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Abstract—We consider content delivery over fading broadcast
channels. A server wants to transmit K files to K users, each
equipped with a cache of finite size. Using the coded caching
scheme of Maddah-Ali and Niesen, we design an opportunistic
delivery scheme where the long-term sum content delivery rate
scales with K the number of users in the system. The proposed
delivery scheme combines superposition coding together with
appropriate power allocation across sub-files intended to different
subsets of users. We analyze the long-term average sum content
delivery rate achieved by two special cases of our scheme: a) a
selection scheme that chooses the subset of users with the largest
weighted rate, and b) a baseline scheme that transmits to K users
using the scheme of Maddah-Ali and Niesen. We prove that coded
caching with appropriate user selection is scalable since it yields
a linear increase of the average sum content delivery rate.

I. INTRODUCTION

Content delivery applications such as video streaming are
envisionned to represent nearly 75% of the mobile data traffic
by 2020. The skewness of the video traffic together with
the ever-growing cheap on-board storage memory suggests
that the quality of experience can be improved by caching
popular content close to the end-users in wireless networks.
Recent works have studied the gains provided by caching
under various models and assumptions (see e.g. [1], [2] and
references therein). In this work, we consider content delivery
using coded caching where a server is connected to K users
each equipped with a cache of finite memory [1]. A striking
result of [1] is that the total number of multicast transmissions
to satisfy K distinct requests converges to a constant in the
regime of a large K, thus yielding a scalable system.

Substantial effort have been devoted to quantify the gains
of coded caching in more realistic scenarios (see e.g. [1,
Section VIII], [4]). In particular, some authors have studied
coded caching over wireless channels by relaxing the initial
assumption of a perfect shared link between the server and
users [5]–[9]. It is noted that the performance of coded caching
strongly depends on the multicast rate of the underlying
wireless channels and the latter is limited by the user in the
worst channel condition. Such limitation has been highlighted
in [7] which shows that the sum content delivery rate is no
longer scalable, if the multicast rate vanishes when K →∞.
This is typically the case for the i.i.d. Rayleigh fading channels
(i.i.d. across users and time) [10].

This work was supported by Huawei Technologies France SASU.

In a more realistic scenario where users have asymmetric
fading statistics (e.g. in a cellular system), the performance
degradation becomes substantial in the sense that most of the
resources are allocated to users with low channel quality. To
overcome these drawbacks, schemes using multiple antennas
[7]–[9] and interference management techniques [5], [6] have
been proposed. In this work, we take a different approach
based on user scheduling in order to address the following
fundamental question that has been overlooked in existing
works: how to exploit the wireless channels opportunistically
for content delivery?

To answer this question, we consider the K-user Gaussian
fading broadcast channel with 2K − 1 independent messages,
each intended to a subset of users, and solve the weighted
sum rate maximization in section III. The optimal strategy
combines superposition coding with an appropriate power
allocation across different messages. The solution at hand can
be applied to various communication contexts such as a queued
content delivery network [11]. We apply this solution to
maximize the sum content delivery rate, assuming that content
placement is performed by existing schemes [1], [3]. We
analyze the performance of our scheme in two special cases of
interest: a) a selection scheme that chooses the subset of users
with the largest instantaneous weighted rate, and b) a baseline
scheme that applies coded caching to K users. We prove that
the selection scheme achieves a linear increase of the average
sum content delivery rate in the regime of a large K thus yields
a scalable solution. On the other hand, both the baseline and
the selection schemes achieve the same sum delivery rate in the
high SNR regime, since it is nearly optimal to perform coded
caching over all K users in this regime. Moreover, we provide
a simple threshold-based feedback scheme which yields the
same performance as the selection scheme in the large K
regime, while requiring each user to feedback only one bit
rather than its channel state information. Numerical examples
in Section V show that the linear gain in sum content delivery
rate occurs even for relatively small number of users. Proofs of
Theorem 1, Propositions 1 and 2 are presented in Appendix.

We use the following notation: [k] = {1, . . . , k}, and
f(x) ∼ g(x) if limx→∞

f(x)
g(x) = 1.

