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Abstract—Autonomous inspection of large geographical areas
is a central requirement for efficient hazard detection and
disaster management in future cyber-physical systems such as
smart cities. In this regard, exploiting unmanned aerial vehicle
(UAV) swarms is a promising solution to inspect vast areas
efficiently and with low cost. In fact, UAVs can easily fly and
reach inspection points, record surveillance data, and send this
information to a wireless base station (BS). Nonetheless, in many
cases, such as operations at remote areas, the UAVs cannot
be guided directly by the BS in real-time to find their path.
Moreover, another key challenge of inspection by UAVs is the
limited battery capacity. Thus, realizing the vision of autonomous
inspection via UAVs requires energy-efficient path planning that
takes into account the energy constraint of each individual UAV.
In this paper, a novel path planning algorithm is proposed for
performing energy-efficient inspection, under stringent energy
availability constraints for each UAV. The developed framework
takes into account all aspects of energy consumption for a
UAV swarm during the inspection operations, including energy
required for flying, hovering, and data transmission. It is shown
that the proposed algorithm can address the path planning
problem efficiently in polynomial time. Simulation results show
that the proposed algorithm can yield substantial performance
gains in terms of minimizing the overall inspection time and
energy. Moreover, the results provide guidelines to determine
parameters such as the number of required UAVs and amount
of energy, while designing an autonomous inspection system.

I. INTRODUCTION

Autonomous inspection of large geographical areas is a
key requirement to increase safety and optimize the operation
of future cyber-physical systems, such as smart cities, smart
farms [1], and smart oil fields [2]. In smart farms, for example,
there is a need to inspect large farm lands for signs of pest
attacks and to spray pesticide locally over vulnerable regions.
Meanwhile, smart oil fields require constant monitoring of
the fields for detecting signs of oil spills. Another prominent
application of autonomous inspection is in post-disaster man-
agement, after natural calamities like hurricanes or floods, to
perform search-and-rescue operations.

In this regard, inspection by unmanned aerial vehicles
(UAVs) [3] is seen as an attractive solution due to the following
reasons: 1) UAVs can fly and bypass obstacles which can
result in reducing the inspection time; 2) UAVs are relatively
cheaper than dispatching human personnel; and 3) UAVs can
easily operate in adverse location that can be dangerous to
human workers. For instance, a byproduct of oil extraction is
Hydrogen Sulphide (H2S), a colorless and odorless toxic gas
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that makes oil spill inspection challenging. In such scenarios,
a group of UAVs, also known as a UAV swarm, can perform
coordinated inspection and manage the inspection tasks more
efficiently with a low cost and within a limited time.

Nonetheless, several challenges must be addressed to realize
practical autonomous inspection by a UAV swarm. First, each
UAV has a limited battery capacity that can support a limited
flight time. Thus, UAVs must work collaboratively to inspect
a large geographical area. Second, a UAV swarm may include
heterogeneous types of UAVs with different flying capabilities
and energy efficiency. Third, in many scenarios, UAVs cannot
be fully controlled by a wireless base station (BS) to find their
path, e.g., in post-disaster situations where the communication
infrastructure is damaged. Fourth, as the UAV’s distance from
the BS increases, more transmission power is required by the
UAV to maintain a minimum data transmission rate. Finally,
in most applications, the inspection must be performed in a
limited time. For example, in oil spill detection, a few minutes
saving in the inspection time can prevent drastic oil spill
incidents. Therefore, reaping the full benefits of UAV swarms
for autonomous inspection mandates efficient path planning
for each UAV to minimize the overall energy consumption,
while accounting for the limited energy of each UAV.

Recently, several works have been proposed in the literature
to address path planning for autonomous inspection by a UAV
swarm [4]–[10]. The authors in [4] propose an age-optimal
trajectory planning for UAVs to collect data from ground
sensor nodes. In [5], a framework is developed to exploit
UAVs, serving as relay nodes, to minimize the peak age-
of-information for a pair of nodes in an Internet-of-Things
(IoT) network. The authors in [6] find an energy-efficient path
planning scheme for a fixed-wing UAV that communicates
with a ground user. Moreover, the work in [7] studies an
energy-efficient cooperative relaying by a set of UAVs, while
considering circular flight trajectories. Meanwhile, [8] pro-
poses a scheme to jointly optimizing the UAV’s trajectory and
transmit power allocation. The work in [9] presents a tutorial
on the applications of UAVs in wireless communications
and studies fundamental tradeoffs in UAV-enabled wireless
networks. With regard to optimizing UAV deployments for
inspection applications, [10] presents a path planning scheme
for the inspection of photovoltaic farms by a UAV swarm.

