Otherwise, when ai >

0, we assume that the variable is Gamma distributed. We define

two functions: m(ai) which describes the shaping parameter

associated with distribution ai and η(ai) which describes the

scaling factor of distribution ai. The mean of Yi is E[Yi] =
m(ai)/η(ai). To make the notation more compact, we will use

double subscripts for m(·) and η(·), so that m(ai = j) = mi,j

and η(ai = j) = ηi,j . Due to path-loss and the orientation

of the reference receiver’s antenna, these functions generally

depend on the location of the ith interferer, which we denote

Xi. It follows that the PDF when ai = j is

fYi
(y|ai = j) =

η
mi,j

i,j

Γ(mi,j)
ymi,j−1e−ηi,jyu(y) (3)

where u(y) is the unit step function and Γ(·) is the Gamma

function.

III. CONDITIONAL OUTAGE PROBABILITY

Assume that the interferers are in fixed locations. From the

theorem on total probability, the PDF of Yi, i ∈ {1, ...,K},

can simply be found from the weighted sum of the conditional

probabilities.

fYi
(y) =

J
∑

j=0

pi,jfYi
(y|ai = j)

= pi,0δ(y) +
J
∑

j=1

pi,jη
mi,j

i,j

Γ(mi,j)
ymi,j−1e−ηi,jyu(y).

The CDF of S can then be found as

FS(s) = P [S ≤ s] = P

[

Y0 ≤ s

(

c+

K
∑

i=1

Yi

)]

=

∫

· · ·

∫

RK

∫ s(c+
∑

K
i=1

yi)

0

fY0
(y0)dy0fY (y)dy, (4)

where fY (y) is the joint PDF of Y = (Y1, Y2, ..., YK), and

the inner integral of fY0
(y0) is the CDF of Y0 evaluated at

s
(

c+
∑K

i=1 yi

)

. Substituting this CDF into (4) leads to

FS(s) = 1− e−η0sc

m0−1
∑

l=0

1

l!
(η0sc)

l

×

∫

· · ·

∫

RK

e−η0s
∑K

i=1
yi

(

1 +

∑K
i=1 yi
c

)ℓ

fY (y)dy. (5)

Using the binomial theorem,
(

1 +

∑K
i=1 yi
c

)ℓ

=
ℓ
∑

t=0

(

ℓ

t

)

1

ct

(

K
∑

i=1

yi

)t

, (6)

and a multinomial expansion,
(

K
∑

i=1

yi

)t

= t!
∑

ti∈Tt

K
∏

i=1

yi
ti

ti!
(7)

where Tt the set of all nonnegative ti that sum to t. Substituting

(6) and (7) into (5) yields

FS(s) = 1− e−η0sc

m0−1
∑

ℓ=0

1

ℓ!
(η0sc)

ℓ
ℓ
∑

t=0

(

ℓ

t

)

t!

ct

×
∑

ti∈Tt

K
∏

i=1

1

ti!

∫

· · ·

∫

RK

yi
tie−η0syifY (y)dy. (8)



FS(s) = 1− e−η0sc

m0−1
∑

ℓ=0

(η0sc)
ℓ

ℓ!

ℓ
∑

n=0

(

ℓ

t

)

t!

ct

∑

ti∈Tt

K
∏

i=1



pi,0δ(ti) +

J
∑

j=1

pi,jη
mi,j

i,j

Γ(mi,j)ti!
(η0s+ ηi,j)

−ti−mi,j Γ(ti +mi,j)



 . (11)

Fig. 1: Network Topology. The K=20 interferers are represented by
the blue dots, the reference transmitter represented by the red dot,
and the reference receiver represented by the red star. The yellow
shaded area is the main lobe of the receiver’s antenna.

Since Y1, Y2, ..., and YK are independent random variables, (8)

can be rewritten as

FS(s) = 1− e−η0sc

m0−1
∑

ℓ=0

1

ℓ!
(η0sc)

ℓ
ℓ
∑

t=0

(

ℓ

t

)

t!

ct

×
∑

ti∈Tt

K
∏

i=1

1

ti!

∫ ∞

0

yi
tie−η0syifYi

(yi)dyi (9)

where the integral is
∫ ∞

0

yi
tie−η0syifYi

(yi)dyi = pi,0δ(ti) +

J
∑

j=1

pi,jη
mi,j

i,j

Γ(mi,j)
(η0s+ ηi,j)

−ti−mi,j Γ(ti +mi,j). (10)

Substituting (10) into (9) gives the expression (11) at the top

of the page.

