
HAL Id: hal-02164038
https://hal.science/hal-02164038

Submitted on 24 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data deduplication with edit errors
Laura Conde-Canencia, Tyson Condie, Lara Dolecek

To cite this version:
Laura Conde-Canencia, Tyson Condie, Lara Dolecek. Data deduplication with edit errors. GLOBE-
COM, Jun 2019, Abu Dhabi, United Arab Emirates. �hal-02164038�

https://hal.science/hal-02164038
https://hal.archives-ouvertes.fr

Data deduplication with edit errors
Laura Conde-Canencia

Lab-STICC, CNRS UMR 6285
Université Bretagne-Sud

Lorient, France
laura.conde-canencia@univ-ubs.fr

Tyson Condie
CS Department

University of California
Los Angeles, USA
tcondie@cs.ucla.edu

Lara Dolecek
ECE Department

University of California
Los Angeles, USA
dolecek@ee.ucla.edu

Abstract—In this paper we tackle the problem of file dedu-
plication for efficient data storage. We consider the case where
the deduplication is performed on files that are modified by edit
errors relative to the original version. We propose a novel block-
level deduplication algorithm with variable-lengths in the case
of non-binary alphabets. Compared to hash-based deduplication
algorithms where file deduplication depends on the content of the
hash keys or to brute force methods that compare files symbol-by-
symbol, our algorithm significantly reduces the number of symbol
comparisons and achieves high deduplication ratios. We present
a theoretical analysis on the cost of the algorithm compared to
naive methods and experimental results to evaluate the efficiency
of our deduplication algorithm.

Index Terms—data deduplication, edit channel, inser-
tions/deletions.

I. INTRODUCTION

Data deduplication is an emerging technology that improves
storage utilization and offers an efficient way of handling
data replication in the backup environment. The principle is
that redundant data blocks are removed and replaced with
pointers to the unique data copy. Compared to classical data
compression [1] [2], deduplication considers larger amounts of
redundant data [3]. The value of deduplication is in reducing
storage cost (power, cooling, floor space requirements, ...) and,
obviously, the more effective the data reduction, the less disk
capacity is needed for storage and the higher cost reductions
can be achieved.

Data deduplication can operate at three different levels [4]:
file, fixed-length block or variable-length block. A simple
example of file deduplication would be the following: suppose
the same 16 MB text file is stored in 10 folders, each copy
for a different user. These 160 MB of disk space maintain
the same 16 MB file. File deduplication ensures that only
one complete copy is saved to disk. Subsequent replicas of
the file are only saved as references that point to the saved
copy. Block-level deduplication looks within a file and saves
unique replicas of each block. Files can be broken into blocks
of the same size (fixed-length block deduplication) or into
blocks of various sizes depending on their contents (variable-
length block deduplication). This last alternative allows the
deduplication effort to achieve better deduplication ratios [5].

So far, deduplication techniques have been mostly based on
hash algorithms. For each chunk (i.e., block of data that can
be deduplicated), a hash value is used as a key into a hash
table. If the hash table does not contain an entry with that

key, the algorithm enters the complete chunk into the hash
table. Then the next copies of the same chunk are replaced by
the hash value. Hash algorithms may rarely produce the same
hash value for two different chunks; this can lead to data loss.

The computer science community has given significant
attention to the problem of deduplication [6] and large gains
have been obtained for archival storage backup systems and
primary storage systems. However, while there has been
significant attention on the systems side, information/coding
theoretic approaches have not yet been explored, except for
the work in [7].

To the best of our knowledge, this paper is the first to
tackle the question of deduplication under edit errors. We
consider the problem of deduplication focusing on two files,
X and Y , where file Y is an edited version of file X , with
edit rates arbitrarily low 1 and the edits being insertions
and deletions. Our approach is different to the one in [7]
which focuses on substitution errors. We take advantage of
the fact that data deduplication and synchronization are related
problems; this observation was also made in [7]. Specifically,
we consider prior work on file synchronization to propose
a new block-level deduplication technique with two main
goals: maximize the amount of deduplicated data compared
to classical file- or block-level deduplication and reduce the
number of comparisons (i.e., our algorithm must be superior
to just comparing the two files until one difference is seen).