Although interesting, the body of work in [4], [5], [7]–
[9] mainly focuses on communications aspects of UAVs,
without considering specific constraints that affect inspection
operations, such as the impact of UAV’s weight, energy
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requirements for hovering, and flight conditions. Moreover,
some of the existing works consider path planning for specific
scenarios, such as the works in [6] and [7], that solely focus
on circular trajectory for the UAVs. In addition, [10] does
not consider communications constraints such as minimum
required data rate. Meanwhile, several works in the literature,
such as [4], [5], [7] and [8], primarily focus on minimizing
the time that a wireless user is visited by the UAV swarm.
While this metric is important in sensor networks and IoT, for
inspection operations, energy-efficient path planning is more
critical. Additionally, missing from the prior art, there is a
need for performance analysis to determine parameters such
as the number of required UAVs and energy requirements for
inspection operations by a UAV swarm.

The main contribution of this work is a novel path planning
algorithm to minimize the overall energy consumption for
inspection by a UAV swarm, while accounting for the hetero-
geneous features of UAVs and their unique energy constraints.
In particular, we first propose an energy consumption model
that jointly captures the required energy for flying, hovering,
and transmission of recorded inspection data by a UAV to the
wireless BS. To solve the autonomous inspection problem,
we model the area as an undirected, weighted graph with
critical inspection points as the vertices of the graph and
the required energy for monitoring an inspection point as
the weight of the edge. Using the graph-based model, we
develop a novel path planning algorithm that exploits the
analogies between autonomous inspection and the K-traveling
repairmen problem [11], while considering the limited energy
budget of each UAV. In particular, the proposed algorithm
jointly optimizes the trajectory of all energy-constrained UAVs
in a swarm, in order to minimize the overall average inspection
energy. Simulation results show that the proposed algorithm
outperforms the distance-based path planning, both in terms
of required time and energy for inspection of an area. The
results also shed light on design and performance analysis of
the autonomous inspection by a UAV swarm, in terms of the
number of required UAVs, average inspection time, and energy
consumption.

The rest of paper is organized as follows. Section II
presents the system model and problem formulation. Section
III presents the proposed solution. Simulation results are
provided in Section IV. Section V concludes the paper.

II. SYSTEM MODEL

Consider a swarm of K heterogeneous UAVs – with dif-
ferent energy efficiency and battery size – in a set K that
are used to perform autonomous inspection of a square area.
Fig. 1 shows an example scenario of autonomous inspection
by a UAV swarm. A wireless BS, located at the origin
xo = (0, 0) ∈ R2, also serves as the UAVs’ base where
the UAVs start their travel. Each UAV k ∈ K is constrained
with an energy budget Ek. In addition, let N be the set of
N inspection points that must be visited by at least one UAV
during a time window, determined by the actual inspection
application. For example, for post-disaster rescue operations,
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Fig. 1: Example scenario for inspection with a UAV swarm.

the inspection time may not exceed few minutes. Next, we
find the energy consumption of each UAV as a function of
different parameters, such as the location, energy efficiency,
and traversed distance. Without loss of generality, we focus
on quadrotor UAVs, while other types of UAVs can also be
taken into account.

Energy consumption for monitoring of an inspection point
by a UAV includes three components: 1) Flight energy: the
required energy to fly to the point of interest from another lo-
cation; 2) Transmission energy: the required energy to transmit
the recorded data (photo or video) from the inspection point
to the BS; and 3) Hovering energy: the energy consumption
for remaining still on the air during the time that takes for a
UAV to record and transmit a data. Next, we characterize each
energy consumption component.