II. SYSTEM MODEL

We consider a content delivery system where a server with
N files wishes to transmit K requested files to K users over
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a wireless downlink channel. We assume that N files are of
equal size of F bits and equal popularity, while each user has
a cache of size MF bits, where M ≥ 1 denotes the cache
size measured in files. We define m the normalized cache size
denoted by m =M/N . Each user can store any part of any file
in her cache, by prefetching them during off-peak hours, prior
to the actual request, according to centralized or decentralized
placement strategies proposed in the literature.

In the decentralized placement of [3], each user indepen-
dently caches a subset of mF bits of file i, chosen uniformly
at random for i = 1, . . . , N under the memory constraint of
MF bits. By letting Wi|J denote the sub-file of Wi stored
exclusively in the cache memories of the user set J, the cache
memory Zk of user k after decentralized placement is given
by

Zk = {Wi | J : ∀J ⊆ [K],∀J 3 k, ∀i ∈ [N ]}. (1)

In the centralized cache placement [1], each file is split into(
K
b

)
disjoint sub-files of equal size, where b , bmKc. Each

sub-file is cached by users in a subset J of cardinality |J| = b.
The resulting cache memory Zk is the same as (1) except
that the subsets are now restricted to those with a specific
cardinality b. Once the requests from users are revealed,
the server generates and sequentially conveys the codewords
intended to each subset of users. Namely, assuming that user
k requests file k for all k, the codeword intended to the subset
J is given by

VJ = ⊕k∈JWk|J\{k}, (2)

where ⊕ denotes the bit-wise XOR operation. The main idea
here is to create a codeword useful to a subset of users by
exploiting the receiver side information established during the
placement phase.

It has been shown in [1], [3] that the total number of
multicast transmissions needed to satisfy K distinct demands
over the error-free shared link is as follows.

T (m,K) =

{
(1−m) 1

1/K+m , centralized caching,

(1−m) 1−(1−m)K

m , decentralized caching.
(3)

In the physical layer, we consider the quasi-static Rayleigh
fading broadcast channel. The output of user k at channel use
t is given by

yk[t] =
√
hkx[t] + wk[t], (4)

where x is the input symbol satisfying the power constraint
1
n

∑n
t=1 |x[t]|2 ≤ P ; {hk} are the fading gains, independently

and exponentially distributed ∼ Exp(1/γk) with mean γk;
wk(t) ∼ NC(0, 1) is additive white Gaussian noise assumed
independent between users. We assume that {hk} are known
by the server and all users.

It is well-known that the multicast capacity of the channel
at hand, or the common message rate, is given by

Rmc(hhh) = log

(
1 + P min

j∈[K]
hj

)
(5)

and is limited by the user in the worst fading condition. It
has been proved in [7] that such limitation is detrimental for
a scalable content delivey network.

To see this, let us first define the sum content delivery rate
when coded caching is applied directly to the fading broadcast
channel. In order to satisfy the distinct demands from K users,
that is to complete the transfer of KF demanded bits, one
needs to send T (m,K)F bits over the wireless link. The
corresponding transmission takes T (m,K)F

Rmc(hhh)
units of time. As

a result, the sum content delivery rate of a naive application
of coded caching for a given channel realization hhh is given by

K

T (m,K)
Rmc(hhh)

measured in [nats/second/Hz]. We call this scheme the “base-
line” scheme, and its long-term average sum content delivery
rate is

Rsum,bl(K) =
K

T (m,K)
E[Rmc(hhh)]. (6)

In the case of symmetric fading statistics (γk = 1,∀k), since
the average multicast capacity vanishes as 1/K for a large
K [10], the average sum content delivery rate converges to a
constant, yielding a non-scalable system. This negative result
calls for a careful design of content delivery that benefits from
the time varying nature of the underlying fading broadcast
channel.

III. PROBLEM FORMULATION

In this section, we study the fading Gaussian broadcast
channel where the transmitter wishes to convey 2K − 1
mutually independent messages, each intended to a subset of
users. We characterize the capacity region of these messages
and then solve explicitly the weighted sum rate maximization
problem. We show that this formulation allows to maximize
the content delivery rate by opportunistically exploiting the
wireless channel.