Consider the example in Fig. 1. The original file of size
16 MB is divided in blocks of sizes 4 MB (A and D), 2
MB (B1 and B2) and 1 MB (D1 to D4). Three copies of
this file are manipulated by 3 different users: user 1 edits
B1 and D2 (denoted as B1’ and D2’ after the edits), user
2 edits B2 ad D3 and user 3 does not edit the file. Without
deduplication, the system needs 64 MB to store the four files;
with a classical file-level deduplication technique, this amount
would be reduced to 48 MB and, with a fixed block-level
deduplication technique, to 32 MB (if blocks of size 4 MB)
or to 22 MB (idem 2 MB). However, smaller blocks imply
greater deduplication costs in terms of number of compared
symbols2 and system management.

In this context, we propose a deduplication technique that
jointly optimizes the amount of deduplicated data (to reduce

1typically below 10−2.
2as will be detailed in Section IV-A

978-1-5386-4727-1/18/$31.00 ©2018 IEEE

the storage needs) and the deduplication costs. For this, we
introduce an algorithm that follows the divide-and-conquer
approach of [8] [9] for file synchronization. However, as for
deduplication we only need to detect (and not correct) the edit
errors, no interactive communication is used in our algorithm.

The deduplication technique that we propose partitions the
files into alternating components, called pivots and segments
(as in [9]), with the length of pivots being much smaller than
the length of segments. The core element of the proposed
protocol is the Consecutive Pivot (CP) Matching Module
which focuses on pivots to determine the size of the chunks
by comparing only a reduced number of symbols; this number
being much smaller than the size of the chunk (and, of course,
the size of the file).

Fig. 1: Example of file partitioning for efficient deduplication.

The remainder of the paper is organized as follows: Section
II presents the problem statement and notation. Section III
describes the original deduplication technique as the Pivot
Deduplication Algorithm. The core component of this algo-
rithm is the CP Matching Module. A theoretical analysis on the
cost of the Pivot Deduplication algorithm compared to brute
force methods is provided in Section IV. In this Section we
also present and discuss experimental results. Finally, Section
V concludes the paper.

II. PROBLEM STATEMENT AND NOTATION

Let X be an n-length file whose symbols are drawn from
a non-binary alphabet according to an arbitrary distribution
µ(x). Let Y be the output of an edit channel with input X ,
where insertions and deletions occur with probabilities βI and
βD, respectively. As in [9], we consider the probability of an
edit β = βI +βD to be arbitrarily small, n to be large enough
and the same edit channel model as in [9] with βI = βD. We
denote by q the number of bits to represent a symbol of the
non-binary alphabet.

For algorithmic convenience, we partition file X into sub-
strings as X = S1, P1, S2, P2, . . . , Sk−1, Pk−1, Sk, Pk, where
Si is a segment substring, Pi is a pivot substring and k is
the number of both pivots and segments. The length of the
segment substrings is LS , the length of the pivot substrings is
LP and we assume the file length to be divisible by LS +LP .

A block is a substring that corresponds to the concatenation
of one or several consecutive Si, Pi pairs. A chunk is a block
whose content is identical in X and Y and can thus be

deduplicated. For 1 ≤ i ≤ j ≤ n, X(i, j) denotes the substring
X(i), X(i + 1), . . . , X(j) of X . Note that |X| = n and that
the length of X(i, j) is l = j − i + 1. Also, n =

∑b
t=1 lt

where b is the number of blocks in a file, lt is the length of
block t and t = 1, 2, . . . , b. Note that lt can differ from one
block to another (i.e., variable-length blocks).

We consider LS >> LP and LP to be small enough so
that the probability that a pivot contains an edit is arbitrarily
low, but long enough to include enough symbols to ensure
a comparison that delivers enough information. Finally, the
deduplication ratio is defined as the amount of deduplicated
data divided by the total amount of data.

