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Abstract—We study diversity in one-shot communication over
molecular timing channels. In the considered channel model the
transmitter simultaneously releases a large number of information
particles, where the information is encoded in the time of release.
The receiver decodes the information based on the random time
of arrival of the information particles. We characterize the
asymptotic exponential decrease rate of the probability of error
as a function of the number of released particles. We denote this
quantity as the system diversity gain, as it depends both on the
number of particles transmitted as well as the receiver detection
method. Three types of detectors are considered: the maximum-
likelihood (ML) detector, a linear detector, and a detector that
is based on the first arrival (FA) among all the transmitted
particles. We show that for random propagation characterized by
right-sided unimodal densities with zero mode, the FA detector is
equivalent to the ML detector, and significantly outperforms the
linear detector. Moreover, even for densities with positive mode,
the diversity gain achieved by the FA detector is very close to
that achieved by the ML detector and much higher than the gain
achieved by the linear detector.

I. INTRODUCTION

In many communication systems it is common to modulate

the information in the amplitude or in the phase of the trans-

mitted signal. In this work we consider a different transmission

approach in which the information is embedded in the timing

of the transmissions. The resulting channels are commonly

referred to as timing channels. Communication over timing

channels was studied in three main contexts: communication

via queues, i.e., queuing timing channels [1]–[5], molecular

communications, i.e., molecular timing channels, [6]–[11], and

covert (secure) timing channels [12], [13].

We study a model for molecular timing channels where

information is modulated through the time of release of infor-

mation particles (see [14] for a detailed discussion regarding

applications of molecular communications). These information

particles represent molecules in the context of molecular

communications, or tokens using the terminology of [9]. We

focus on a one-shot communication scenario in which the

transmitter simultaneously releases multiple identical informa-

tion particles, where the time of release is selected out of a

set with finite cardinality. The receiver’s objective is to detect

this time of release. The released particles are assumed to

randomly and independently propagate to the receiver, where

upon their arrival they are absorbed and removed from the

environment. Thus, the random delay until a particle arrives
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at the receiver can be represented as an additive noise term.

Our objective is to characterize the asymptotic exponential

decrease rate of the probability of error, at the receiver, as a

function of the number of released particles. We refer to this

quantity as the system diversity gain.1 The formal definition of

diversity gain is given in Section II. Note that the work [15]

also considered a molecular timing channel with diversity, yet

that work focused on the capacity of the channel while in the

current work we study the diversity gain in the probability

of error for one-shot communication. Comparing the diversity

gains of different detection techniques indicates which method

achieves lower probability of error.

As we consider a causal molecular timing channel, we focus

on propagation models characterized by noise densities with

support on the positive real line. In particular, in molecular

communications, the particles propagate to the receiver follow-

ing a random Brownian path. When the propagation is based

solely on diffusion, the additive noise associated with random

delay follows the Lévy distribution [11]. When the diffusion is

accompanied by a drift, this additive noise follows the inverse

Gaussian (IG) distribution [7], [8]. In the model studied in

[9], the additive noise representing the propagation of the

tokens follows an exponential distribution. The exponential

delay can represent systems with chemical reactions that cause

the particles to decay quickly [16].

Motivated by the scenarios studied in [7]–[11], we further

assume that the noise density associated with the random

propagation delay is unimodal (with support on the positive

real line) and derive expressions for the system diversity

gain associated with three types of detectors: the optimal

maximum likelihood (ML) detector, a linear detector based

on the mean of the arrival times, and a detector that is based

on the first arrival (FA) among the transmitted particles [11].

One of the main results presented in [11] is that in the case

of a Lévy-distributed additive noise, linear detection under

multiple particle release has worse performance than linear

detection based on a single particle release. This degradation

is due to the fact that the Lévy distribution has heavy tails

that render linear processing highly suboptimal. It was further

shown in [11] that for a small number of released particles,

the performance of the FA detector is indistinguishable from

that of the ML detector; thus, this detector provides a simple

1This quantity can also be interpreted as a function of the number of
particles, in contrast to common usage of error exponent to characterize the
exponential rate of decrease of the probability of error with the increase in
the block length.
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and attractive alternative to ML detection for a small number

of released particles.