A. Broadcasting private and multiple common messages

We start by observing that the channel at hand in (4) for
a given channel realization hhh corresponds to a stochastically
degraded Gaussian broadcast channel. Without loss of gener-
ality, let us assume h1 ≥ · · · ≥ hK . The capacity region of
the degraded broadcast channel for K private messages and
a common message is well-known [12]. In this section, we
consider a more general setup where the transmitter wishes to
convey 2K − 1 mutually independent messages, denoted by
{MJ}, where MJ denotes the message intended to the users
in subset J ⊆ [K]. Each user k must decode all messages
{MJ} for J 3 k. By letting RJ denote the multicast rate
of the message MJ, we say that the rate-tuple RRR ∈ R2K−1

+

is achievable if there exists encoding and decoding functions
which guarantee a rate greater than RRR. The capacity region
is defined as the supremum of the achievable rate-tuple. Then
we have the following result.
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Theorem 1. The capacity region Γ (hhh) of a K-user degraded
Gaussian broadcast channel with fading gains h1 ≥ · · · ≥ hK
and 2K − 1 independent messages {MJ} is given by

R1 ≤ log(1 + h1α1P ) (7)∑
K:k∈K⊆[k]

RK ≤ log
1 + hk

∑k
j=1 αjP

1 + hk
∑k−1
j=1 αjP

k = 2, . . . ,K (8)

for non-negative variables {αk} such that
∑K
k=1 αk ≤ 1.

Proof: See Appendix VII-A.
The achievability builds on superposition coding at the

transmitter and successive interference cancellation at re-
ceivers. For K = 3, the transmit signal is simply given by

x = x1 + x2 + x3 + x12 + x23 + x13 + x123,

where {xJ} are mutually independent and xJ ∼ NC(0, αJP )
denotes the signal corresponding to the message MJ intended
to the subset J ⊆ {1, 2, 3}. User 3 (the weakest user)
decodes M̃3 = {M3,M13,M23,M123} by treating all the
other messages as noise. User 2 decodes first the messages
M̃3 and then jointly decodes M̃2 = {M2,M12}. Finally, user 1
(the strongest user) decodes successively M̃3, M̃2 then finally
M1.

B. Weighted sum rate maximization

In order to characterize the boundary of the capacity region
Γ (hhh), we consider the weighted sum rate maximization given
as

max
rrr∈Γ (hhh)

∑
J:J⊆[K]

θJrJ. (9)

By exploiting a simple property of the capacity region, the
problem at hand can be cast into a simpler problem as
summarized below.

Theorem 2. The weighted sum rate maximization with 2K−1
variables in (9) reduces to a simpler problem with K vari-
ables, given by

f(α) =

K∑
k=1

φk log
1 + hk

∑k
j=1 αjP

1 + hk
∑k−1
j=1 αjP

,

where φk denotes the largest weight for user k

φk
∆
= max

K:k∈K⊆[k]
θK.

Proof: The proof builds on the simple structure of the
capacity region. We first remark that for a given power
allocation of other users, user k sees 2k−1 messages {MJ}
for k ∈ J ⊆ [k] with the equal channel gain. For a given
power allocation αk, the capacity region of these messages
is a simple hyperplane characterized by 2k−1 vertices Ckeeei
for i = 1, . . . , 2k−1, where Ck is the sum rate of user k in
the RHS of (8) and eeei is a vector with one for the i-th entry
and zero for the others. Therefore, the weighted sum rate is
maximized for user k by selecting the vertex corresponding to
the largest weight, denoted by φ. This holds for any k.

We provide an efficient algorithm to solve this power
allocation problem as a special case of the parallel Gaussian
broadcast channel studied in [13, Theorem 3.2]. Following
[13], we define the rate utility function for user k given by

uk(z) =
φk

1/hk + z
− λ,

where λ is a Lagrange multiplier. The optimal solution corre-
sponds to selecting the user with the maximum rate utility at
each z and the resulting power allocation for user k is given
as

α∗k =

{
z : [max

j
uj(z)]+ = uk(z)

}
/P, (10)

with λ satisfying P =
[
maxk

φk

λ −
1
hk

]
+

.