III. THE PIVOT DEDUPLICATION ALGORITHM

The goal of this algorithm is to identify the chunks in files X
and Y based on a sequential comparison that only considers
the pivots. This approach offers a reduced number of com-
parisons compared to a naive approach. With the assumption
that the probability of an edit in a pivot is arbitrarily low,
the background idea of the algorithm is that the edits in the
segment preceding a pivot cause a mismatch in the pivot and
deduplication cannot be executed for that block.

This Section is organized as follows: prior to the description
of the Pivot Deduplication algorithm, some key definitions are
provided. Then the core component of the algorithm, which
is the CP Matching Module, is explained in details. The
Section ends with some discussion on the events that affect
performance of the algorithm.

A. Some definitions

Let an r-length edit pattern E = E1, E2, . . . , Er be defined
so that the output Y of an edit channel with probabilities βI

and βD is obtained from X as follows: for 1 ≤ t ≤ r, where
n ≤ r < ∞,

• If Et = 0, Xj is stored and the process moves on to
symbol Xj+1. This occurs with probability 1−βD −βI .

• If Et = −1, Xj is deleted and the process moves on to
symbol Xj+1. Idem with probability βD.

• If Et = 1, a new symbol taken from distribution µ(x) is
inserted. Idem with probability βI .

The number of net edits is defined as rne =
∑r

t=1 Et and
corresponds to the number of insertions minus the number of
deletions.

Let Px = (px,1, px,2, . . . , px,LP
) be a pivot in X and Py =

(py,1, py,2, . . . , py,LP
) the corresponding pivot in Y . We define

the symbol-matcher operator as:

px,i ⊙ py,j =

{
1 if px,i = py,j
0 if px,i ̸= py,j

(1)

and the pivot-matcher operator as

Px ⊙ Py = (px,1 ⊙ py,1, px,2 ⊙ py,2, . . . , px,Lp ⊙ py,Lp). (2)

We consider Py to be a good match of pivot Px if Px ⊙
Py = (1, 1, . . . , 1). Note that when Py is a good match of
Px, rne = 0. But rne = 0 does not imply that there are no
edits, as the number of deletions can be equal to the number

Fig. 2: Edit channel and principle of the Pivot Deduplication
algorithm. File Y is an edited version of file X .

Fig. 3: File X is divided in k = 6 segments and pivots: P1

and P2 find good matches in Y .

of insertions. This fact is later considered in the algorithm
description.

Finally, we define a shift operator T (P, u) that shifts
pivot P = (p1, p2, . . . , pLP

) |u| positions to the right if
u > 0 or to the left if u < 0. For example, for u =
2: T (P, u) = (∆,∆, p1, p2, . . . , pLP−2), or T (P,−3) =
(p4, p5, . . . , pLP

,∆,∆,∆), where ∆ is a null value and ∀pi
pi ⊙∆ = 0.

B. Principle of the Pivot Deduplication algorithm

Fig. 2 illustrates the Pivot Deduplication algorithm with
its different modules. File Y is the edited version of file
X and both are inputs to the CP Matching Module. Each
use of the CP Matching Module provides the number of
consecutive matched pivots (to determine the size of the chunk
for deduplication) and the number of net edits in the last
segment (i.e., the one that stops the comparison). The CP
Matching Module is explained in details in Section III-C.

The Pivot Deduplication algorithm can be summarized as
follows:

• Consider substrings of files X and Y to start comparison
at the first pivot.

• Use the CP Matching Module to determine the size of
the chunk for deduplication and the number of net edits
in the last segment.

• Update substrings of files X and Y to continue the
comparison (with the CP Matching Module) until the end
of the files is reached.

In other words, the protocol uses the CP Matching Module
as many times as necessary until all the pivots in X are
compared to the corresponding subsequences in Y . At the
end of the protocol, the system knows which chunks can be
deduplicated and which blocks contain edits and cannot be
deduplicated.

