
SDN-based pro-active flow installation
mechanism for delay reduction in IoT

Luis Sanabria-Russo, Jesus Alonso-Zarate, Christos Verikoukis
Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA)

{luis.sanabria, jesus.alonso, cveri}@cttc.es

Abstract—In Software Defined Networks (SDN)
a Controller installs forwarding rules or queries
the status of network devices through a separate
control channel using the OpenFlow protocol. Such
queries may ask for instantaneous metrics, like port
status, packet error rate, or transmitted packets.
In turn, the Controller uses these metrics, or con-
text, to condition forwarding rules. As network
conditions change over time, forwarding rules are
set to expire if not used (or matched) during a
configurable idle timeout. Consequently, they are
erased from the flow table, forcing a query to the
Controller every time a packet for which there is
no forwarding rule arrives at the network device.
This work presents experimental results showing
the delay increase produced by timing out forward-
ing rules of periodic flows, such as the generated
by sensors in IoT deployments. Furthermore, it
proposes and experimentally evaluates a pro-active
forwarding rule installation mechanism able to re-
duce such delay by 90%, easing the implementation
of context-aware forwarding strategies for IoT.

Index Terms—SDN, IoT, delay, context-aware,
testbed.

I. Introduction
The concept of Internet of Things (IoT) refers to

the connection of islands of sensors and actuators net-
works to the Internet, enabling remote monitoring but
also remote actuation, event generation, and remote
configuration of distributed appliances.

These networks may be conceived using different
communications technologies in order to increase the
network lifetime, redundancy, or to provide Quality of
Service (QoS) for sensitive traffic. Wireless Sensor Net-
works (WSN) are one of the key technologies enabling
IoT. Usually, these networks are composed of small
devices equipped with a radio transceiver and sensors
that include, but are not limited to, temperature,
noise, humidity, CO2 concentration, among others.
Sensor nodes are specially constrained in terms of

processing power and battery, so are often configured
to turn on the transceiver antenna and transmit sensor
data periodically. The configuration of this period,
or duty cycle generally varies according to the sensor
type. For instance, it might make little sense to report
the temperature of a room every 0.5 s; instead, it will
be more energy efficient to set the duty cycle to a
higher value. On the other hand, sensor nodes may
also be configured to trigger additional transmissions
once an event is detected, e.g.: a seismic sensor, forest
fire detection sensor.
Sensor nodes (or other things) can be connected

to IP networks by employing standards like 6LoW-

PAN [1]. This promises to increase the granularity
of data acquisition and remote network management.
Furthermore, it allows the design of Software Defined
Networks (SDN) at the Gateway level, enabling fea-
tures like gathering network-wide state information,
context-aware forwarding strategies, redundancy, se-
lective load-balancing, and anomaly detection.
SDN decouples control and data forwarding tasks

from the network device (switch, router, or Gateway),
placing the control or intelligence of the whole network
at a centralized SDN Controller. Network devices rely
on the Controller to provide flow rules and instructions
for how to treat incoming flows. For instance, when
a packet from a sensor node arrives at the SDN-
controlled Gateway for which there is no entry in
the flow table, it queries the SDN Controller using
Open Networking Foundation’s (ONF) OpenFlow pro-
tocol [2] through a separate control channel. If a
solution is found, the Controller installs forwarding in-
structions in form of a flow rule entry on the Gateway’s
flow table. This way, subsequent packets of the same
flow1 are forwarded through the data plane without
further aid from the Controller. SDN is thought to be
another key enabler of IoT applications, particularly
relevant for orchestration of Gateway resources in
multi-network environments.
Within the SDN paradigm, network devices will

keep getting cheaper and simpler, mainly because they
are devoid of complex logic [3], specially in SDN
IoT [4]. Moreover, as information from the whole
network can be gathered at the Controller, forward-
ing decisions may also rely on the network’s current
condition. That is, output ports or paths can be chosen
according to instantaneous metrics from the whole
network, such as congestion, error rate of a particular
port/path, or flow table size. This is referred to as
context-aware forwarding.
Context-aware forwarding strategies can be spe-

cially beneficial in radio-heterogeneous networks, such
as those composed of Gateways in a SDN IoT scenario.
These devices could be equipped with several wired
and wireless interfaces in the uplink in order to:
enforce redundancy, provide means for traffic differ-
entiation, or to offer QoS.
To take advantage of all the aforementioned ben-

efits, though, flow tables need to be modified con-
stantly. This is usually enforced configuring idle time-
outs on each flow rule, so if a particular entry is