C. Application example

In this subsection, we consider the long-term average sum
content delivery maximization as one of the applications of
the weighted sum rate maximization solved previously. By
treating a codeword intended to a subset K of users as a
message intended to the same subset, i.e. MK = VK in (2)
and assuming that these codewords for different subsets are
all independent, the sum content delivery rate achieved by
superposition coding can be written as the weighted sum rate:∑

K:K⊆[K]

θKRK with θK =
|K|

T (m, |K|)
,

where RK denotes the rate of message MK satisfying the
constraints in Theorem 1. By noting that the weights depend
only on the cardinality of K and that the function k/T (m, k)
is increasing in k, we have the following properties i) θK =
θK′ , ∀K,K′ such that |K| = |K′|, ii) θK < θJ, ∀K ⊂ J.

These properties readily imply that the effective weight of
user k, denoted by φk, is given by

φk = max
J:k∈J⊆[k]

θJ =
k

T (m, k)
.

Following Theorem 2, the resulting sum delivery rate of
superposition coding for a given channel state such that
h1 ≥ · · · ≥ hK is given by

Rsum,sp(hhh) =

K∑
k=1

k

T (m, k)
log

(
1 +

hkα
∗
kP

1 + hk
∑k−1
j=1 α

∗
jP

)
,

where {α∗j} is the optimal power allocation in (10). The long-
term average sum delivery rate is given by

Rsum,sp = Ehhh[Rsum,sp(hhh)].

IV. PERFORMANCE ANALYSIS

In this section, we analyze the long-term average sum
delivery rate of the proposed scheme in two cases of interest:
a) a user selection scheme that selects the best subset of users
as a function of the channel state and the weights, b) naive
coded caching (or baseline scheme) that applies coded caching
to K users as described in Section II. By restricting ourselves
to the symmetric fading case (γk = 1,∀k), we consider two
regimes of interest, i.e. large K and high SNR.
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A. Baseline scheme: naive coded caching

In this scheme, the server serves all K users with the
multicast rate limited by the worst user as in (5). We define
the exponential integral function E1(x) =

∫ +∞
1

e−xt

t dt. The
performance of this scheme is summarized below.

Proposition 1. (i) Rsum,bl(K,P ) = φKe
K
P E1

(
K
P

)
.

(ii) For all P : Rsum,bl(K,P ) ∼ Pm
1−m when K →∞.

(iii) For all K: Rsum,bl(K,P ) ∼ φK log(P ) when P →∞.

Proof: See Appendix VII-B.

B. User selection scheme: opportunistic scheduling

Albeit suboptimal, we consider a simple time-sharing strat-
egy, which allocates a fraction of time ηK to the subset of
users K, with

∑
K⊆[K] ηK = 1. The corresponding weighted

sum rate maximization is given by

max
η:

∑
K ηK=1

∑
K⊆[K]

θKηK log(1 + P min
k∈K

hk).

Let π = {π1, . . . , πK} denote the permutation such that
hπ1
≥ · · · ≥ hπK

. Because of the capacity region structure,
the problem at hand can be simplified into:

max
η

K∑
k=1

φkηk log(1 + hπk
P ).

The optimal solution is readily given by

ηk =

{
1, if k = argmaxj φj log(1 + hπj

P ),

0, otherwise.

This means that we transmit to only one set of users max-
imizing the instantaneous weighted rate with full power. By
transmitting opportunistically to the group of users with the
highest sum content delivery rate at each channel realization,
the long-term average sum content delivery rate is given by

Rsum,sc(K,P ) = E
[
max
k

φk log(1 + hπk
P )

]
.

We characterize Rsum,sc(K,P ) in two regimes of interest.

Proposition 2. (i) For all P :
Rsum,sc(K,P ) ∼ Km

1−me
( 1
P −

1
W (P )

)W (P ) when K → ∞,
where W (x) is the Lambert function i.e. W (x)eW (x) = x.

(ii) For all K: Rsum,sc(K,P ) ∼ φK log(P ) when P →∞.

Proof: See Appendix VII-C.

C. Interpretation of the results

From propositions 1 and 2, the following remarks are in
order: 1) in the large K regime, the long-term sum delivery
rate of the selection scheme grows linearly for any finite SNR.
This is in a sharp contrast with the baseline scheme, whose
sum delivery rate converges to a constant; 2) in the high
SNR regime, both schemes yield the same performance, i.e.