The key parameters in the protocol are D, Dy and G, that
correspond respectively to the first position of the pivot in
file X from which the comparison starts, idem in file Y and
the number of consecutive matched pivots (this number is

provided by the CP Matching Module). The length of file Y
is ny = n+ rne.

The protocol can then be described as follows:

Data: Files X and Y , parameters LS and LP .
Result: Chunks for deduplication.
Initialization: D = Dy = LS + 1;
while D < n do

Execute CP Matching Module with inputs: X(D,n)
and Y (Dy, ny);

CP Matching Module outputs: G and rne,G+1 ;
Chunk for deduplication:
Y (Dy − LS , Dy − LS +G(LS + LP);

Update parameters:
Dnew = D + (G+ 1) ∗ (LS + LP) and
Dynew = Dnew + rne,G+1

end

Example Let file X be as in Fig. 3 where only pivot P3

does not have a good match in Y . The first output of the CP
Matching Module is G = 2, because rne,3 ̸= 0 (i.e., edits
occurred in S3). The first chunk is identified: Y (1, 2(LS +
LP)). After updating parameters D and Dy , the second output
of the CP Matching Module is G = 3 and the second chunk for
deduplication is substring Y (D2 + rne,3, ny) = X(D2, n) of
length 3(LP +LS), where D2 is the updated Dnew parameter
after the second use of the CP Matching Module.

The granularity of the protocol is directly related to the
value of LS . We can introduce iterations to the protocol in
order to reduce the granularity in a specific block (i.e., consider
a smaller LS value at each new iteration) to improve the
amount of deduplicated data or to reduce the false detections,
as described in Section III-D.

C. Description of the CP Matching Module

This module is the core component of the Pivot Dedupli-
cation algorithm and its goal is to determine G and rne,G+1,
which are the number of consecutive good pivot matches in
substrings X(D,n) and Y (Dy, ny), and the number of net
edits in the last segment, respectively. This last segment is the
one that precedes the pivot Px,G+1 (i.e., the one that has no
good match in Y). The CP Matching Module is used as many
times as necessary to determine the chunks in X and Y .

The first pivot considered in the comparison is Px,1 =
X(D,D + LP − 1). If Y (Dy, Dy + LP − 1) is a good
match of pivot Px,1 then the search continues for pivot
Px,2 = X(D + LP + LS , D + 2LP + LS − 1) and substring
Y (Dy+LP+LS , Dy+2LP+LS−1)... and so on until there is
no good match. In a more general way, for g = 1, . . . , G each
pivot X(D+g(LP+LS), D+(g+1)LP+gLS−1) has a good
match Y (Dy + g(LP +LS), Dy +(g+1)LP + gLS − 1) and
there is a chunk of size c = G(LS + LP) for deduplication.
Also, if G = k, then the entire file Y can be deduplicated.

The number of net edits in the segment SG+1 is calculated
as:

rne,G+1 = −u > 0 if
Px,G+1 ⊙ T (Py,G+1, u) = (1, . . . , 1︸ ︷︷ ︸

LP−u

, 0, . . . , 0︸ ︷︷ ︸
u

)

and rne,G+1 = −u < 0 if
Px,G+1 ⊙ T (Py,G+1, u) = (0, . . . , 0︸ ︷︷ ︸

u

, 1, . . . , 1︸ ︷︷ ︸
LP−u

).

Or, equivalently, rne,G+1 = −u if

|rne,G+1| = LP −
LP∑
j=1

pout,j (3)

where pout,j is an element of the binary vector Px,G+1 ⊙
T (Py,G+1, u) and u < LP .