1Having the same source and destination.

Fig. 1. An example end-to-end IoT platform architecture.

not used (matched) during a certain time period it
is automatically erased from the table. Nevertheless,
the effects of this measure suggest an increase in the
message exchange between Gateways and Controller,
additional delays over periodic sensor traffic, or even
packet loss due to control channel congestion.
The contributions of this work are the result of ex-

perimental evaluations on a testbed of IoT Gateways
using Commercial Off-The-Shelf (COTS) hardware,
and real traffic from sensor nodes. They can be sum-
marized as follows:

• Implements a SDN pro-active flow installation
mechanism using real hardware.

• Proposes extensions to the aforementioned mech-
anism to:
– Support sensor nodes with arbitrary duty

cycles.
– Detect and forget periodic flows based on

flow rule matches.
• Provides experimental results showing a reduc-

tion in flow rule installation messages compared
to the reactive approach.

• Achieves a flow rule installation delay reduction
of around 90%.

An overview of SDN flow installation procedures is
contained in Section II. Section III proposes a pro-
active flow installation mechanism, while details of
the experimental setup and results are contained in
Section IV. Finally conclusions are drawn in Section V.

II. Related Work
IoT keeps pushing for IP connected things using

protocols such as 6LoWPAN. In turn, Gateway devices
may compose a SDN that would carry traffic from an
underlying sensor network to upper layers of an IoT
architecture (as the one shown in Figure 1).

This section overviews the OpenFlow protocol, a
popular Open Networking Foundation (ONF) stan-
dard interface SDN Controllers use to interact with the

New ow: f

packet_in

ow_mod

forward

Fig. 2. OpenFlow message exchange between a Gateway and a
SDN Controller upon arrival of a packet for which there is not
rule in the flow table

forwarding table of network devices. Next, it briefly
describes the role of a SDN Controller during flow rule
installations. The section ends giving a description of
the reactive flow rule installation delays, and how the
associated problems could be mitigated with a SDN
application.

A. OpenFlow
OpenFlow (OF) [2] is one of the first SDN standards

to define a SDN Controller communication protocol
for interacting with network devices’ forwarding plane.
Instead of hoping for hardware vendors to provide

an open and programmable interface to their routers
and switches (which may threaten companies with
undesired competition), OpenFlow exploits a common
set of functions related to flow tables, simply requiring
a minimum set of actions2.
A SDN device relies on the SDN Controller for

updating its flow table and to determine all forwarding
decisions. This is done exclusively using protocols such
as OpenFlow messages through a separate control
channel.

B. OpenFlow Controller
It is a platform upon which SDN applications are

developed. Generally, SDN applications3 control the
data plane of network devices, performing actions like
adding, modifying, and removing flow entries employ-
ing OpenFlow messages. They may also be stacked and
designed to work together. For instance, a set of cen-
tralized SDN Controller applications may use instant
network-wide metrics like port type, queue length, or
flow statistics from every forwarding device as inputs
to an algorithm that computes energy-efficient paths.
Figure 2 shows a simple example of a reactive

flow installation process (occurring through a control
channel) between a Gateway that receives the first
packet from a flow (head of flow) that is not contained

2Like: Forward packets to a given port, Encapsulate and
forward first packet in a new flow to Controller, and Drop.
Nevertheless, other actions are available, like: pushing new
VLAN tags, TTL reduction, set a header field, among others.