A. Flying and Hovering Energy Consumption
The energy consumption by a flying UAV is mainly spent

to overcome the gravity for staying in the air, as well as
drag forces due to wind and forward motions. Building on
the model in [12], the minimum power with forward motion
for a UAV is given by

pmin = (v̂ + v sinβ)T, (1)
where v̂ is the induced velocity required for a given thrust T ,
v is the average ground speed of the UAV, and β denotes the
pitch angle. For a UAV with mass m, including the mass of
the UAV body and battery, the required thrust T is:

T = mg + fd, (2)
where g is the gravitational constant and fd is the drag force
that depends on the air speed, density of air ρ, and the drag
coefficient. Given a thrust T , the induced velocity can be
calculated by solving the following nonlinear equation [12]:

v̂ =
2T

qr2πρ
√

(v cosβ)2 + (v sinβ + v̂)2
, (3)

where r and q represent, respectively, the diameter and number
of UAV rotors. The theoretical power consumption in (1) can
be used to find the actual power consumption by a UAV k ∈ K
as:

pf (k) =
pmin
f

ηk
, (4)



where ηk is the power efficiency of the UAV k, known
empirically. With that in mind, the total flying energy that
an arbitrary UAV k consumes to traverse distance d is:

Ef (k) = pf (k)
d

v
=
pmin
f d

vηk
. (5)

Furthermore, the actual power consumption for hovering of
UAV k is [12]:

ph(k) =
pmin
h

ηk
=

T
√
T

ηk
√

0.5πqr2ρ
, (6)

where pmin
h is the theoretical minimum power for hovering.

B. Transmission Energy Consumption
The energy consumption for transmission of recorded data

from the inspection point cannot be ignored in many cases
where: 1) The distance between the UAV and the BS is large;
and 2) The size of the recorded content is large (such as high-
definition videos). Considering the inspection of a point at
x = (x1, x2) ∈ R2, the path loss of the wireless link in dB is
given by:

L = L0 + α log10

(√
x21 + x22

)
+ ξ, (7)

where L0 is the path loss at a reference distance, α is the path
loss exponent, and ξ represents the shadowing effect in dB
scale. Using (7), we can find the achievable data rate of the
uplink between a UAV k and the BS as follows1:

Rk = wk log2

(
1 +

pt(k)10−L/10

wkN0

)
, (8)

where wk, pt(k), and N0 denote, respectively, the bandwidth,
the transmit power of UAV, and the noise power spectral
density. In (8), orthogonal bandwidth allocation is considered
across UAVs, thus, there is no interference between simul-
taneous UAV transmissions. To find the transmission energy
consumption, let Rth be the minimum required uplink data rate
for successful transmission of the recorded content. From (8)
and subject to the data rate requirement Rth, one can easily
find the minimum required transmit power pmin

t (k) for a UAV
k. Meanwhile, the energy consumption for transmission of a
data packet with size B bits will be:

Et(k) = τ
pmin
t (k)

ηk
=
Bpmin

t (k)

Rthηk
, (9)

where τ is the over-the-air transmission latency. From (5)-(9),
we can conclude that the overall energy consumption by a
UAV k ∈ K to fly from the base, located at n0, to inspect a
destination point n ∈ N is:
Etotal
k (n) = Etotal

k (n′) + Et(k) + Eh(k) + Ef (k)

= Etotal
k (n′) +

B

Rthηk

[
pmin
t (k) + pmin

h (k)
]

+
pmin
f d

vηk
,

(10)
where n′ shows the inspection point visited immediately
before n. In (10), d is the distance between points n and n′

and pmin
t (k) depends on the location of inspection point n. In

1Although we consider log-distance path loss channel model, small-scale
fading can also be easily accommodated in (8).

fact, given that Etotal
k (n0) = 0, (10) allows to recursively find

the overall inspection energy consumption for any arbitrary
point.

C. Problem Formulation
To study the path planning problem, we model the in-

spection area as an undirected, weighted graph Gk(N , Ek),
corresponding to the UAV k, where the vertices are inspection
points and the weight of each edge between points (n′, n) is
Etotal
k (n) − Etotal

k (n′) and can be found from (10). The goal
here is to find the best trajectory for each UAV across the
inspection points (i.e., path planning) in order to minimize
the overall inspection time. The union of these trajectories
must cover all the inspection points in the set N . Prior to
formulating the problem, we use the following definitions:

Definition 1. The trajectory of a UAV k is defined as a tree
Tk, inside the graph Gk(N , E), with the root starting at the
location of the BS, n0.