In this work we extend this result to the case of a large

number of released particles. We show that if the noise density

has a zero-mode, for example as is the case for uniform or

exponential distributions, then the FA and ML detectors are

equivalent. Moreover, even if the mode is larger than zero, the

FA detector can still achieve a diversity gain very close to the

one achieved by the ML detector, and can significantly outper-

form the linear detector. This holds regardless of the tails of

the noise, and contradicts the common use of linear processing,

known to maximize the signal-to-noise ratio (or minimize the

bit error rate) in systems with receive diversity and additive

Gaussian noise [17]. Our results indicate that for detection

of signals transmitted over molecular timing channels, the FA

detector is a much better alternative to the high-complexity

ML detector as compared to linear processing.

The rest of this paper is organized as follows. The problem

formulation is presented in Section II. The diversity gain of

the ML, linear, and FA detectors is derived in Section III.

Analysis of the diversity gain of specific densities, namely,

the uniform, exponential, IG, and Lévy, is provided in Section

IV, and concluding remarks are provided in Section V.

Notation: We denote sets with calligraphic letters, e.g., X ,

where R+ denotes the set of positive real numbers. We denote

RVs with upper case letters, e.g., X , and their realizations with

lower case letters, e.g., x. An RV takes values in the set X ,

and we use |X | to denote the cardinality of a finite set. We use

fZ(z) to denote the probability density function (PDF) of a

continuous RV Z on R+ and FZ(z) to denote its cumulative

distribution function (CDF). We denote vectors with boldface

letters, e.g., y, where the kth element of a vector y is denoted

by yk. Finally, we use log(·) to denote the natural logarithm.

II. PROBLEM FORMULATION

A. System Model

We make the following assumptions about the system:2

i) The information particles are assumed to be identical and

indistinguishable, thus, the information is encoded only

in the time of release of the particles. At the receiver, the

information is decoded based only on the time of arrival.

The propagation of the particles from the transmitter to

the receiver is random, inducing a random arrival time at

the receiver.

ii) The time-synchronization between the transmitter and

the receiver is perfect, the transmitter perfectly controls

the particles’ release time, and the receiver perfectly

measures their arrival time.

iii) Every information particle that arrives at the receiver is

absorbed and removed from the system.

iv) The information particles propagate independently of

each other, and their trajectories are random according

to an i.i.d. random process.

2Note that these assumptions are consistent with those made in previous
works [6]–[11].

Let X be a finite set of constellation points on the real

line: X , {ξ0, ξ1, . . . , ξL−1}, 0 ≤ ξ0 ≤ · · · ≤ ξL−1 = ∆.

Observing l ∈ 0, 1, . . . , L− 1 with equal probability, the

transmitter simultaneously releases M information particles

into the medium at time X ∈ X . The release time X is

assumed to be independent of the random propagation time

of each of the information particles. Let {Ym}Mm=1 denote the

M arrival times of each of the information particles released at

time X . Due to causality, we have Ym > X,m = 1, 2, . . . ,M .

This leads to the following additive noise channel model:

Ym = X + Zm, m = 1, 2, . . . ,M, (1)

where Zm ∈ R is a random noise term representing the

propagation time of the mth particle. Note that Assumption iv)

implies that the RVs Zm are independent of each other. The

channel model (1) represents well the setting of a transmitter

(e.g., a nano-scale sensor) that infrequently sends a symbol

(which conveys a limited number of bits) to a receiver (e.g., a

centralized molecular controller), and then remains silent for a

long period. Thus, the communication has a one-shot nature.

To simplify the presentation, in most of this paper we

restrict our attention to the case of binary modulations, i.e.,

X = {0,∆}. However, the results derived in this paper can

be extended to more than two elements in the set X , and to

unequal a-priori probabilities. Let X̂ denote the estimation

of X at the receiver. We denote the probability of error,

when M particles are used, by P
(M)
ε , Pr{X 6= X̂}.

Since all the particles are simultaneously released, and since

the receiver can ignore some of the arrivals, P
(M)
ε should

decrease with increasing M , [7], [11]. In this paper we focus

on the exponential decrease of P
(M)
ε in the asymptotic limit

of increasing M , defined by the quantity D given by:

D , lim
M→∞

− logP
(M)
ε

M
. (2)

Remark 1. The channel (1) has a single input and multiple

outputs. Thus, by simultaneously releasing M particles we

achieve receive diversity. This motivates referring to D as the

system diversity gain. Clearly, if P
(M)
ε does not decrease at

least exponentially with M , then the system diversity gain

is D = 0. As the propagation of all particles is independent

and identically distributed, see Assumption iv), the channel (1)

can also be viewed as a single-input-multiple-output channel

in which all the channel outputs experience an independent

and identical propagation law.

