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Abstract—The massive scale of future wireless networks will
create computational bottlenecks in performance optimization.
In this paper, we study the problem of connecting mobile
traffic to Cloud RAN (C-RAN) stations. To balance station load,
we steer the traffic by designing device association rules. The
baseline association rule connects each device to the station with
the strongest signal, which does not account for interference
or traffic hot spots, and leads to load imbalances and perfor-
mance deterioration. Instead, we can formulate an optimization
problem to decide centrally the best association rule at each
time instance. However, in practice this optimization has such
high dimensions, that even linear programming solvers fail
to solve. To address the challenge of massive connectivity,
we propose an approach based on the theory of optimal
transport, which studies the economical transfer of probability
between two distributions. Our proposed methodology can
further inspire scalable algorithms for massive optimization
problems in wireless networks.

I. INTRODUCTION

We revisit the problem of device association in the
setting of massive connectivity. In this problem, we seek
to find a rule to associate mobile traffic to certain serving
stations such that the incurred load is balanced across
the available stations. Although a plurality of association
methodologies are available in the literature, here we focus
on the underexplored aspect of scalability; we seek load-
balancing associations for thousands of devices to hundreds
of stations, a setting where even linear program solvers
become cumbersome. To address the arising computational
challenge, we propose to use Optimal Transport (OT) theory,
which studies the transfer of masses over a metric space.
Recently, an entropic regularization of OT was shown to
provide superfast algorithms for very large OT instances
[1], making the framework applicable to a wide range of
challenging applications, including image processing and
machine learning. Our goal in this paper is to use regular-
ized OT to derive association rules for a very large number
of wireless devices.

Our centralized approach is motivated by the upcoming
5G wireless networks. According to recent reports, telecom
operators are increasingly interested in deploying Cloud-
Radio Access Network (Cloud-RAN, or C-RAN) systems,
cf. [2]. The architecture of C-RAN economizes computation
and signal processing by migrating the computing part of

Fig. 1: Devices associate to RRHs causing various load levels.

base stations to a central cloud location, and using simple
Remote Radio Heads (RRH) to broadcast signals [3]. Since
all the intelligence is now moved to the C-RAN controller,
provisioning connectivity in a large geographical area is
centrally decided, motivating the centralized association of
devices to RRHs.

A contemporary C-RAN controller manages a big number
of RRHs and mobile devices, thus the centralized device
association is inherently a large scale problem. Furthermore,
the number of RRHs and of devices are both expected to
increase in the near future. On one hand, the deployment
of RRHs will become very dense to improve the effective
capacity of the network [5], while on the other hand, we
expect a huge number of heterogenous smart IoT devices
to connect to 5G mobile networks by 2020–estimated 20.4
billions in [6]. Since 5G applications can have radically
diverse requirements, the traffic footprint of each connected
device (IoT or regular) can vary significantly. This motivates
us to study the large-scale centralized device association
with potentially different traffic requirements per device.

II. THE DEVICE ASSOCIATION PROBLEM

A. Downlink Model

We consider the downlink1 transmissions of a large C-
RAN cell, containing I devices and J RRHs. We call πij ∈
[0, 1] the association variable, which is the fraction of time
device i ∈ I connects to RRH j ∈ J . Our objective is to
decide the association rules π ≡ (πij) in order to optimize a

1 Our approach applies also to the uplink as long as the modeled upload
rate Rij can be considered independent of the association rule.
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network performance metric, such as the sum of RRH load
or the average job completion time (delay).

In order to evaluate the impact of an association rule
we consider the download rate obtained when device i is
connected to station j while receiving exclusive service;
this is denoted by Rij . This rate should be calculated
at the granularity of association changes. Typically, we
may assume the use of a temporally-fair scheduler which
distributes the station resources to the different users and
averages out fast fading effects. In this case, a reasonable
model for the download rate is:

Rij = W log(1 + SINRji),

where, W is the bandwidth, SINRji ,
PjGji∑

k 6=j PkGki+N0
, and

the index ji is reversed on purpose to denote directivity,
Pj denotes the transmit power, Gji the path loss, N0 the
strength of thermal noise. This model has been extensively
used in the literature, cf. [7]–[9]. Here we use it only
as an example; our framework only requires that Rij are
independent of the association variables. At this point, it
might seem reasonable to connect each device to the RRH
that provides the largest Rij–known as the maxSINR rule–
however, this results in poor performance as we explain next.