The main reason to define each UAV’s trajectory as a tree
is to avoid cycles within the inspection path. Associated with
each trajectory, we can define a cost in terms of energy
consumption as follows:

Definition 2. The cost of a trajectory that visits inspection
points T = {n0, n1, n2, · · · , nj}, for UAV k is defined as the
total energy required to inspect the vertices of T . That is,

C(T ; k) =

j∑
i=0

Etotal
k (ni). (11)

Even though other energy cost functions can be defined here,
the advantage of the cost function in (11) is to yield a unique
cost for each tree, irrespective of the order that UAV may
visit vertices. With this in mind, we aim to find K trajectories
Tk, for k = 1, 2, · · · ,K, that minimize the overall inspection
energy consumption. That is,

argmin
Tk,k=1,2,··· ,K

∑
k∈K

C(Tk; k), (12)

s.t.,
K⋃
k=1

Tk = N , (13)

K⋂
k=1

Tk = {n0}, (14)

C(Tk; k) ≤ Eth(k), (15)
where constraint (13) ensures that all inspection points are
visited. Particularly, (13) implies that the trajectories of UAVs
are interdependent, thus, path planning must be done jointly
for all UAVs in the swarm. Constraint (14) indicates that
trajectories of UAVs do not overlap, except at the starting point
n0. In addition, (15) ensures that the total energy consumption
by a UAV k does not exceed the energy budget Eth(k). Prior
to solving this problem, we make the following observation
with regard to the complexity of the problem:

Proposition 1. The proposed path planning problem in (12)-
(15) is NP-hard and cannot be solved optimally within poly-
nomial time.



Table I: Approximation Algorithm for the j-MST Problem with
Energy Constraint

Inputs: Gk′(N , Ek′), Eth(k
′).

Initialize: Let Tk′ = ∅.
for i = 1 to j do

Step1: Find the MST for i vertices, using Prim algorithm.
This yield an approximation for the i-MST problem.
Denote the MST as Y (i).
Step2: For a constant λ ≥ 1,
if C(Y (i); k′) ≤ λEth(k

′) then
Let Tk′ = Y (i).

end
end
Output: Tk′(Eth)

Proof. To show this, we note that if constraint (15) is relaxed,
i.e., Eth(k) → ∞, for all k ∈ K, then the proposed problem
will be analogous to the K-traveling repairmen problem
which is known to be NP-hard [11]. Thus, with finite energy
budget, the proposed problem is reducible to the K-traveling
repairmen problem, and thus, it is also NP-hard. �

Here, we note that classic solutions, such as Dijkstra’s
method, for solving the traveling salesman problem cannot
be used to solve (12)-(15), as these approaches consider only
one agent (UAV) and in addition, cannot capture constrains in
(15). With this in mind, next, we will propose an efficient path
planning algorithm that aims to minimize the overall energy
consumption, while taking into account the energy constraint
for each UAV.

III. PROPOSED PATH PLANNING ALGORITHM

Prior to developing an efficient approximation algorithm for
the proposed problem in (12)-(15), lets consider the following
simple scenario which we will use as a subroutine for our
algorithm.

Assume that there is only one UAV k′. Given the graph
Gk′(N , Ek′), and starting the trajectory from n0, we aim
to find the least expensive tree Tk′ (cost is calculated from
(11)) that has exactly j vertices. This problem is known as j-
minimum spanning tree (j-MST) which is also NP-hard [11].
Although approximation algorithms are available to find j-
MST efficiently, we need to modify this problem to accom-
modate the limited energy budget of the UAV (as presented
in (15)). In this regard, we consider the subroutine algorithm
presented in Table. I, which is originally proposed in [11] and
allows to convert the cardinality constraint of covering exactly
j vertices into an energy budget constraint. From the definition
of MST, we can immediately conclude the following:

Remark 1. If there exists a tree of cost Eth(k) that spans i
vertices, the algorithm in Table I always returns a tree with a
cost less than λEth(k) that covers i vertices.