Note that the above description of communication over a

molecular timing channel is fairly general and can be applied

to different propagation mechanisms as long as Assumptions

ii)–iv) are not violated. Next, we discuss the random propaga-

tion model for our channel.

B. Random Propagation Model

Before specifying our assumptions on the propagation

model, we first define the class of weakly unimodal (quasi-

concave) functions [18, Sec. 3.4.1]:



Definition 1. A function f(z) is said to be weakly unimodal

if there exists a value ζ for which it is weakly monotonically

increasing for z ≤ ζ and weakly monotonically decreasing for

z ≥ ζ. Note that for a weakly unimodal function the maximum

value can be reached for a continuous range of values of z.

In the following we refer to functions satisfying Def. 1

as unimodal functions. As we consider the timing channel

model (1), we focus on propagation models characterized by

a noise density function fZ(z) with the support R+.3 We

further assume that the density function fZ(z) is continuous,

differentiable, and unimodal. Note that we do not restrict

fZ(z) to have finite first or second moments.

In many molecular timing channels the random propaga-

tion is characterized using densities under which the above

assumptions hold. For instance, in diffusive molecular commu-

nications the released particles follow a random Brownian path

from the transmitter to the receiver. In the case of diffusion

without a drift, the RVs Zm are Lévy-distributed [11, Def. 1],

while in the case of diffusion with a drift, the RVs Zm follow

the IG distribution [7, eq. (3)]. Another example is noise with

exponential density that was considered in [9].

Next, we derive the diversity gain of the following three

detectors: the ML detector, the linear (mean) detector, and the

FA detector.

III. SYSTEM DIVERSITY GAIN UNDER DIFFERENT

DETECTION METHODS

A. The ML Detector

Let y = {ym}Mm=1. The ML detector is given by the

following decision rule:

X̂ML(y) =

{

0,
∑M

m=1 log
fZ(ym)

fZ(ym−∆) ≥ 0

∆, otherwise.
(3)

For many types of fZ(z) an explicit expression for P
(M)
ε,ML is

not available. Yet, since the problem of recovering x based

on the M i.i.d. realizations {ym}Mm=1 belongs to the class of

binary hypothesis problems, the diversity gain is exactly the

Chernoff information:

Proposition 1. The diversity gain for the ML detector in (3)

is given by:

DML=− min
s:0≤s≤1

log

(
∫ ∞

y=∆

(fZ(y))
s ·(fZ(y−∆))1−sdy

)

. (4)

Proof: The result follows from combining [20, Theorem

11.9.1] and [20, eq. (11.239)] for continuous distributions.

Although the above ML detector minimizes the probability

of error for equiprobable signaling, and thus it maximizes

the diversity gain, it has two main drawbacks. First, it is

relatively complicated to compute in low-complexity devices

(e.g., nano-scale sensors). Second, the ML detector requires

all the particles to arrive, which may require long delays. This

is particularly relevant when fZ(z) has heavy tails (e.g., the

Lévy distribution).

3Note that [19] considered a molecular timing channel with differential
transmission in which the noise density is R. Yet, for the channel model (1),
the noise can have only positive values.

B. The Linear Detector

If the additive noise is Gaussian then the optimal detector is

linear [17, Ch. 3.3]. Even when the noise is not Gaussian, this

approach can significantly improve the probability of error, as

observed in [7, Sec. IV.C.2] for the case of additive IG noise.

The main benefit of the linear detector is its simplicity; yet,

it may also require long delays. Before formally defining the

linear detector, we comment on the possibly destructive effect

of linear detection in the case of heavy tailed fZ(z).

Remark 2. In [11, Thm. 1] it is shown that, for the case of

Lévy-distributed propagation, a linear detector (e.g., the mean)

increases the dispersion of the noise.4 Thus, the probability of

error of a linear detector is lower bounded by the probability

of error of an optimal detector for the case of M = 1, which

leads to a zero diversity gain.