3SDN applications and Controller applications would be used
interchangeably throughout this work.

in the local flow table, and the Controller4. As shown
in the figure, after reception of the unmatched head
of flow (step 1 in Figure 2), the Gateway queries the
Controller using OpenFlow’s packet_in message (step
2), which may include a copy of the original head of
flow. If a forwarding rule is found for such flow, the
SDN application running at the Controller returns a
flow rule using an OF flow_mod message (step 3).
Next, it instructs the Gateway to forward the buffered
head of flow according to actions specified in an OF
send_msg message (step 4). After the transmission
of the head of flow (step 5) other packets from the
same matched flow are forwarded following the newly
installed flow rule, without further exchange with the
Controller.

C. Problem Statement
Apart from the enabling functionality that SDN

brings to IoT Gateways, it also proposes additional
challenges. Particularly, the reactive flow rule instal-
lation process increases the delay of the head of flow,
which may be unacceptable for delay critical applica-
tions such as the envisioned factories of the future [5].

Furthermore, [6] shows that under high flow arrival
rates (r flows/second), the network device’s OpenFlow
Agent is sometimes unable to generate packet_in
messages for all flows. This results in packet losses due
to control channel congestion, wasting precious energy
resources from sensor nodes and potentially reducing
the lifetime of the WSN in an IoT SDN scenario.
Interestingly, the particular case of periodic traffic

can be protected from control channel congestion is-
sues if a Controller application is be able to:

1) Identify periodic flows by learning their respec-
tive duty cycles.

2) Install flow rules before the expected arrival of
the head of flow (with an idle timeout, tidle,
lower than the duty cycle).

This way Gateways will be prepared to forward
the expected traffic, effectively changing from a reac-
tive to a pro-active flow installation procedure. Also,
as no packet_in messages are expected for already
learned periodic flows, the number of OpenFlow mes-
sages through the control channel is reduced to only
flow_mod messages (a reduction from 3, to 1 Open-
Flow message per head of flow).
Finally, because tidle is configured according to the

duty cycle of each flow, each pro-active rule installa-
tion may also consider the most recent context infor-
mation at the Controller, opening the possibility for
the computation of energy-efficient paths in dynamic
network settings, or QoS.

III. Pro-active flow installations to reduce
delay and control channel congestion

The Pre-emptive Flow Installation Mechanism
(PFIM) [7] is an SDN application running at the
Controller. It defines a local PFIM table to store time
instants of packet_in message receptions in order to

4The workflow is implemented as a SDN application.

determine the periodicity of a flow. If a determined
flow is found to be periodic, PFIM generates the
appropriate flow_mod message and sends it to the
appropriate Gateways before the next arrival of the
periodic flow.
PFIM is able to reduce control channel traffic by

learning the duty cycle of periodic flows and installing
flow rules in a pre-emptive manner. Further, it also
eliminates the delay experienced by the head of flow
during the flow installation procedure. Nevertheless,
as conceived in [7], it heuristically disregards a flow as
non-periodic after 15 pre-emptive flow installations are
executed. This measure fails to bring PFIM benefits
to flows that change between periodic and bursty, like
the produced by sensor nodes reporting periodic and
event triggered metrics.

A. Extending PFIM
To allow a diversity of duty cycles as well as event-

generated traffic from sensors, this work proposes two
Conditions for PFIM to forget the periodicity of a
specific flow (or what is the same as erasing the flow
from the PFIM table):
1) Condition 1: if a packet_in arrives requesting

a flow rule that is already scheduled to be in-
stalled.

2) Condition 2: if a rule that was installed following
PFIM is not matched before it is erased (due to
tidle).

For Condition 1, a packet_in message at the Con-
troller suggest that the Gateway had no flow rule
installed for that specific flow. Follows directly that
if the same flow is scheduled for a proactive flow
rule installation, then its periodicity must have been
broken. Consequently, the flow is removed from the
PFIM table.
Condition 2 is enforced by turning on the

OFPFF_SEND_FLOW_REM flag for flow rules of periodic
traffic. This forces the network device to notify the
Controller via a flow_removed OpenFlow message ev-
ery time it erases a flow rule5. flow_removed messages
carry information about the flow rule, such as the
number of packets matched.