K
T (m,K) logP , for any finite K because the sum delivery rate
is no longer sensitive to the randomness of channels and is
maximized solely by exploiting the global caching gain; 3) It is
worth noticing that the performance of selection scheme can be

achieved without instantaneous channel knowledge. Namely,
each user can measure its SNR and send a one-bit feedback
indicating whether it is above or below the threshold value
given by Pz∗ = P

W (P ) − 1.

V. NUMERICAL EXAMPLES

In this section, we compare our proposed superposition
scheme, its two special cases (baseline and selection), as
well as uncoded caching. Uncoded caching refers to the case
where the server sends the remaining (1 − m)F bits of the
requested file at rate log(1 + Phk) for each user k. Thus, the
corresponding long-term average sum delivery rate is given by

E

K ( K∑
k=1

1−m
log(1 + Phk)

)−1 .
We consider a database of size N = 104, normalized memory
size of m = 10−1. In Fig. 1, we plot the long-term sum
content delivery rate as a function of the number of users at
P = 10 dB for both centralized (dashed line) and decentralized
(solid line) placement strategies. We observe that both the
superposition schemes and the selection scheme offer a linear
increase, whereas the performance of baseline and uncoded
schemes is bounded. This behavior agrees with the analysis of
the previous section and implies that the performance of coded
caching at low to moderate SNR is limited by the vanishing
multicast rate. Furthermore, the selection scheme offers per-
formance almost as good as the superposition scheme, despite
its reduced complexity.

In Fig. 2, the long-term average sum content delivery rate is
plotted as a function of SNR for different schemes. We observe
that the performance of selection, baseline scheme becomes
identical for large SNR, which confirms our analysis. In addi-
tion, the sum content delivery rate increases as SNR with a pre-
log of φK , which in turn depends on the placement strategy
(3). By comparing uncoded caching and the baseline scheme,
we observe that after a certain SNR threshold, the baseline
scheme performs better than uncoded caching scheme.

VI. CONCLUSION

We have studied content delivery using coded caching over
fading broadcast channels. Contrary to the baseline scheme
applying coded caching to K users irrespectively of channel
state information, we proposed opportunistic delivery schemes
that achieve a linear increase of the sum content delivery rate
by a careful selection of the user subset as a function of both
channel state information and priorities. In order to reduce
the amount and accuracy of feedback, we proposed a simple
threshold-based feedback scheme yielding the same scalable
solution while requiring only one bit per user. In future work,
we plan on providing a detailed analysis of the performance
of the more general superposition scheme proposed here.
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VII. APPENDIX

A. Proof of Theorem 1

We provide the proof for K = 3 and the general case K > 3
follows readily. Here log denotes the binary logarithm, h(.)
denotes the differential entropy, and H(.) denotes Shannon
entropy.

Converse Notice that the channel output of user k in (4) for
n channel use can be equivalently written as

yk,i = xi + w̃k,i, i = 1, . . . , n (11)

where w̃k,i =
wk[i]√
hk
∼ NC(0, Nk) for Nk = 1

hk
. Since N1 ≤

N2 ≤ N3, we set M̃k = ∪k∈J⊆[k]MJ the message set that
must be decoded by user k at sum rate R̃k = ∪k∈J⊆[k]RJ.
More explicitly, we have M̃1 = {M1}, M̃2 = {M2,M12},

M̃3 = {M3,M13,M23,M123}. By Fano’s inequality, we have
nH(M̃1) ≤ I(M̃1;Y1 | M̃2, M̃3)

nH(M̃2) ≤ I(M̃2;Y2 | M̃3)

nH(M̃3) ≤ I(M̃3;Y3).

(12)

Consider first user 3.

I(M̃3;Y3) = h(Y3)− h(Y3 | M̃3). (13)

Since we have n log (πeN3) = h(Y3 | M̃3, X) ≤ h(Y3 | M̃3) ≤
h(Y3) ≤ n log (πe(P +N3)), there exists 0 ≤ α3 ≤ 1 such
that

h(Y3 | M̃3) = n log (πe((1− α3)P +N3)) . (14)

Using (13) and (14) we obtain

I(M̃3;Y3)

= h(Y3)− h(Y3 | M̃3)

≤ n log (πe(P +N3))− n log (πe((1− α3)P +N3))

= n log

(
N3 + P

N3 + (1− α3)P

)
. (15)

Next consider user 2.