Using the algorithm adopted in Table I, we propose a new
algorithm in Table II that yields an efficient solution for the
path planning problem of a UAV swarm with energy con-
straints. The proposed algorithm proceeds as follows. Initially,
the algorithm sorts all UAVs with respect to their available
energy Eth in an ascending order. Starting from the minimum
energy E0, at each round, the algorithm aims to cover all

Table II: Proposed Path Planning Algorithm for the UAV Swarm

Inputs: Gk(N , Ek), Eth(k), for all k = 1, 2, · · · ,K, ∆E.
Initialize: Let Tk = ∅, for all k = 1, 2, · · · ,K, E0 = ∆E.

Sort the UAVs, based on Eth(k), in ascending order in a list
K̃. Let N̂ = ∅.
while Ñ 6= {n0} do
Ñ ← N
Step1: Remove vertices in N̂ from Ñ .
for k′ = 1 to |K̃| do

Step2: Let k be the index of k′-th UAV from the
sorted list K̃. Using the algorithm in Table. I, find the
tree Tk(Ei) in Gk(Ñ , E).
Step3: if C(Tk(Ei); k) ≤ Eth(k) then

Let Tk = Tk(Ei).
end
Step4: if C(Tk(Ei); k) + ∆E > Eth(k) then

Add vertices of Tk(Ei) to the set N̂ . Remove k
from the list K̃. Return Tk.

end
Step5: Remove the vertices of Tk(Ei), except n0,
from Ñ .

end
Ei+1 ← Ei + ∆E

end
Output: Tk, for k = 1, 2, · · · ,K.

inspection points in N by finding K trees. If such set of trees
do no exist for the given energy constraint, in the next round,
the energy is increased by ∆E. Given a certain energy budget
Ei at round i, in step 2, the algorithm uses the subroutine in
Table I to find Tk(Ei). In step 3, the algorithm tentatively
assigns Tk(Ei) as the path for the UAV k. If the further
increase in the energy budget Ei exceeds the available energy
of the UAV Eth(k), the algorithm returns Tk in step 4 and
removes the UAV k and the subset of assigned vertices from
the graph. Otherwise, in step 5, the vertices of Tk(Ei) are
tentatively removed from Ñ .

Proposition 2. The proposed algorithm in Table II converges
in polynomial time.

Proof. Lets consider Eth(k) =∞, for all UAVs. Clearly, this
case provides an upper bound for the number of iterations in
our algorithm, since with infinite energy, the condition in step
4 is never satisfied and no UAV is permanently removed from
the algorithm. In this case, given that at each round of the
algorithm in Table II the energy budget increases (equivalent
to increasing j in the j-MST), the proposed algorithm with
converge after maximum N iterations. Moreover, within each
round of the proposed algorithm, there are K recalls of the
subroutine algorithm in Table I. Meanwhile, we note that this
algorithm solves the j-MST problem and runs in polynomial
time. Therefore, the algorithm is guaranteed to converge in
polynomial time. �

IV. SIMULATION RESULTS

We consider an inspection area of size 200 × 200 meters
with the BS located at x0 = (0, 0) and inspection points are
distributed uniformly and randomly across the inspection area.
Simulation parameters and their description are summarized
in Table III. The statistical results are averaged over a large
number of simulation runs.



Table III: Simulation Parameters
Notation Parameter Value

– mass of UAV 1.07 kg [12]
– mass of battery 1 kg [12]
ρ density of air 1.225 kg/m3 [12]
fd drag force 9.6998 N [12]
q number of rotors 4 [12]
r rotor diameter 0.254 m [12]
η power efficiency 70% [12]
v average ground speed 1.49 m/s [12]
B data packet size 20 Mbits
Rth data rate requirement 5 Mbits/s
ω bandwidth 1 MHz
N0 noise power spectral density 4.002× 10−18 Watts/Hz
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Fig. 2: Total energy consumption by the UAV swarm versus the
number of UAVs.

We compare the performance of our proposed approach
with a heuristic path planning algorithm, called distance-based
trajectory, in which each UAV starts from a random point
and at each step, moves to its nearest inspection point in the
graph. This approach is analogous to the “nearest neighbor
algorithm” for solving the traveling salesman problem. In
fact, the baseline algorithm does not incorporate the energy
constraints of the UAVs while performing the path planning.
In addition to the inspection energy consumption, we consider
the inspection time, as another important performance metric,
which is defined as follows: Given paths Tk for all UAVs
k = 1, 2, · · · ,K, the inspection time of an area is the overall
time that takes for all inspection points to be visited by at least
one UAV for the first time.