IV. APPLICATION TO MMWAVE

Consider the mmWave ad hoc network shown in Fig. 1. The

reference receiver (represented by the red star) is located at

the origin, while the K interferers (represented by the blue

dots) are located in an area A, which here is assumed to be

an annulus with inner radius rin and outer radius rout. It is

assumed that a MAC protocol (such as CSMA) prevents any

interference closer than rin to the receiver, while the blockage

is so severe at distance rout that signals beyond that distance

are completely attenuated. Each interferer within A can either

be unblocked, in which case its signal is LOS, or (partially)

blocked, in which case its signal is non-LOS and highly (but

not fully) attenuated.

The transmitter locations Xi are represented by complex

numbers, so that Xi = Rie
jφi , where Ri denotes the distance

from the ith transmitter to the receiver and φi is the angle from

Xi to the receiver. The reference transmitter (represented by

the red dot) is located at a distance R0 from the receiver, and

in this example, R0 = rin.

Assume that there are K blockages in the network, and

that each blockage is modeled by a disk of width W . We

assume that the number of blockages is the same as the

number of interferers because in an mmWave ad hoc network,

a main source of blockage is human bodies, and if we assume

the interference is due to personal devices (e.g., wearables),

then there will be approximately one interferer per person.

Assuming that the blockages are independent and uniformly

distributed over the annular region, the probability that an

interferer at distance r from the receiver is blocked by any

of the K blockages is given by pb(r). An equation and

derivation for pb(r) is given in [8], and is incorporated herein

by reference.

As in [3, 8], we assume directional antennas that satisfy a

sectorized model. In particular, the antenna gain is G inside the

(half-power) beamwidth θ, and g outside the beamwidth. The

number of antenna elements is N and the relationship between

N , G, g, and θ is given by Table I in [8]. We use subscripts

t and r to distinguish the parameters associated with the

transmitter and receiver antennas, respectively. Thus, Nr is the

number of elements of the receive antenna. The shaded area of

Fig. 1 shows the main beam of the receive antenna. Assuming

a random 2-D orientation for the interfering transmitters, the

probability that an interferer points toward the receiver is θt
2π .

We define J = 4 transmission states corresponding to

whether the interferer is or is not blocked and whether the

interferer is pointing towards or away from the receiver. In

particular, we let ai = {1, 3} when the interferer is blocked

and ai = {2, 4} when it is not, and we let ai = {1, 2} when

the interferer is pointing towards the receiver and ai = {3, 4}
when it is pointing away. Moreover, we assume an Aloha-

like medium access protocol, so that the probability that the

interferer transmits is pt. Thus, the probability of state a0,

corresponding to a non-transmission state, is (1−pt). It follows

that the probabilities of the five states are:

ai =































0 with prob. (1− pt)

1 with prob. pb(Ri)
θt
2πpt

2 with prob. (1− pb(Ri))
θt
2πpt

3 with prob. pb(Ri)(1 −
θt
2π )pt

4 with prob. (1− pb(Ri))(1 −
θt
2π )pt.

(12)

Each of the above ai implies specific shaping and scale param-

eters for the interferer’s power distribution. In particular, the

value of the shaping parameter mi,j depends on the blockage

state. When the link is blocked, i.e. when ai = {1, 3}, the



shaping parameter is mi,j = mN; otherwise mi,j = mL, where

mL and mN are the LOS and non-LOS shaping parameters,

respectively.

Moreover, the scaling parameter for the ith interferer de-

pends on its distance Ri as well as its state ai, and each state

could have associated with it a different antenna gain and path-

loss exponent. The ηi,j parameter is given by ηi,j = mi,j/Ωi,j

where Ωi,j is the average received power given by

Ωi,j = gr(φi)gt(ai)R
−αj

i , (13)

the receive antenna gain is

gr(φi) =

{

Gr if |φi − φ0| <
θr
2

gr otherwise
(14)

the transmit antenna gain is

gt(ai) =

{

Gt for ai ∈ {1, 2}

gt for ai ∈ {3, 4}
(15)

and αj = αN if the link is blocked and αj = αL if it is not.

We assume that the reference link is LOS; i.e., m0 = mL.

Because the reference transmitter and reference receiver point

towards one another, η0 = m0/Ω0 where

Ω0 = GrGtR
−α0

0 , (16)

and α0 = αL.
Example #1: We consider as an example a network of

inner radius rin = 1, outer radius rout = 6, and K = 20
interferers. The length of the reference link is R0 = rin = 1.

The transmitters and receiver have Nt = Nr = 4 antennas. The

width of each blockage is W = 1 and we assume that there

are K such blockages. The shape parameter (i.e., Nakagami-m

factor) for LOS links is mL = 4, while that of non-LOS links

is mN = 1 (i.e., Rayleigh fading). The path-loss exponent for

LOS links is αL = 2, while that of non-LOS links is αN = 4.

The probability that an interferer transmits is pt = 0.5, and

the signal-to-noise ratio is SNR = 20 dB.