Consider detection based on YLIN , 1
M

∑M

m=1Ym, and

let ΛZ(τ) , logEZ

{

eτZ
}

denote the cumulant generating

function of Z . Further, define Λ∗
Z(v) , supλ {λv − ΛZ(λ)} to

be the rate (Cramér) function. The diversity gain of X̂LIN(YLIN)
is stated in the following theorem.

Theorem 1. Let fZ(z) be a density with E{Z}=µ<∞, and

E{(Z−µ)2} <∞. Further assume that ΛZ(τ) is finite over

some interval in R. If there exists α ∈ (max{∆−µ, 0},∆),
such that Λ∗

Z (µ+α)=Λ∗
Z (µ−∆+α), then:

DLIN = Λ∗
Z (µ+ α) . (5)

Otherwise, DLIN = ∞.

Proof: Let P
(M)
ε|0 and P

(M)
ε|∆ denote the probabilities of error

given x = 0 and x = ∆, respectively. The diversity gain is

now given by:

DLIN = min







lim
M→∞

− logP
(M)
ε|0

M
, lim
M→∞

− logP
(M)
ε|∆

M







. (6)

From Cramér’s Theorem [21, Thm. 2.2.3] we have

limM→∞ log Pr{YLIN > y0|X = x}=Λ∗
Z (y0) , y0 >µ. Sim-

ilarly, Cramér’s Theorem states that limM→∞ log Pr{YLIN <

y∆|X = x}=Λ∗
Z (y∆) , y∆ < µ. Recalling that fZ(z) is not

necessarily symmetric, to maximize DLIN we use the fact that

the two densities differ only in a shift and require the two

terms on the right-hand-side (RHS) of (6) to be the same.

Thus, we find the point at which the right tail (Λ∗
Z (µ+α))

equals the left tail (Λ∗
Z (µ−∆+α)). This leads to the decision

threshold µ + α and to (5). If such a point does not exist,

then the decision intervals do not overlap, which implies zero

probability of error and DLIN = ∞.

Next, we discuss a detector that is based on FA of a

particle. For this detector, the time gap between transmission

and detection is minimal, and in for some noise distributions

this detector is equivalent to the optimal ML detector.

C. The FA detector

Let yFA , min {y1, y2, . . . , yM}. The FA detector is the

ML detector based on YFA. Before discussing the performance

4The dispersion of the noise is also known as its scale.



of the ML detector, we note that for a fixed value of M ,

fYFA|X(yFA|x) is not necessarily unimodal. The following

lemma provides sufficient conditions for fYFA|X(yFA|x) to be

unimodal, for sufficiently large (yet finite) M .

Lemma 1. Let fZ(z) be a unimodal density supported on R+,

and f ′
Z(z) its derivative. If there exists an ǫ > 0 such that, for

every 0 < z ≤ ǫ, the function g(z) =
f ′

Z (z)

f2
Z
(z)

is monotonically

decreasing, then there exists a sufficiently large and finite M0

for which the density of ZFA,min{Zm}Mm=1 is unimodal for

M > M0.

Proof: The proof is provided in Appendix A.

Remark 3. Lemma 1 provides sufficient conditions for the

density of the FA, fYFA|X(yFA|x), to be unimodal when M

is sufficiently large. It is possible that fYFA|X(yFA|x) will be

unimodal even if these conditions do not hold. It is also

possible that fYFA|X(yFA|x) will be unimodal for values of M

smaller than M0. In Section IV we show that the conditions

of Lemma 1 hold for the IG and for the Lévy densities.

Next, we assume that fYFA|X(yFA|x) is unimodal for a given

finite M , and provide the detection rule and probability of

error of the FA detector.

Proposition 2. Let fYFA|X(yFA|x) be unimodal for a given

value of M , and let mZ denote the mode of fZ(z). Further,

let FZ(z) be the noises’ CDF. Then, the ML detector based

on yFA, is given by:

X̂FA(yFA) =

{

0, yFA < θM

∆, yFA ≥ θM ,
(7)

where θM , is the solution, in ∆≤yFA≤mZ , of the following

equation in yFA:

fZ(yFA)

fZ(yFA −∆)
=

(

1− Fz(yFA −∆)

1− Fz(yFA)

)M−1

. (8)

If (8) does not have a solution, then θM = ∆. Furthermore,

the probability of error of the FA detector is given by:

P
(M)
ε,FA =0.5

(

(1−Fz(θM ))
M
+1−(1−Fz(θM−∆))

M
)

. (9)

Proof Outline: As fYFA|X(yFA|x), the ML detector amounts

to comparing yFA to a threshold, which can be found by

equating the two densities. Since the two densities differ only

by a shift, if (8) does not have a solution, then θM = ∆.