B. Extended PFIM Workflow
The following algorithms show the way PFIM and

its extensions (or Extended PFIM) work. Two SDN
applications work together for Registering incoming
OpenFlow messages, and Learning the periods of
transmissions. The Registering phase (shown in Algo-
rithm 1) takes care of incoming OpenFlow messages,
as well as filling or erasing entries from the PFIM
table. The Learning phase (see Algorithm 2) is always
looking for periodic transmissions registered in the
PFIM table. PFIM extensions appear highlighted on
Algorithm 1.
Starting with the Registering phase in Algorithm 1,

upon reception of a packet_in message at the Con-
troller, PFIM creates a unique flow identifier (Line 4).

5This can be caused by several factors, including tidle

Algorithm 1: PFIM running at a SDN Con-
troller: Registering phase

1 new PFIM_table;
2 new timer(t, f); // installs rule at t for flow f

3 if packet_in then
4 flow = hash(packet_in);
5 if flow not in PFIM_table then
6 PFIM_table.create_list_at(flow);
7 else
8 if flow in timer.pending() then
9 PFIM_table.remove(flow);

10 timer.set(current_time, flow);
11 PFIM_table[flow].append(current_time);
12 else if flow_removed then
13 flow = flow_removed.getFlow();
14 if hash(flow) in PFIM_table then
15 if flow.packet_count() == 0 then
16 PFIM_table.remove(hash(flow));

Then, if the flow identifier is not found in the PFIM
table, it is included alongside an empty list. This
list will be filled with the current_time with every
packet_in message of the same flow. On the other
hand, if the flow is already registered in the PFIM
table and is pending for a flow rule (Line 8), it is
removed. After either of the cases a reactive flow rule
installation ensues (as specified in Condition 1, see
Line 10 in Algorithm 1).

On the alternative case, when a flow_removed
is received, PFIM looks for the number of packets
forwarded using the expired flow rule. If it was not
used (Line 15) it is removed from the PFIM table (as
specified in Condition 2).
Extended PFIM learns the period of transmissions

after i packet_in messages are received for a regis-
tered flow. As shown in Algorithm 2, PFIM is always
navigating the PFIM table and counting the number of
packet_in entries per flow (Line 10). If a flow is found
to have sufficient entries (specified by i), it estimates a
period for scheduling a proactive flow rule installation
(see Lines 13-15 in Algorithm 2).

IV. Experimental Results
A. SDN Controller selection
The popularization of OpenFlow and SDN has led

to the creation of a wide variety of Controllers [8].
Focusing on open source alternatives, the main differ-
ence among them relates to the programming language
and multi-threading support. These two aspects have
a direct impact on performance, and therefore on the
suitability for production networks 6.

Fast performing controllers like Trema [12], Flood-
Light [13], and OpenDaylight [14] all support Open-
Flow version 1.0, but lack the ease of implementation

6Among a wide range of options, the most-used open source
controllers [9] include: POX [10], Ryu [11], Trema [12], Flood-
Light [13] and OpenDaylight [14].

Algorithm 2: PFIM running at a SDN Con-
troller: Learning phase

1 include PFIM_table; // Ref. to Algorithm 1 table

2 define i; // max. num. of entries

3 define λ; // std. threshold

4 define α; // pre-empt value

5 new µ; // average of entries

6 new σ; // standard deviation of entries

7 new timer(t, f); // installs rule at t for flow f

8 for flow in PFIM_table do
9 list = PFIM_table[flow];

10 if list.size() > i then
11 µ = average(list);
12 σ = std(list);
13 if σ < λ then
14 next_installation = µ - α;
15 timer.set(next_installation, flow);

Fig. 3. Topology of the experimental setup. Numbers beside
data plane links are used for identification purposes only. Gate-
ways access the control channel through interface 0.

provided by the Python-based POX [10] and Ryu [11];
which in turn do not scale through multiple threads.
As this work implements new functionality, the se-
lected Controller is the one able to:

• Provide interfaces for application-Controller in-
teraction.