Fig. 2 shows the outage probability for this example as

a function of SINR threshold β conditioned on the network

realization shown in the left side of the figure. The outage

probability is found two ways: By using (11), which accu-

rately accounts for the blocking probability, and by using the

LOS-ball approximation, which assumes all interferers within

distance RLOS are LOS and those beyond that distance are non-

LOS [8]. Two values of RLOS are used. The first, RLOS = 4.4
is found by matching moments; i.e., by using criterion 1

of [3]. The second, RLOS = 3.4 is found by selecting the

value of RLOS that generates an outage probability curve that

most closely matches (in a mean-square error sense) the curve

found by the exact analysis. Note that finding RLOS in this

manner is not a sustainable solution because it requires that

the exact probability be first found prior to finding the RLOS

that provides the best fit. Moreover, the best-fit value of RLOS

will change from one network realization to another. Hence,

the purpose of the curve is to give insight into the best one can

do when using the LOS ball assumption, even if an “optimal”

value of RLOS were to be used.
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Fig. 2: An example network in the upper left portion of the figure.
The curves show the outage probability for this particular network at
SNR = 20 dB. The black dots represent simulation results. In addition
to the exact outage probability found using the methods of this paper,
the outage probability using the LOS-ball assumption is shown with
two values of RLOS.
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Fig. 3: The outage probability conditioned on several network re-
alization is plotted by dashed lines. The average outage probability
over 100 network realization is plotted by the solid red line.

In addition, simulations were run to confirm the analysis,

and are shown as dots on the figure. For each value of

SNR, the simulation involved drawing 10,000 realizations of

S, where each realization of S required first drawing the

necessary set of ai, i ∈ {1, ..., L}, and then drawing the

set of Yi, i ∈ {0, ..,K}. Each dot shows the fraction of

trials whose outage probability is less than the value on the

ordinate. As can be seen, the proposed analytical technique

provides close agreement. Moreover, the figure shows the

superiority of the exact analysis compared to the LOS-ball

assumption, especially when the value RLOS = 4.4 is used.

While RLOS = 3.4 provides a close agreement with the

simulations, finding that optimal value of RLOS required the

exact outage probability curves to first be found and thus its

use does not simplify the overall analysis.



V. SPATIALLY AVERAGED OUTAGE PROBABILITY

The conditional outage probability depends significantly on

the underlying network geometry. Fig. 3 shows the outage

probabilities of 10 realizations of networks with K = 20
interferers located in the annulus of inner radius rin = 1
and outer radius rout = 6. The curves were found using the

analytical expression (11) for a SNR = 15 dB. The figure

illustrates that the outage probability can vary dramatically

for different network realizations.

A commonly accepted way to characterize the outage of

a network of randomly located interferers is the spatially

averaged outage probability, which is found by removing the

conditioning on the network geometry. The spatially averaged

outage probability could be found numerically via simulation.

The simulation would involve randomly generating different

network realizations, and computing the conditional outage

probability of each, then averaging over many such network

realizations. As an example, the solid red line in Fig. 3 shows

the numerical average of the outage probability over 100

network realization. A more sophisticated numerical technique

is given in [13] which does not use simulation and will work

for any arbitrary network topology. However, for more regular

shaped networks (e.g., circular, annular, or confined within a

regular polygon), it is possible to get an analytical, rather than

numerical, solution, as we describe in this section.

Let EX[FS(s)] denote the spatially averaged outage prob-

ability, where the expectation is with respect to X =
(X0, X1, ..., XK). From (11) and the independence of {Yi},

the spatially averaged outage probability can be found as

follows:

EX[FS(s)] = 1−

e−η0sc

m0−1
∑

l=0

1

l!
(η0sc)

l
l
∑

n=0

(

l

t

)

t!

ct

∑

ti∈Tt

K
∏

i=1

EXi
[γi] (17)

where

γi = pi,0δ(ti) +
J
∑

j=1

pi,j
ti!

η
mi,j

i,j

Γ(mi,j)
(η0s+ ηi,j)

−ti−mi,j Γ(ti +mi,j). (18)

If the Xi are independent and uniformly distributed on an

annulus, then the PDF of Ri = |Xi| is fRi
(r) = 2πr

|A| for

rin ≤ r ≤ rout, and φi = ∠Xi is uniform over (0, 2π). Since

Ri is independent of φi,

EXi
[γi] = ERi,φi

[γi] = ERi
Eφi

[γi]. (19)

A key challenge in finding the spatial average is that not

only does the power of each interferer depend on the distance

Ri to the interferer, but the probabilities pi,j can also depend

on the distance. This makes the integral required for spatial

averaging difficult, if not impossible, to evaluate in closed

form. To alleviate this issue, we divide the network |A| into L
concentric rings and assume that for sufficiently small rings the

probabilities pi,j are constant for all interferers in a given ring.