Finally, (8)–(9) are obtained by noting that FYFA|X(yFA|x) =

1 − (1− FZ(y − x))M and fYFA|X(yFA|x) = M ·fZ(y − x) ·

(1− FZ(y − x))M−1
.

The following theorem presents the diversity gain of the FA

detector.

Theorem 2. Let fYFA|X(yFA|x) be unimodal for all M > M0.

Then, the diversity gain of the FA detector is given by:

DFA = − log (1− FZ(∆)) . (10)

Proof: Before proving (10) we note that if fYFA|X(yFA|x) is

unimodal for all M > M0, then θM →∆ when M→∞. This

follows as the RHS of (8) increases with M while the left-

hand-side is independent of M . Moreover, using the extreme

value theorem [22, Thm. 1.8.4], which implies that the limiting

distribution of the considered densities is a Dirac delta at x,

we conclude that the limit is indeed ∆.

Next, we recall that ZFA = min{Zm}Mm=1, and let θM =

∆+ δM , δM →0. Note that P
(M)
ε,FA can be bounded as follows:

1

2
Pr{ZFA ≥ ∆+ δM} ≤ P

(M)
ε,FA ≤

1

2
Pr{ZFA ≥ ∆}. (11)

For the RHS of (11), recalling that Pr{ZFA ≥ ∆} = (1−
FZ(∆))M , we write

lim
M→∞

− log Pr{ZFA ≥ ∆}

M
=− log(1−FZ(∆)). (12)

For the left-hand-side we have Pr{ZFA ≥ ∆+ δM} = (1−
FZ(∆+ δM ))M . Using a Taylor expansion of log(1−FZ(∆+
δM ))M around ∆, we obtain:

log(1−FZ(∆ + δM ))M

=M

(

log(1−FZ(∆))−
fZ(∆)δM
1− FZ(∆)

+O(δ2M )

)

.

Therefore, since δM →0, we have:

lim
M→∞

− log Pr{ZFA ≥ ∆+ δM}

M
=− log(1−FZ(∆)). (13)

Combining (11)–(13) we conclude the proof.

Remark 4. The FA, linear and ML detectors can be directly

extended to the case of larger constellations, i.e., L > 2. In

this case the ML detector requires comparing L hypotheses.

On the other hand, optimal detection based on the YFA can

be implemented by comparing only two hypothesizes which

can be easily found based on their modes. Since for the

FA detector the conditional density concentrates towards x,

for a fixed L one can find large enough M such that any

non-zero probability of error can be achieved. This enables

sending short messages of several bits using a large number

of particles.

We now consider the special case in which the mode of

fZ(z) is zero, e.g., the uniform or exponential densities:

Theorem 3. Let fZ(z) be a continuous, differentiable, and

unimodal density with mode mZ ≥ 0 and fZ(z)=0, z <mZ .

Then, the FA and ML detectors are equivalent, namely, they

have the same probability of error.

Proof: We focus on the case of mZ = 0. The proof for

mZ > 0 follows similar lines. Since mZ = 0, then fZ(y)≤
fZ(y−∆), y≥∆. The ML detection rule can be written as:

X̂ML(y) = argmax
x

M
∏

m=1

fZ(ym|X = x). (14)

Therefore, if there exists Ym < ∆, then the ML detector

declares X̂ML(y)=0. Otherwise it declares X̂ML(y)=∆. Since

testing if there exists Ym <∆ can be implemented based on

yFA, we conclude that the ML detector reduces to the FA

detector in this case, so that the detectors are equivalent.

Corollary 1. Under the conditions of Thm. 3 DFA =DML.

Remark 5. While the ML detector (3) is optimal for detection

based on all the particle arrivals, the FA detector (7) is optimal



for detection based only on the FA of a particle. One can use

order statistics theory to design optimal detectors based on the

first M0 ≤M particle arrivals. Yet, waiting for M0 particles

to arrive requires longer delays compared to the FA detection

framework, and as indicated in the following section the FA

detector achieves a performance very close to the performance

of the ML detector.

Next, we explicitly evaluate the formulas derived above and

the resulting diversity gain for several specific propagation

densities: the uniform, exponential, IG, and Lévy distributions.