I(M̃2;Y2 | M̃3) = h(Y2 | M̃3)− h(Y2 | M̃2, M̃3). (16)

Using the conditional entropy power inequality in [12] , we
have

h(Y3 | M̃3) = h(Y2 + W̃3 − W̃2 | M̃3)

≥ n log(2h(Y2 | M̃3)/n + 2h(W̃3−W̃2 | M̃3)/n)

= n log(2h(Y2 | M̃3)/n + πe(N3 −N2)). (17)

(14) and (17) imply

n log (πe((1− α3)P +N3))

≥ n log(2h(Y2 | M̃3)/n + πe(N3 −N2))

equivalent to

h(Y2 | M̃3) ≤ n log(πe((1− α3)P +N2)). (18)

Since n log(πeN2) = h(Y2 | M̃2, M̃3, X) ≤
h(Y2 | M̃2, M̃3) ≤ h(Y2 | M̃3) ≤ n log(πe((1− α3)P +N2)),
there exists α2 such that 0 ≤ 1− α2 − α3 ≤ 1− α3 and

h(Y2 | M̃2, M̃3) = n log(πe((1− α2 − α3)P +N2)). (19)

http://arxiv.org/abs/1605.02317
http://arxiv.org/abs/1606.08253
http://arxiv.org/abs/1701.02979
http://arxiv.org/abs/1701.07730
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Using (16), (18) and (19) it follows

I(M̃2;Y2 | M̃3) = h(Y2 | M̃3)− h(Y2 | M̃2, M̃3)

≤ n log(πe((1− α3)P +N2))

−n log(πe((1− α2 − α3)P +N2))

= n log

(
N2 + (1− α3)P

N2 + (1− α2 − α3)P

)
. (20)

Finally we consider user 1.

I(M̃1;Y1 | M̃2, M̃3)

= h(Y1 | M̃2, M̃3)− h(Y1 | M̃1, M̃2, M̃3)

≤ h(Y1 | M̃2, M̃3)− h(Y1 | M̃1, M̃2, M̃3, X)

= h(Y1 | M̃2, M̃3)− h(Y1 |X) (21)

= h(Y1 | M̃2, M̃3)− n log (πeN1) (22)

where (21) holds because
(
M̃1, M̃2, M̃3

)
→ X → Y1 is a

Markov chain. Using the conditional entropy power inequality
in [12] , we have

h(Y2 | M̃2, M̃3)

= h(Y1 + W̃2 − W̃1 | M̃2, M̃3)

≥ n log(2h(Y1 | M̃2,M̃3)/n + 2h(W̃2−W̃1 | M̃2,M̃3)/n)

= n log(2h(Y1 | M̃2,M̃3)/n + πe(N2 −N1)) (23)

(19) and (23) imply

n log(πe((1− α2 − α3)P +N2))

≥ n log(2h(Y1 | M̃2,M̃3)/n + πe(N2 −N1))

equivalent to

h(Y1 | M̃2, M̃3) ≤ n log(πe((1− α2 − α3)P +N1)). (24)

Let α1 = 1−α2−α3. Combining the last inequality with (22)
we obtain

I(M̃1;Y1 | M̃2, M̃3) ≤ n log
(
N1 + α1P

N1

)
. (25)

From (12), (15), (20) and (25), it readily follows that ∃ 0 ≤
α1, α2, α3 ≤ 1 such that α1 + α2 + α3 = 1 and


H(M̃1) ≤ log

(
1 + α1P

N1

)
,

H(M̃2) ≤ log
(
1 + α2P

N2+α1P

)
,

H(M̃3) ≤ log
(
1 + α3P

N3+(α1+α2)P

)
.