Example Let us consider an alphabet of 2q = 8 symbols and
LP = 5. Let the beginning of file X be

Sx,1, Px,1, Sx,2, Px,2 =

7, . . . , 4, 5, 1,︸ ︷︷ ︸
LS

2, 3, 1, 4, 2,︸ ︷︷ ︸
LP

3, 2, 9, . . . , 7, 2, 1, 5,︸ ︷︷ ︸
LS

3, 2, 1, 4, 5︸ ︷︷ ︸
LP

(4)

and the corresponding edit pattern:
E = 0, 0, . . . , 0︸ ︷︷ ︸

LS+LP

−1,+1, 0, 0, . . . , 0,−1,−1,︸ ︷︷ ︸
LS

0, . . . , 0︸ ︷︷ ︸
LP

so that the beginning of file Y is
7, . . . , 4, 5, 1,︸ ︷︷ ︸

LS

2, 3, 1, 4, 2, 2, 4, 9, . . . , 7, 2, 3, 2,︸ ︷︷ ︸
LS

1, 4, 5, 3, . . .

First pivot-matching is Px,1 ⊙ (2, 3, 1, 4, 2) = (1, 1, . . . , 1),
so rne,1 = 0. Second pivot-matching is Px,2 ⊙
T ((1, 4, 5, 3, 1), 2) = (3, 2, 1, 4, 5)⊙(∆,∆, 1, 4, 5), so rne,2 =
−2. The CP Matching Module outputs G = 1 and rne,G+1 =
−2.

D. Edits in pivots and false detections

There are three kinds of events that affect the performance
of the Pivot Deduplication algorithm in terms of deduplication
ratio and data loss:

• Edits in a pivot: even if LP is chosen to be short enough
so that the probability of edits in a pivot is arbitrarily low,
this event may occur. The algorithm is able to detect it
but cannot recover from it to continue the search in the
remaining data in the file. This event does not cause data
loss but reduces the deduplication ratio.

• Insertion in the last position of pivot: in practice this is
considered by the algorithm as an edit in the segment that
follows the pivot. This does not cause data loss but may
reduce the deduplication ratio; the reduction occurs only
if that segment had no edits.

• False detection: if the number of net edits in a segment
is zero but there are edits (i.e., the number of deletions
equals the number of insertions). This causes data loss
that can be avoided by introducing iterations to the
algorithm.

Fig. 4: Pivot Deduplication algorithm with 3 iterations. I
represents an insertion and D a deletion.

E. Iterations in the Pivot Deduplication algorithm

False detections can be avoided by adding iterations to the
algorithm. The first iteration (i = 1) provides chunks with a
minimum size of LS + LP and discards the segments with
edits. Iteration i = 2 only considers the chunks from iteration
i = 1 as inputs for the CP Matching Module, with a smaller
granularity: LS2

= (LS+LP)
2 −LP and LP2

= LP . In general,
for iteration i the CP Matching Module uses parameters:
LSi

= LS+LP

2i−1 − LP , and LPi
= LP with i ≥ 2, and LS ,

LP being the parameters of the first iteration.
Each iteration provides new chunks or discards blocks. Fig.

4 shows an example where at i = 1 the protocol outputs a
chunk of size 2(LS +LP) that corresponds to false detections
(rne = 0 for both segments but there are edits). Iteration 2 then
considers segments of length LS2 , discards two of the four
segments and outputs a chunk of size 2(LS2

+ LP). Iteration
3 considers segments of length LS3

, discards two of the 4
blocks and outputs a chunk of size 2(LS3

+ LP).

IV. THEORETICAL ANALYSIS AND EXPERIMENTAL
RESULTS

A. Theoretical analysis

In order to evaluate the benefits of the Pivot Deduplication
algorithm compared to naive or brute force methods (BFM),
we derive expressions for the average number of compared
symbols in a n-length file for both techniques. This number
will be considered as the cost of the algorithm, which is a
function of the edit rate β = βI + βD. The BFMs compare
data symbol-by-symbol. In our study we consider file- and
fixed-block-level deduplication [4].