• Include comprehensible documentation supported
by a community.

• Allow fast prototyping by employing high level
programming languages and abstractions.

• Is block/module based, so SDN applications can
be reused or integrated with others.

• Supports most of OpenFlow’s optional features.
As this work shares the same requirements as [9],

Ryu has been selected as the SDN Controller for the
work presented in this paper.

B. Testbed description
In order to implement Extended PFIM, a real SDN

IoT Gateway layer was built using COTS devices,
such as the Raspberry Pis 3 model B. Open vSwitch

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20
 0

 3

 6

 9

 12

 15

 18

 21
O

n
e

 w
a

y
 d

e
la

y
 (

m
s
)

#
 O

F
 m

e
s
s
a

g
e

s

Rx Time, T (s)

(left) Transmission delay
(right) Control plane messages

Fig. 4. Reactive flow rule installation with Periodic traffic. (left-
y) One way delay, (right-y) accumulated number of OF messages
related to the flow rule installation procedure.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20
 0

 3

 6

 9

 12

 15

 18

 21

O
n

e
 w

a
y
 d

e
la

y
 (

m
s
)

#
 O

F
 m

e
s
s
a

g
e

s

Rx Time, T (s)

(left) Transmission delay
(right) Control plane messages

Fig. 5. PFIM pro-active flow rule installations for Periodic
traffic. After i entries in the PFIM table, periodicity is detected
and rules are pro-actively installed.

(OVS) version 2.7.0 provides the OpenFlow Agent
to Gateways. Traffic from real sensor nodes7 is set
to follow the parameters specified in Table I. Ryu
v4.4 SDN Controller (using OpenFlow v1.4) runs an
Extended PFIM implementation on a PC with Ubuntu
16.048.

Table I also provides PFIM parameters used in the
experiments (see Algorithms 1 and 2 for reference):
λ, tidle, and the Duty cycle (c) of periodic traffic are
derived from [7]; i and α are lower than proposed in the
aforementioned reference, but performed as expected9.

The resulting testbed, whose network topology is
shown in Figure 3, allows the emulation of sensor
node traffic and its transport from one Gateway to
another, mimicking a part of the process of forwarding
sensor data towards upper layers of an example SDN
IoT platform (like Figure 1). To derive accurate delay
measures, the whole network is tightly synchronized
using Precise Time Protocol (PTP, an IEEE Std 1588-
2008 [15] implementation for Linux). The Controller
sends multicast PTP synchronization messages to
Gateways via the control channel.

7Two Zolertia Z1 motes were used.
https://github.com/Zolertia/Resources/wiki/The-Z1-mote

8PC details: 16GB of RAM and an Intel® CoreTM i5-4690
CPU @ 3.50GHz.

9Reducing i and α even further caused PFIM to malfunction.

TABLE I
PFIM and traffic characteristics

PFIM
Parameter value

i 3
λ 1% µ
α 250 ms

Traffic
Periodic Periodic/Bursty

Duty cycle (c) 5 s 3 s / int(rand(1, 5)) s
Packets per cycle (p) 10 10

tidle 1 s 1 s

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100
 0

 50

 100

 150

 200

 250

O
n

e
 w

a
y
 d

e
la

y
 (

m
s
)

#
 O

F
 m

e
s
s
a

g
e

s

Timestamp (s)

(left) Periodic/Bursty transmission delay
(left) Periodic transmission delay

(right) PFIM Control Plane messages
(right) Standard Control Plane messages

Fig. 6. A solely Periodic, and a Periodic/Bursty flows traverse
a Gateway. Extended PFIM is able to identify periodicity and
install flow rules pro-actively. When periodicity breaks, pro-
active flow rule installations are suspended for such flow.