By replacing H(M̃k) with
∑
k∈K⊆[k]RK and Nk with 1

hk
we

obtain the result
R1 ≤ log (1 + h1α1P )

R2 +R12 ≤ log
(

1+h2(α1+α2)P
1+h2α1P

)
R3 +R13 +R23 +R123 ≤ log

(
1+h3P

1+h3(α1+α2)P

)
,

Achievability We prove that superposition coding achieves the
upper bound. For J ⊆ {1, 2, 3}, generate random sequences
xJ(mJ), mJ ∈ [1 : 2nRJ ] each i.i.d. NC(0, αJP ), where∑

J⊆{1,2,3} αJ = 1. We define x̃k(m̃k) =
∑
k∈J⊆[k] xJ(mJ),

where m̃k ∈ [1 : 2nR̃k ]. To transmit {mJ}J⊆{1,2,3}, the
encoder set X =

∑
J⊆{1,2,3} xJ(mJ) = x̃1(m̃1) + x̃2(m̃2) +

x̃3(m̃3). For decoding:
• Receiver 3 jointly decodes {m3,m13,m23,m123} by

treating x̃1(m̃1) and x̃2(m̃2) as noise.
• Receiver 2 uses successive cancellation by first decoding
x̃3(m̃3) and treating x̃1(m̃1) and x̃2(m̃2) as noise. It
recovers {m23,m123}. By subtracting off x̃3(m̃3) and
treating x̃1(m̃1) as noise, user 2 decodes x̃2(m̃2) from
which it recovers {m2,m12}.

• Receiver 1 decodes x̃3(m̃3) and recovers {m13,m123}.
Then, by successive cancellation it decodes x̃2(m̃2) and
recovers {m12}. Finally it decodes x̃1(m̃1) to recover
{m1}.

B. Proof of Proposition 1

The content delivery rate is:

Rsum,bl(K,P ) = φKE [log (1 + Phmin)] ,

where hmin , mink=1,...,K hk. Since (hk)k=1,...,K are i.i.d.
with distribution Exp(1), hmin has distribution Exp(K). Hence:

E [log (1 + Phmin)] =

∫ +∞

0

e−x log

(
1 +

P

K
x

)
dx

= e
K
P E1

(
K

P

)
,

which yields statement (i).
When K →∞ we have φK ∼ Km

1−m and∫ +∞

0

e−x log

(
1 +

P

K
x

)
dx ∼ P

K

∫ +∞

0

xe−xdx =
P

K
,

Replacing yields statement (ii):

Rsum,bl(K,P ) ∼
Pm

1−m
.

When P →∞, KP → 0. Since E1(x) ∼ log(1/x) for x→ 0
we obtain statement (iii):

Rsum,bl(K,P ) ∼ φK log(P/K) ∼ φK log(P ).

C. Proof of proposition 2

We start by statement (i). The proof involves upper and
lower bounding Rsum,sc(K,P ) by two expressions which are
equivalent in the large K regime. We define the complemen-
tary c.d.f. of (hk)k=1,...,K :

U(z) ,
K∑
k=1

1{hk ≥ z},

with z ≥ 0. We further define the function:

g(z) ,
m

1−m
e−z log(1 + Pz), z ≥ 0.

It is noted that g(0) = g(∞) = 0, and that g is smooth.
Differentiating, we have that g is maximized at:

z∗(P ) , argmax
z≥0

g(z) =
1

W (P )
− 1

P
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so that:

max
z≥0

g(z) = g(z∗) =
m

1−m
e(

1
P −

1
W (P )

)W (P ).

The proof relies on the following equality:

max
k=1,...,K

φk log(1 + hπk
P ) = max

z∈{h1,...,hK}
φU(z) log(1 + Pz)

= max
z≥0

φU(z) log(1 + Pz).

Indeed, function z 7→ φU(z) log(1+Pz) is left-continuous and
is both continuous and increasing for all z 6∈ {h1, ..., hK} so
that it must attain its maximum in the set {h1, ..., hK}.