Figure 2 compares the total energy consumption of the UAV
swarm for the proposed approach with the baseline algorithm,
for N = 100 inspection points. With no energy constraint, the
results in Fig. 2 show the merit of exploiting a UAV swarm.
That is, as the size of swarm increases, the average total energy
consumption decreases. Moreover, it is clear that the proposed
algorithm substantially reduces the energy consumptions, by
up to 45% for a swarm of K = 4 UAVs, compared with the
baseline approach. Clearly, the performance gap decreases, as
the number of UAVs increases.

Figure 3 shows the overall average inspection time for the
proposed algorithm, compared with the baseline approach,
versus the number of UAVs and for different number of
inspection points. Fig. 3 shows that as more UAVs become
available to perform inspection, the required time to visit all
the inspection points decreases. We note that the rate of decay
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Fig. 3: Average inspection time versus the number of UAVs.

for the inspection time is faster in the proposed algorithm.
Moreover, the proposed approach yields substantial perfor-
mance gains compared with the distance-based trajectory. For
example, for a UAV swarm with K = 12 UAVs, there are
55% and 47% reduction in inspection time, respectively, for
an area with N = 100 and N = 200 inspection points. This
performance gain is due to the fact that the proposed approach
accounts for the individual energy constraint of each UAV. As
we show in Fig. 4, flying energy constitutes substantial portion
of energy consumption. Hence, by minimizing the energy
consumption, the proposed approach indirectly minimizes the
traversed distance, and thus, the flight time for all UAVs. Such
time savings are critical in inspection operations with delay
constraints, such as in post-disaster management.

Figures 4 and 5 compare the average energy consumption
of the UAV swarm, respectively, for flying and for hovering
plus data transmission, for both approaches. From the results
in Figs. 4 and 5, we can observe that the required energy for
flying (i.e., when UAV is mobile) dominates the other energy
metrics for hovering and data transmission (i.e., when UAV
is static). Comparing the performance of both approaches, we
can observe that the flying energy consumption is much higher
for the baseline approach. Nonetheless, as shown in Fig. 5,
the performance gap is not significant when considering the
energy consumption for hovering and data transmission. The
main reason is that hovering energy consumption is not highly
dependent on the path planning. Moreover, the energy required
for data transmissions constitutes small portion of the total
energy consumption.

Figure 6 shows the cumulative distribution function (CDF)
of the inspection time for N = 100 and N = 200 points and
with K = 20 UAVs. This result can capture the reliability
of the proposed scheme to perform inspection operation in
scenarios with time constraints [13]. For example with a target
inspection time of 500 seconds and N = 100 points, Fig. 6
shows that the proposed algorithm can meet this requirement
with probability 82% while there is only 64% chance for the
baseline approach to satisfy the time constraint. Similarly, for
N = 200 and the target inspection time of 900 seconds, the
chance of meeting this requirement is 80% in our approach,
whereas 70% for the distance-based algorithm.
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Fig. 4: Average flight energy consumption by the UAV swarm
versus the number of UAVs.
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Fig. 5: Average hovering plus transmission energy consumption by
the UAV swarm versus the number of UAVs.
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Fig. 6: CDF of the inspection time.

Finally, the average inspection time is shown in Fig. 7,
versus the number of inspection points N , with K = 10 UAVs.
Fig. 7 shows that as there are more inspection points (e.g., in
post-disaster scenarios), the average inspection time naturally
increases with a fixed number of UAVs. In fact, the results in
Fig. 7 show that the proposed scheme exploits the UAV swarm
more efficiently. For example, for N = 100, the performance
gap between the proposed path planning algorithm and the
baseline scheme is 48%.
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Fig. 7: Average inspection time versus number of points.

V. CONCLUSIONS

In this paper, we have proposed a novel path planning
algorithm that minimizes the overall energy consumption by
a UAV swarm to autonomously inspect a geographical area.
The proposed framework has taken into account different
metrics that impact the energy consumption, including flying,
hovering, and data transmission by each UAV. We have shown
that the proposed algorithm solves the path planning problem
in polynomial time, while taking into account the individual
energy constraints of the UAVs. Simulation results have shown
that the proposed approach substantially outperforms the base-
line solution with distance-based path planning, both in terms
of required inspection energy and time.
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