B. RRH Load

We suppose that a device i requires to download traffic λi,
which is known2 and device-dependent. Also, it downloads
jobs with average size 1/µ; extension to device- or RRH-
specific job sizes is trivial. Given a decision π we may
determine the load of RRH j as:

ρj(π) =
∑
i

λi
µRij

πij .

Connecting devices to RRHs with highest Rij has the
beneficial effect that the load contribution of each device
λi/µRij is minimized (since the term Rij is maximized).
However, when devices are not uniformly distributed in the
area and/or total traffic demand is imbalanced, some RRHs
attract more connections and become overloaded. This will
result into poor performance, because wireless service also
depends on the competition between users at the associated
RRH, and rapidly degrades as ρj(π) ↑ 1. For example, we
may estimate the average job completion time by E[Nj ]+1

µRij
,

where E[Nj ] is the average number of jobs running at RRH
j. Assuming the jobs are served according to the processor
sharing discipline, for ρj(π) < 1, E[Nj ] is given by [10]

E[Nj ] =
ρj(π)

1− ρj(π)
.

As ρj(π) ↑ 1, the average completion time of a job of the
connected devices will become very high.

2This information can either be provided by the device, or forecasted by
the system.

Summing up the associations of device i, we may quantify
its average completion time by

∑
j

πij

µRij(1−ρj(π)) . Ulti-
mately, we are interested in minimizing the average comple-
tion time over all devices, which leads to device association
problem:

min
πij≥0

∑
ij

πij
µRij(1− ρj(π))

(1)

s.t.
∑
j

πij = 1 ∀i ∈ {1, 2, . . . , n},

ρj(π) < 1 ∀j ∈ {1, 2, . . . ,m}.

This is a non-convex continuous optimization problem, and
we are interested to solve it for large dimensions.

C. Related Work

The baseline maxSNR association rule reads “connect
each device to the station with the strongest signal”. This
simple association rule works well when the mobile traffic
load is low, or symmetrically scattered around stations,
but otherwise it can lead to significant load imbalances.
An improved rule that captures interference (but not traffic
fluctuations) is the maxSINR rule “connect each device to
the station with the highest SINR”, [11].

To improve the performance over the above rules, the
problem of device association has been studied in its integral
form, where each device can be associated to a single
station, i.e. the association variable πij ∈ {0, 1}, cf. [12]–
[15]. However, the combinatorial nature of such formulations
makes them inefficient for large-scale instances. Instead, [7]
allowed πj(x) ∈ [0, 1] for all points x in the plane and
proved that the optimal solution is integral almost every-
where (except boundary points). In this paper, we directly
define the association variables to take values πij ∈ [0, 1]
with the understanding that fractional solutions correspond
to multi-station coverage like CoMP [4]. We observe that our
optimal solutions are also “sparse”, meaning that although
variables are allowed to take values in [0, 1], at optimality
most of them will be integral (0 or 1).

In the context of continuous device association, past
work has considered the optimization of α-optimal functions
[7], [8] or general convex functions [9]. None of the past
approaches can be used to solve (1), which is non-convex.
In fact, to the best of our knowledge, solving a large non-
convex problem like (1) is generally intractable. Our goal in
this paper is to propose a useful methodological tool, which
can be applied to very large device association problems.

From the perspective of scalability, most past approaches
do not meet the extreme requirements we consider in this
paper. An exception is perhaps the distributed algorithm
of [7]. A limitation of this prior work, however, is that it
depends on the observation of the exact statistical load ρj ,
and it is not robust to erroneous estimates.



III. OPTIMAL TRANSPORT

A. Introduction to Optimal Transport

The concepts of OT date back to the French mathemati-
cian Gaspard Monge who studied in 1781 the transportation
of sand masses [16], what seems to be one of the first linear
programming problems studied.