C. Implementation of PFIM
The conventional reactive flow installation proce-

dure and the impact on the delay of periodic flows
is shown in Figure 4. The left y-axis shows the period
between transmission and reception of a packet (from
Gateway-B to Gateway-A in Figure 3), or one way de-
lay. The right y-axis provides the accumulated number
of OF messages related to the flow installation pro-
cedure, that is, packet_in, flow_mod and send_msg
packets (as in Figure 2).
As the head of flow goes through the reactive flow

installation process, is traverses the Gateway after d =
4 ms on average, while the rest of the flow (having a
rule already installed at the Gateway) just experiences
an average one way delay of d = 0.12 ms. Further,
as each reactive flow installation process implies the
exchange of 3 OF messages (see Section II-C), the
accumulated number of such packets traversing the
control channel grows linearly with each duty cycle.
Figure 5 shows the same metrics but this time using

PFIM. Contrasting with Figure 4, after the period
of a flow is learned only flow_mod messages are sent
from Controller to Gateway, reducing the number of
OF flow installation messages to a third. Moreover, as
rules are already installed the head of flow experiences
a one way delay reduction of around 90% (an average
d = 0.4 ms).

D. Extended PFIM with heterogeneous traffic patterns
Extended PFIM makes it possible to identify peri-

odic flows, but also to stop installing rules pro-actively

if the periodicity disappears. Figure 6 shows the one
way delay for two types of traffic patterns, namely
Periodic and Periodic/Bursty (see Table I for details).
The sensor assigned with the Periodic/Bursty traffic

pattern starts by transmitting p = 10 packets every
c = 3 seconds, i = 10 times (periodic phase). After
that, the periodicity of the generated flow is pur-
posefully broken by changing to a variable duty cycle
(c ← int(rand(1, 5))) for the next i = 10 iterations
(bursty phase). Later, the sensor goes back to the
periodic phase. This periodic/bursty behavior aims at
emulating traffic from an arbitrary sensor that sends
periodic reports, but also reacts to events.
Figure 6 shows (left-y axis) the one way delay,

and (right-y axis) the accumulated number of OF
messages associated to the aforementioned two types
of traffic from real sensors. Extended PFIM is able
to learn the duty cycle of Periodic flows. Later, when
the periodicity is broken (at around T = 30 s in the
Periodic/Bursty curve), reactive flow installations are
used (evidenced by the increase in the delay of the
head of flow).
Extended PFIM is able to forget periodic flows

and identify them again. Results show the expected
reduction in the delay of head of flows once periodicity
is detected, and also the expected decrease in the
number of OF messages observed through the control
channel.

V. Conclusions and Open Subjects
For SDN IoT’s Gateways serving an underlying

Sensor layer, the reactive flow rule installation process
increases the average delay of periodic flows. Further,
as the rate of new flows per second grows the resulting
control channel congestion increases the chances of
packet loss, wasting sensors’ very constrained energy
resources.

This work presents experimental results from a pro-
active flow rule installation mechanism for periodic
flows. Further, it introduces extensions that select
between reactive and pro-active flow installation pro-
cedures according to the learned periodicity of a flow
and the number of flow rule matches. Experimental
results show that even with multiple transmission
periods, pro-active flow rule installation techniques are
both possible and useful for reducing control channel
congestion; showing an average delay reduction of 90%
for head of flows from periodic transmissions, such as
the generated to report data from a wide variety of
sensors in IoT deployments.
Future research on pro-active flow installation

strategies may take advantage of OpenFlow (OF) Bun-
dle messages, which allows for a group actions to be
executed with a single control message. Furthermore,
by performing deep packet inspection [16] and using
OF’s experimenter messages is possible to extract
meaningful information from flows and network links,
opening the way for energy consumption minimization
in radio heterogeneous IoT networks. Finally, fine-
tuning PFIM’s learning algorithm for context-aware
forwarding under variable network conditions, wireless

control channels, and massive IoT traffic requiring
very fast flow rule installations [17] are left as subjects
for future studies.