IV. SPECIFIC PROPAGATION PROFILES

AND NUMERICAL RESULTS

A. The Uniform Distribution

Let fZ(z) ∼ U(0, b), b >∆, i.e., the uniform density over

[0, b]. Following Corollary 1, DML =DFA = log b
b−∆ . For the

linear detector we do not have a closed form expression for

Λ∗
Z(v). However, we can use the moment generating function

(MGF) of the uniform distribution and numerically find DLIN.

For instance, let b=1, and consider ∆∈ {0.25, 0.5, 0.75}.

Table I details the resulting diversity gains. The table indicates

large performance gains of the ML and FA detectors over

linear detection.

∆ = 0.25 ∆ = 0.5 ∆ = 0.75

DML,DFA 0.2879 0.6931 1.3863

DLIN 0.0956 0.4086 1.0798

TABLE I: DML,DFA and DLIN for U(0,1).

B. The Exponential Distribution

Let fZ(z)∼ Exp(b), i.e., the exponential density with rate

parameter b > 0. An explicit evaluation of (4) results in

DML = b∆, and following Corollary 1, we have DML = DFA.

Considering the linear detector, for the exponential density

Λ∗
Z(v) = bv− 1− log(bv), v > 0. Moreover, it can be shown

that the α in (5) is given by:

α =
1− eb∆(1− b∆)

(eb∆ − 1)b
. (15)

Plugging this value into (5) results in:

DLIN =
1 + eb∆(b∆− 1)− (eb∆ − 1) log

(

b∆eb∆

eb∆−1

)

eb∆ − 1
. (16)

As an example, let b=1, and consider ∆∈{0.5, 1.5, 2.5}.

Table II details the resulting diversity gains.

∆ = 0.5 ∆ = 1.5 ∆ = 2.5

DML,DFA 0.5 1.5 2.5

DLIN 0.0312 0.2729 0.7216

TABLE II: DML,DFA and DLIN for Exp(1).

C. The Inverse-Gaussian Distribution

Let fZ(z) ∼ IG(µ, b), i.e., the IG density with mean

µ and shape parameter b > 0. It can be shown that for

fZ(z) ∼ IG(µ, b), the conditions of Lemma 1 hold and

therefore fZ(z) is unimodal for sufficiently large M . While

explicitly evaluating DML seems intractable, it can be evaluated

numerically. For the FA detector we use the CDF of the IG

density to obtain:

DFA=− log

(

1−Φ

(

√

b

∆

(

∆

µ
−1

)

)

−e
2b
µ Φ

(

−

√

b

∆

(

∆

µ
+1

)

))

, (17)

where Φ(x) is the CDF of a standard Gaussian RV. Finally,

for the IG density ΛZ(τ) = b
µ

(

1−
√

1− 2µ2τ
b

)

, τ ≤ b
2µ2 .

Explicitly calculating Λ∗
Z(v) for the IG density we obtain:

Λ∗
Z(v)=

b
(

−µ2 + 2µ
(

µ
v
− 1
)

v + v2
)

2µ2v
. (18)

While for the IG density finding an explicit expression for

α seems intractable, it can be found numerically using (18).

Table III details the diversity gain for µ= 1, b= 1, and ∆ ∈
{0.5, 1, 1.5}.

∆ = 0.5 ∆ = 1 ∆ = 1.5

DML 0.4766 1.1070 1.6657

DFA 0.4541 1.1029 1.6648

DLIN 0.0308 0.1180 0.2499

TABLE III: DML,DFA and DLIN for IG(1,1).

D. The Lévy Distribution

We last consider the Lévy density, fZ(z)∼L(µ, b), with a

location parameter5 µ and a scale parameter b> 0. Similarly

to the IG density, it can be shown that for fZ(z)∼L(µ, b), the

conditions of Lemma 1 hold and therefore fZ(z) is unimodal

for sufficiently large M . Moreover, explicitly evaluating DML

seems intractable, yet, it can be evaluated numerically. For

the FA detector we use the CDF of the Lévy density to

obtain DFA =− log

(

1−erfc

(

√

b
2∆

))

, where erfc(·) is the

complementary error function. As for the linear detector we

recall Remark 2 which states that for Lévy-based propagation

DLIN=0.