Although the theory of OT has been generalized to
optimization with infinite variables, here we restrict our
discussion to the illustrative case of “discrete OT”3, where
probability mass must be transported between two discrete
distributions p ≡ (p1, . . . , pm) and q ≡ (q1, . . . , qn), and
the transportation cost from point i to point j is Cij–
quite often taken to be the Euclidean distance between
the two points. Due to Kantorovich [17], we can describe
the transportation with a coupling πij , essentially a joint
probability distribution π with marginals p and q. The
discrete OT problem can be written as:

min
πij≥0

∑
ij

Cijπij (2)

s.t.
∑
j

πij = pi, i = 1, . . . ,m, (3)∑
i

πij = qj , j = 1 . . . , n. (4)

This is a linear program, solvable in polynomial time
w.r.t. its size mn. Further, consider a bipartite graph con-
necting the points with links of weight Cij , and connect each
point i of p to a virtual source with link capacity pi, and each
point j of q to a virtual destination with link capacity qj . The
discrete OT corresponds to finding a minimum cost s-t flow
of one unit. Using network simplex [18], we can obtain the
solution in O(E2 log V ),4 which for V = m+ n, E = mn,
and n = m, becomes O(n4 log n), essentially quadratic to
the input size mn. Although such solution is polynomial
to the input size, our problem is of enormous dimensions,
and hence the degree of the polynomial is important as
well. Below we describe the regularized OT, a method to
approximate OT in O(n2 log n).

B. Regularized OT

The OT can be approximated in an efficient manner using
an entropic regularization [1]. We modify the objective of OT
by subtracting the entropy H(π) = −

∑
ij πij(log πij − 1),

3The notion of discreteness refers to discrete probability measures, hence
we have a finite number of continuous transportation variables.

4Pseudo-polynomial algorithms are faster, but their runtime guarantee
depends on the values of Cij [19], [20].

Fig. 2: OT studies the mass transportation cost that satisfies initial
(red) and final (blue) conditions.

weighted with the regularization strength coefficient ε > 0.
The regularized OT becomes:

min
πij

∑
ij

Cijπij + ε
∑
ij

πij(log πij − 1) (5)

s.t.
∑
j

πij = pi, i = 1, . . . ,m,∑
i

πij = qj , j = 1 . . . , n.

Adding −εH(π) has a number of beneficial effects:
• The objective of the regularized OT is 1–strongly

convex, hence (5) has a unique optimal solution.
• By Proposition 4.1 of [21], the sequence of unique

optimal solutions of (5) for ε(k) converges to an optimal
solution to (2) as ε(k) → 0.

• H(π) forces πij to be non-negative, hence we can drop
the constraint πij ≥ 0.

More importantly, the new objective admits an intuitive
reformulation, which leads to a faster algorithm. Consider
the affine constraint sets Cp = {π | (3)}, and Cq = {π | (4)},
and let ξij = exp(−Cij/ε); we can rewrite the regularized
OT as:

min
π∈Cp∪Cq

KL(π, ξ),

where KL(π, ξ) ,
∑
ij πij(log

πij

ξij
− 1) is the Kullback-

Leibler (KL) divergence. Hence, the regularized OT is a
KL projection of ξ onto the intersection of Cp and Cq
[22]. Since the KL divergence is the special case of the
Bregman divergence for the entropy function, our KL pro-
jections benefit from the convergence property of iterative
Bregman projections on intersections of affine constraint
sets [23], [24]. To obtain an iterative projection algorithm
it is convinient to operate on the dual domain. Consider the
Lagrangian function

L(π,α,β) = KL(π, ξ) +
∑
i

αi

∑
j

πij − pi


+
∑
j

βj

(∑
i

πij − qj

)
.



The KKT stationarity condition requires that for each (i, j)
it must hold:

∂L

∂πij
= 0 ⇔ πij = ξije

−αie−βj .

To obtain the projection with respect to Cp we follow the
steps: (i) fix (βj), (ii) apply the complementary slackness
condition

∑
j πij = pi, (iii) solve for αi. Similarly for Cq.

Setting ai ≡ e−αi and bj ≡ e−βj , we obtain the Sinkhorn
algorithm [25] for regularized OT:

Sinkhorn Algorithm

Input : C, p, q, ε
Output: π

1 initialize b(0) = 1, ξij = e−Cij/ε;
2 while accuracy do
3 k ← k + 1 ;
4 a

(k)
i ← pi∑

j b
(k−1)
j ξij

, ∀i ;

5 b
(k)
j ← qj∑

i a
(k)
i ξij

, ∀j ;

6 end
7 πij ← ξija

(k)
i b

(k)
j , ∀(i, j)

Theorem 1 (From [26]). Assume m = n, fix τ > 0,
and choose γ = 4 logn

τ , Sinkhorn algorithm computes a τ–
approximate solution of (2) in O(n2 log nτ−3) operations.