The file-level BFM compares on average:

NF =

n−1∑
i=1

iβ(1− β)i−1 + n[β(1− β)n−1 + (1− β)n] (5)

symbols, considering that the comparison stops as soon as
an edit is detected. In case of block-level deduplication, the
average number of compared symbols is

NB = kB

LB−1∑
i=1

iβ(1−β)i−1+LB [β(1−β)LB−1+(1−β)LB]

(6)
where kB is the number of blocks in the n-length file and LB

is the length of a block. In this case, we consider that when

Fig. 5: Number of compared symbols (N) as a function of βD;
n = 120000, LS = 94, LP = 6 (in symbols), k = kB = 1200.
Subscripts are: F for file-level and B for block-level naive
methods; P, i for Pivot Deduplication with i iterations.

Fig. 6: Number of compared symbols (N) as a function of βD;
n = 120000, LS = 9994, LP = 6 (in symbols), k = kB = 12.
Same subscripts as in Fig. 5.

an edit is detected, the comparison continues at the beginning
of the following block.

For the Pivot Deduplication algorithm, the number of com-
pared symbols for the first iteration is:

NP,1 = LP k(1− β)LS + (LP)
2k[1− (1− β)LS] (7)

where the first term represents the case of rne = 0 without
edits 3 and the second term represents the other cases. Note
that (LP)

2 symbols are compared to solve (3).
When considering 2 iterations, the number of compared

symbols is:

NP,2 = NP,1 + 2LP k

LS/2∑
i=1

(
LS

2i

)
(βD)2i(1− β)LS−2i (8)

where the second term represents false detections. Each seg-
ment with a false detection involves the comparison of two
pivots (i.e., 2LP symbols) in the second iteration. For further
iterations, an equivalent equation can be written. However, it
can be shown that NP,1 ≈ NP,2 ≈ NP,3

Figures 5 and 6 show the evolution of the Pivot Dedu-
plication algorithm cost function for two different values
of k and kB , and a fixed file size of 1.2 × 105 symbols.
Obviously, the benefits of the Pivot Deduplication algorithm
in terms of cost increase with smaller values of k and β.
For example, the cost of the Pivot Deduplication algorithm is
a thousand times smaller than the one of the BFM (block-

3For simplicity, we have omitted the case rne = 0 with edits because the
contribution is very small compared to the first term in the equation and can
thus be neglected.

and file-level) for βD = 10−6 and k = 12. In the cases
considered, the cost of the block-level BFM is higher than the
equivalent Pivot Deduplication algorithm 4. Also, iterations
in the Pivot Deduplication algorithm do not introduce any
significant additional cost.

B. Experimental results

We evaluate performance of the Pivot Deduplication algo-
rithm and the BFM in terms of data deduplication ratios and
false detections through simulation. For this, we generate 1000
pairs of files X and Y , where symbols in X are independent
identically distributed according to an arbitrary distribution
µ(x) with an alphabet of size 2q = 64. File Y is an edited
version of X with the edit channel model described in Section
III-A and we consider a file size n = 120000 symbols (i.e.,
720 million bits are simulated to obtain each value in a curve).

Fig. 7 shows the evolution of the data deduplication ratio
as a function of βD (note that we consider βD = βI in
the channel model) for the Pivot Deduplication algorithm, the
file-level BFM and the block-level BFM for different block
sizes. The Pivot Deduplication algorithm simulations consider
1 to 3 iterations and 3 different values of LS . Note that,
except for the case LS = 9994, no significant improvement of
the deduplication ratio is obtained with iterations. However,
iterations are crucial to reduce the false detection ratio (i.e.,
amount of data in blocks identified as false detections). Fig.
8 shows reduction factors of up to 1.5 orders of magnitude
in the false detection ratio from iteration 1 to 3, for the three
different LS values.