Let T0 = rin, TL = rout and Tk = rin+k∆r for k = 0, 1, ..., L
where ∆r = rout−rin

L
. For large L, we use the approximation

pb(Ri) ≃ pb

(

Tk+1 + Tk

2

)

∆
= p

(k)
b (20)

for Tk ≤ Ri ≤ Tk+1 and k = 0, 1, ..., L− 1. Thus, the proba-

bility pi,j will be approximated by p
(k)
i,j , for Tk ≤ Ri ≤ Tk+1.

Denoting gr(φi)gt(ai) = γi,j , conditioned on Tk ≤ Ri ≤
Tk+1 and φi, the conditional PDF of Ωi,j is

fΩi,j
(ω|Tk ≤ Ri ≤ Tk+1, φi) =

2ω
−

2+αj

αj

αj(T 2
k+1 − T 2

k )
γ

2
αj

i,j

(21)

for γi,j/T
αj

k+1 ≤ ω ≤ γi,j/T
αj

k . Since

P [Tk ≤ Ri ≤ Tk+1] =
π(T 2

k+1 − T 2
k )

|A|
(22)

the PDF of Ωi,j conditioned on φi is

fΩi,j
(ω|φi) =

L−1
∑

k=0

2π

αj |A|
ω
−

2+αj
αj γ

2
αj

i,j

[

u

(

ω −
γi,j

T
αj

k+1

)

− u

(

ω −
γi,j

T
αj

k

)

]

.

(23)

over γi,j/r
αj

out ≤ ω ≤ γi,j/r
αj

in
and zero elsewhere. The

expectation in (19) can be evaluated with respect to Ωi,j , i.e,

EXi
[γi] = Eφi

ERi
[γi] = Eφi

EΩi,j
[γi]. (24)

Substituting (18) into (25) and using the definition of ηi,j ,

EXi
[γi] = Eφi

EΩi

[

pi,0δ(ti) +

J
∑

j=1

pi,j
ti!

Γ(ti +mi,j)

Γ(mi,j)

×
Ωti

i,j

mti
i,j

(

1 +
η0sΩi,j

mi,j

)−ti−mi,j

]

. (25)

Using the PDF of conditional Ωi,j in (23)

EXi
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∑
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Γ(mi,j)ti!

×
p
(k)
i,j

mti
i,j

∫

γi,j

T
αj
k

γi,j

T
αj
k+1

ω
−

2+αj
αj

(

1 +
η0sω

mi,j

)−ti−mi,j
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]

(26)

which evaluates to,

pi,0δ(ti) +
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∑
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∑

k=0

2πp
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)

T 2
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)
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]

, (27)

where

Q
αj
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(x) =
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. (28)
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Fig. 4: Spatially averaged outage probability with K = 20 randomly
located interferers and SNR = 20 dB. In addition to the exact values,
the outage found using the LOS-ball approximation and two values
of RLOS are shown. The black dots represents simulation results.

and 2F1(·) is the Gauss hypergeometric function. From (14),

the expected value with respect to φi in (27), yields equation

(28) at the top of the page.

Example #2: This example uses the same parameters as

Example #1 except now the K = 20 interferers are assumed to

be placed randomly within the annulus. Rather than computing

the conditional outage probability for just one network real-

ization, Fig. 4 shows the spatially averaged outage probability

found using (17) with L = 10. In addition to the exact analysis,

the spatially averaged outage probability is found using the

LOS-ball approximation with two values of RLOS: RLOS = 4.4
corresponding to criterion 1 of [3] and RLOS = 3.6, which is

the value that, on average, provides the best fit to the exact

outage probability. Moreover, the dots on the figure show

the spatially averaged outage probability found by averaging

analytical expression for conditional outage probability (11)

over 100 network realizations. Note that the exact analysis

provides close agreement with the simulation results, while

both values of RLOS result in a discrepancy.

VI. CONCLUSION

In this paper, we found analytical expressions that exactly

characterize the outage probability in wireless networks when

the power of each interferer is selected at random. The set

of distributions can correspond to different blockage and di-

rectivity states, making it immediately applicable to mmWave

systems. Expressions were given for a deterministic (fixed)

and random geometries. The work could readily be extended

to process other than BPPs, such as Poisson point processes,

as well as networks of shapes other than an annulus. Due

to space constraints, only a few examples have been shown to

confirm the accuracy of the approach; a more detailed analysis

could use these expressions to provide insight into the role

of various parameters such as the number of interferers (K),

array parameters, channel coefficients, and SNR. While the

focus on this paper has been on mmWave, other applications

are possible related to cellular networks, distributed MIMO

systems, and more elaborate MAC protocols. For instance,

the same methodology could be used to model channel access

schemes with various types of collisions (e.g, full and partial)

each with their own severity and probability.
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