Since the problem size is n2, Sinkhorn algorithm con-
verges almost linearly for any fixed τ (less the logarithmic
term). This is to be contrasted with the almost quadratic con-
vergence of network simplex O(n4 log n). Further, Sinkhorn
requires only matrix-vector multiplications, hence it admits
highly efficient GPU implementations. More information on
computational transport can be found in [21].

C. Sinkhorn vs LP

We implemented Sinkhorn in python and compared its
performance to the embedded glpk solver [27], known to
be one of the fastest LP solvers. Table I provides some
indicative numerical results to highlight the advantageous
performance of Sinkhorn over a standard LP solver, namely:
(i) it is faster, (ii) scales better, and (iii) doesn’t run out of
memory.

In the experiments, we stopped Sinkhorn when the total
absolute residual becomes less than 1% or 0.1%. The
runtimes provided are averages over 7 runs, computed with
the timeit package. Notably, we can compute a 1.001-
optimal transport 25× 10k in half a second.

Fig. 3a-3b showcase associations obtained by Sinkhorn
and LP-glpk, where we can verify the fidelity of Sinkhorn
to the optimal LP solution. Fig. 3c showcases a very large
instance that the LP solver cannot address.

(a) LP, 100× 25 (b) Reg OT, 100×25 (c) Reg OT, 1k × 25

Fig. 3: Device association to RRHs.

Devices RRHs LP-glpk
Sinkhorn
τ = 1%

Sinkhorn
τ = 0.1%

10 25 6 2.27 5.02
50 25 88 4.09 8.95

100 25 315 8.09 9.7
500 25 8130 10.1 31.6
1000 25 out of memory 27 37.9
5000 25 out of memory 135 204

10000 25 out of memory 434 568

TABLE I: Runtime (msec) comparison Sinkhorn vs LP-glpk.

IV. OT AS A HEURISTIC LOAD BALANCER

In this section we explain how one can use OT algorithms
to obtain device association rules. An instance of the OT
problem is defined by the triplet (C,p, q), i.e., the costs and
the left-right marginals. In order to produce a load balancer
based on OT, we must provide appropriate values for these
parameters. We propose the following choices:
• For C: we propose to use (i) the Euclidean distance

between the location xi of device i and the location xj
of RRH j, i.e., Cij = ‖xi − xj‖, or (ii) the incurred
load per unit traffic Cij = 1/µRij .

• For p: the input traffic, pi = λi.
• For q: we propose to use (i) equal RRH traffic qj =∑

i λi/n, (where n is the number of RRHs) or (ii) RRH
traffic from the maxSINR rule, Λj =

∑
i π

SINR
ij λi.

We provide some explanations about the choices. First,
the left marginal p ensures that the entire traffic of each
devices is split among RRHs. To choose q wisely, we should
know the RRH traffic at optimality, however this information
is often not accessible. Instead, it is easy to obtain the
maxSINR rule. Last, Euclidean cost favors nearby RRHs,
while normalized load connects devices to the RRHs with
minimum incurred load, taking into account interference and
path loss. We have the following interesting result:

Lemma 1. Consider the maxSINR rule denoted with πSINRij ,
and the incurred traffic Λj =

∑
i π

SINR
ij λi, and suppose it is

feasible, i.e., ρj(πSINR) < 1, ∀j. Also, consider a (C,p, q)
instance of the OT problem, such that (i) Cij = 1/µRij , (ii)
pi = λi, (iii) qj = Λj , with solution x∗.

Then, the association π∗ij
.
= x∗ij/λi minimizes the total

load
∑
j ρj(π).

Proof. First, note that whenever the maxSINR rule πSINRij



is feasible, it minimizes the total load. This is easy to check
by observing that the total load contribution of each device
λi
∑
j π

SINR
ij /µRij is minimized under the maxSINR rule.

Then the total load minimization follows by summing up
over devices.

The OT solution of the lemma is defined as follows:

x∗ ∈ arg min
xij≥0

∑
ij

xij
µRij

(6)

s.t.
∑
j

xij = λi, i = 1, . . . ,m,∑
i

xij = Λj , j = 1 . . . , n.