Table IV details the system diversity gain for µ=0, b=1,

and ∆∈{0.5, 1, 1.5}.

∆ = 0.5 ∆ = 1 ∆ = 1.5

DML 0.1791 0.3828 0.5350

DFA 0.1711 0.3817 0.5348

TABLE IV: DML and DFA for L(0,1).

It can be clearly observed that the performance gap between

the FA and ML detectors is very small for both the IG and

Lévy densities.

V. CONCLUSION

We have studied one-shot communication over molecular

timing channels assuming that M information particles are

simultaneously released and that their propagation follows a

unimodal density. We defined the system diversity gain D to

be the exponential rate of decrease of P
(M)
ε when M grows

asymptotically large. We then derived closed form expressions

for the D achievable by three detectors: the optimal ML

detector, a linear detector, and the FA detector. We showed

5Note that µ is not the mean, as the mean of the Lévy density is ∞.



that the FA detector achieves a diversity gain very close

to that of the ML detector while being simpler and having

significantly shorter delays. In particular, for delay densities

where the mode of the density is zero, the FA detector is

optimal. Even for other delay densities, such as the IG or the

Lévy, our numerical evaluations show that the FA detector

achieves performance very close to that of the ML detector,

and significantly outperforms the linear detector. Thus, the

FA detector constitutes a low-complexity near-ML detection

framework for one-shot communication over timing channels.

APPENDIX A

PROOF OF LEMMA 1

A unimodal density supported on R+ belongs to one of

the following classes of densities: 1) Unimodal densities with

mode mZ = 0. 2) Unimodal densities with mZ > 0, and

limz→0+ fZ(z)= τ > 0. 3) Unimodal densities with mZ > 0,

and limz→0+ fZ(z) = 0. We next show that densities from

the first two classes are unimodal for sufficiently large M

regardless of the conditions of Lemma 1. Then, we show that

the conditions stated in Lemma 1 ensure that densities from

the third class are unimodal for sufficiently large M .

From Def. 1, if a unimodal density has more than a single

maximum, then the maximum must be a continuous interval.

Thus, the derivative of the density changes its sign at most

once. Next, recall that fZFA
(z)=M ·fZ(z)·(1−FZ(z))

M−1.

Hence, the derivative of fZFA
(z) is given by:

f
′

ZFA
(z)=M

(

f
′

Z(z)(1−FZ(z))
M−1

−f2
Z(z)(M − 1)(1−FZ(z))

M−2
)

. (19)

Setting f
′

ZFA
(z) = 0 we obtain conditions indicating when

fZFA
(z) decreases:

f
′

ZFA
(z)≤0 ⇔

f
′

Z(z)(1−FZ(z))

f2
Z(z)

≤M − 1. (20)

For densities that belong to the first class we have f
′

Z(z)≤0.

Therefore, as (1−FZ(z)) and f2
Z(z) are positive, f

′

ZFA
(z) is

non-increasing and unimodal for any M .

For the second class we note that in the range 0<z≤mZ ,

f2
Z(z)≥τ2. Thus,

f
′

Z(z)(1−FZ(z))

f2
Z
(z)

is positive and bounded, and

by choosing M large enough fZFA
(z) is decreasing for any z

and therefore unimodal.

Finally, for densities in the third class, limz→0+ fZ(z)=0,

and since fZ(z) is assumed to be differentiable we obtain:6

lim
z→0+

f
′

Z(z)(1−FZ(z))

f2
Z(z)

=∞. (21)

Since (1−FZ(z)) is monotonically decreasing with z, requiring

that
f
′

Z (z)

f2
Z
(z)

will decrease monotonically for 0< z < ǫ ensures

that
f
′

Z (z)(1−FZ(z))

f2
Z
(z)

will also be monotonically decreasing. In

such case there is a z0 for which:

6Recall that since mZ > 0, then there exists an ǫ > 0 such that 0 ≤

f
′

Z
(z), 0<z<ǫ.

f
′

Z(z)(1−FZ(z))

f2
Z(z)

z<z0
≷

z>z0

M − 1. (22)

Hence, the density is unimodal for all M > M0, where

M0 is given by M0 =

⌈

f
′

Z(ξ)(1−FZ(ξ))

f2
Z
(ξ)

⌉

+ 1 and ξ =

argmaxz
f
′

Z(z)(1−FZ(z))

f2
Z
(z)

, z>ǫ.
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