Acknowledgements
This work has been funded by SEMIOTICS

(780315), SPOT5G (TEC2017-87456-P),
5GSTEPFWD (H2020-MSCA-ITN-2016 722429)
and by the Generalitat de Catalunya under grant
2017 SGR 891.

References
[1] X. Ma and W. Luo, “The analysis of 6LoWPAN tech-

nology,” in Pacific-Asia Workshop on Computational In-
telligence and Industrial Application, PACIIA’08, vol. 1.
IEEE, 2008, pp. 963–966.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “Open-
Flow: enabling innovation in campus networks,” ACM SIG-
COMM Computer Communication Review, vol. 38, no. 2,
pp. 69–74, 2008.

[3] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “On the
effect of forwarding table size on SDN network utilization,”
in 2014 Proceedings IEEE INFOCOM. IEEE, 2014, pp.
1734–1742.

[4] H. Kim, J. Kim, and Y. B. Ko, “Developing a cost-effective
OpenFlow testbed for small-scale Software Defined Net-
working,” in 16th International Conference on Advanced
Communication Technology, Feb 2014, pp. 758–761.

[5] 5GPPP, “5G and the Factories of the Future,” https://5g-
ppp.eu/wp-content/uploads/2014/02/5G-PPP-White-
Paper-on-Factories-of-the-Future-Vertical-Sector.pdf,
2015.

[6] A. Wang, Y. Guo, F. Hao, T. Lakshman, and S. Chen,
“Scotch: Elastically scaling up SDN control-plane using
vswitch based overlay,” in Proceedings of the 10th ACM
International on Conference on emerging Networking Ex-
periments and Technologies. ACM, 2014, pp. 403–414.

[7] P. Bull, R. Austin, and M. Sharma, “Pre-emptive Flow
Installation for Internet of Things Devices within Software
Defined Networks,” in 2015 3rd International Conference
on Future Internet of Things and Cloud, Aug 2015, pp. 124–
130.

[8] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and
R. Smeliansky, “Advanced study of SDN/OpenFlow con-
trollers,” in Proceedings of the 9th central & eastern Eu-
ropean software engineering conference in Russia. ACM,
2013, p. 1.

[9] R. Khondoker, A. Zaalouk, R. Marx, and K. Bayarou,
“Feature-based comparison and selection of Software De-
fined Networking (SDN) controllers,” in 2014 World
Congress on Computer Applications and Information Sys-
tems (WCCAIS). IEEE, 2014, pp. 1–7.

[10] “POX Controller,” https://openflow.stanford.edu/display/
ONL/POX+Wiki, 2013, [Online].

[11] “Ryu Controller,” https://osrg.github.io/ryu/, 2017, [On-
line].

[12] “Trema Controller,” https://trema.github.io/trema/, 2016,
[Online].

[13] “Floodlight Controller,” http://www.projectfloodlight.
org/floodlight/, 2017, [Online].

[14] “OpenDaylight Controller,” https://www.opendaylight.
org/, 2017, [Online].

[15] “IEEE Standard for a Precision Clock Synchronization Pro-
tocol for Networked Measurement and Control Systems,”
IEEE Std 1588-2008 (Revision of IEEE Std 1588-2002),
pp. 1–269, July 2008.

[16] G. Li, M. Dong, K. Ota, J. Wu, J. Li, and T. Ye, “Deep
Packet Inspection Based Application-Aware Traffic Control
for Software Defined Networks,” in 2016 IEEE Global Com-
munications Conference (GLOBECOM), Dec 2016, pp. 1–
6.

[17] A. Nguyen-Ngoc, S. Lange, S. Gebert, T. Zinner, P. Tran-
Gia, and M. Jarschel, “Performance evaluation mechanisms
for FlowMod message processing in OpenFlow switches,” in
2016 IEEE Sixth International Conference on Communi-
cations and Electronics (ICCE), July 2016, pp. 40–45.