Note that λiπSINRij satisfies all the constraints of (6), and
thus it is a feasible solution of (6). Further, since πSINRij

minimizes the total load, λiπSINRij must be an optimal
solution of (6). Therefore:∑

ij

π∗ij
λi
µRij

=
∑
ij

πSINRij

λi
µRij

= min
π

∑
j

ρj(π),

and the lemma follows.

The lemma states that given the RRH traffic under the
maxSINR rule denoted with Λj , we may use OT to retrieve
the association variables that minimize the total load, a very
useful property.

Choosing the marginals like in Lemma 1 (or with a more
elaborate scheme as we show below) will work better in
practice, however, the choices given at the start of the section
can also be useful: they are simpler to compute and can be
sufficient when the spatial traffic is uniform. To showcase
this property, we experiment with a scenario with random
but uniform traffic. In a C-RAN cell with 25 RRHs we scale
the number of devices from 100 to 5000. We compare the
average completion time under 4 policies, (a) maxSINR, (b)
OT with Euclidean costs and equal RRH traffic, (c) OT with
load costs and equal RRH traffic, and (d) OT with load
costs and RRH traffic equal to Λj (same as Lemma 1). The
values shown in Fig. 4 are the ratios of average completion
time between the algorithm and the maxSINR. We observe
that algorithm (d) performs the same with maxSINR (a) as
predicted by the Lemma. The other two algorithms perform
similarly. In particular, for a small number of devices, we
see that selecting qj =

∑
i λi/n results in performance

deterioration (up to 4 times worse), due to the random
locations of the devices. However, as the number of devices
increases, the traffic becomes more uniform and the choice
qj =

∑
i λi/n becomes as good as the maxSINR solution.

V. LEARNING RRH LOAD

We now turn our attention to non-uniform traffic, as for
example in figures 5a-5b. In this setting, both the maxSINR
rule and our OT heuristics will overload the hot spot station.

Fig. 4: Relative completion time (uniform traffic)

To effectively balance the load we must discover the correct
traffic accumulation at RRHs which will provide the average
completion time optimization.

We propose an iterative algorithm, where at iteration k
Sinkhorn algorithm is used with q(k) to obtain an association
which results in a specific RRH loading ρj(π(k)). According
to this loading, a new marginal q(k+1) is computed, and the
process repeats until an accuracy criterion is satisfied. More
specifically, our iterative algorithm picks the RRH with the
highest load (step 5) and then decreases its aggregate traffic
by a fixed term δ, dispersing the traffic to all other RRHs
(step 6). We mention that increasing the traffic in a remote
RRH will result in a large number of association changes
in the Sinkhorn algorithm which will ensure that the steered
traffic maintains minimum transportation cost. We provide
the algorithm flow here.

Adaptive Sinkhorn Association

Input : Cij = 1/µRij , p = λ, ε
Output: π

1 initialize qj =
∑
i λi/n;

2 while accuracy do
3 k + + ;
4 π(k+1) ← Sinkhorn(C,p, q(k), ε) ;
5 j∗ ∈ arg max{ρj(π(k+1))} ;

6 q
(k+1)
j =

{
q
(k)
j − δ j = j∗

q
(k)
j + δ/(n− 1) j 6= j∗

;

7 end
8 π ← π(k+1)

Figures 5a-5c show the results. First, comparing the two
association rules we see that although the maxSINR rule
associates the devices according to interference and not
traffic, our adaptive Sinkhorn algorithm considers both, and
converges to an association where some cell edge devices are
steered to the neighboring RRHs. This is done to alleviate
the load of the bottom-left RRH. Indeed, figure 5c shows
the resulting loads of the 4 RRH. Our approach successfully
equalizes the loads of the different RRH, while the maxSINR
rule fails to do so. Ultimately, our scheme achieves an



(a) maxSINR (b) Adaptive Sinkhorn (c) Load per station

Fig. 5: Comparison of maxSINR and Adaptive Sinkhorn (non-uniform traffic).

average completion time 6.3msec while the maxSINR rule
24msec, which corresponds to almost 4 times improvement.

VI. CONCLUSION

In this paper, we studied the device association in C-RAN,
and proposed an iterative algorithm to adjust the loads based
on the theory of Optimal Transport. Specifically, we showed
that an extension of the Sinkhorn algorithm for C-RAN
systems can provide low delay associations for thousands
of users in 0.5sec. Our methodology scales to very large
problem instances, and has the potential to provide great
improvements over the simple baseline approach.
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