Lower bound Using the previous equality we obtain:

Rsum,sc(K,P ) = E
[
max
z≥0

φU(z) log(1 + Pz)

]
≥ max

z≥0
E
[
φU(z)

]
log(1 + Pz) (26)

≥ max
z≥0

m

1−m
E [U(z)] log(1 + Pz) (27)

= max
z≥0

m

1−m
Ke−z log(1 + Pz) (28)

= Kmax
z≥0

g(z)

=
Km

1−m
e(

1
P −

1
W (P )

)W (P ), (29)

where (26) follows from Jensen’s inequality; (27) from the
fact that φk ≥ mk

1−m and (28) from E(U(z)) = Ke−z .
Upper bound The upper bound is slightly more involved and

involves a dominated convergence argument. Let us define:

G(K) =
1

K
max
z≥0

φU(z) log(1 + Pz),

so that Rsum,sc(K,P ) = KE(G(K)). We prove that:
(a) supK E(G(K)) <∞ and

(b) lim sup
K→∞

G(K)
a.s.
≤ g(z∗)

If both (a) and (b) holds, applying the reverse Fatou lemma
proves the announced result:

lim sup
K→∞

Rsum,sc(K,P )

K
= lim sup

K→∞
E(G(K)) ≤ g(z∗).

Consider claim (a). Since φk ≤ k ∀k:

φU(z) log(1 + Pz) ≤ U(z) log(1 + Pz)

=

K∑
k=1

1{hk ≥ z} log(1 + Pz)

≤
K∑
k=1

log(1 + Phk).

The above holds for all z, and taking expectations:

E(G(K)) =
1

K
E(sup

z≥0
φU(z) log(1 + Pz))

≤ E(log(1 + Phk) <∞.

The above holds for all K, so that supK E(G(K)) <∞.

We turn to claim (b). Consider y > z∗(P ) fixed, whose
value will be made precise afterwards. Define intervals
I0 , [0, y], I1 , [y,∞) and for i ∈ {0, 1}, define:

Gi(K) =
1

K
max
z∈Ii
{φU(z) log(1 + Pz)},

so that G(K) = max {G0(K), G1(K)}. To prove that
lim sup
K→∞

G(K) ≤ g(z∗) it is sufficient to prove that

lim sup
K→∞

Gi(K) ≤ g(z∗) for i ∈ {0, 1}.
Consider G0(K). For z ∈ I0, we have U(z) ≥ U(y), so

that:
φU(z) =

U(z)

T (m,U(z))
≤ U(z)

T (m,U(y))
.

Therefore:

G0(K) ≤ 1

T (m,U(y))
max
z∈I0

{
U(z)

K
log(1 + Pz)

}
. (30)

The Glivenko-Cantelli theorem states that:

sup
z≥0

∣∣∣∣U(z)

K
− e−z

∣∣∣∣ a.s.−−→ 0

so that:

max
z∈I0

∣∣∣∣U(z)

K
log(1 + Pz)− e−z log(1 + Pz)

∣∣∣∣
≤max

z≥0

∣∣∣∣U(z)

K
− e−z

∣∣∣∣ log(1 + Py)
a.s.−−→ 0 (31)

From the law of large numbers U(y)
a.s.−−→ ∞, so

T (m,U(y))
a.s.−−→ 1−m

m , together with (30) and (31) it implies

lim
K→∞

supG0(K)
a.s.
≤ max

0≤z≤y
g(z). (32)

Now, consider G1(K). For z ∈ I1, by the same argument as
previously:

1

K
φU(z) log(1 + Pz) ≤ 1

K

K∑
k=1

1{hk ≥ z} log(1 + Phk)

≤ 1

K

K∑
k=1

1{hk ≥ y} log(1 + Phk)

a.s.→ E(1{hk ≥ y} log(1 + Phk)),

using the law of large numbers.
Since y → E(1{hk ≥ y} log(1 + Phk)) is decreasing and
vanishes when y →∞, we may select y large enough so that:

E(1{hk ≥ y} log(1 + Phk)) ≤ g(z∗).

Putting it together lim supG1(K)
a.s.
≤ g(z∗) which is claim

(b). This concludes the proof of statement (i).

Consider statment (ii), we have for P →∞:
maxk φk log(1 + hπk

P )

log(P )

a.s.→ φK .

Furthermore,

sup
P≥0

E
(
maxk φk log(1 + hπk

P )

log(P )

)
= sup
P≥0

Rsum,sc(K,P )

log(P )
<∞

so by Lebesgue’s theorem Rsum,sc(K,P )
log(P ) → φK .
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