The highest data deduplication ratios are obtained with
the BFM with the lowest granularities (LB = 100 and
LB = 1000, Fig. 7). However, for edit probabilities below
10−4, the cost of the BFM is more than 10 times higher than
the one of Pivot Deduplication algorithm for LB = 100 (Fig.
5) and about 100 times higher for LB = 1000 (not explicitly
shown in any Figure, but easily computed from (6) and (7)
or extrapolated from Figures 5 and 6). The file-level BFM
provides very poor data deduplication ratios, even close to
zero for βD = 10−6. Note that this performance would be the
one of hash algorithms operating at file-level and that smaller
file sizes would show better data deduplication ratios. The
false detection ratios introduced with the Pivot Deduplication
algorithm (Fig. 8) show that with enough iterations false
detection ratios tend to zero, as the Pivot Deduplication
algorithm tends to BFM because LS becomes arbitrarily small
(i.e., LP ≈ LB).

We now consider the influence of the pivot length on
the deduplication ratio. In Section III-D, edits in pivots
were identified as one kind of event that significantly affects
deduplication ratio in the Pivot Deduplication algorithm. As
discussed, the algorithm can detect these edits but cannot
recover from them, so after an edited pivot the rest of file
is discarded. In Fig. 9 we show data deduplication ratios for

4We consider that BFM and Pivot Deduplication algorithm are equivalent
when LB = LP + LS .

Fig. 7: Data deduplication ratio as a function of βD (or βI).
Pivot Deduplication (for 3 different LS and iterations i = 1, 2
and i = 3) is compared to file- and block-BFM.

Fig. 8: False detection ratio as a function of βD (or βI) for
LS = 94, 994 and 9994, LP = 6. Iterations from 1 to 3.

Fig. 9: Effect of LP in the data deduplication ratio. Values of
LP are 4, 6 and 10.

LP = 4, 6, 10 and k = 120, 1200. The highest deduplication
ratio is obtained for LP = 4 and k = 120, which are the
values that minimize the probability of edit in a pivot. Note
that this probability can be written as: 1 − (1 − β)Lpk, so
it grows with Lp for a given k. However, as introduced in
Section II, the value of Lp must be a tradeoff, i.e., short
enough to minimise the probability of edits in a pivot and
long enough so that rne can be computed as in (3). We can
consider that LP > 2rne is a sufficient condition to compute
(3). On the other hand, P (rne = i) =

(
LS

2i

)
(βD)2i(1−β)LS−2i

decreases very rapidly with i. For example, for LS = 94 and
βD = 10−3, P (rne = 1) ≈ 10−3, P (rne = 2) ≈ 10−6

and P (rne = 3) ≈ 10−10. Furthermore, for βD = 10−6,
P (rne = 1) ≈ 10−9 and P (rne = 2) ≈ 10−18. So we can
conclude that LP = 4 constitutes a reasonable tradeoff.

C. On the efficiency of the Pivot Deduplication algorithm

The Pivot Deduplication algorithm constitutes a robust
deduplication solution in the context of edit errors (specially
for edit probabilities below 10−4) and real time data reduction
applications, where the rapidity of the protocol is a priority.
For k values in the order of 10, the Pivot Deduplication
algorithm reduces the cost of the BFM by factors up to 1000,
but with poor deduplication ratios and non negligible false
detection ratios (around 10−3). However, for k values in the
order of 1000 the Pivot Deduplication algorithm reduces the
cost of the BFM by a factor of 10 for edit probabilities below
10−3, with false detection ratios under 10−4. Considering
that additional iterations can be performed without significant
additional cost, these false detection ratios can be reduced until
they meet some given criteria.

V. CONCLUSION

This paper was dedicated to data deduplication in the con-
text of edit errors. We proposed an algorithm that efficiently
performs file deduplication. This algorithm focuses on pivots
in the file and its parameters can be adjusted to minimize the
cost or maximize performance in terms of data deduplication
ratio and false detections. We derived theoretical expressions
to compare the proposed algorithm to brute force methods
and we presented experimental results to evaluate the data
deduplication ratios for different values of parameters. The
proposed algorithm is particularly interesting for low edit rates
and real time data reduction.

REFERENCES

[1] J. Ziv and A. Lempel, “A universal algorithm for sequential data com-
pression,” IEEE Transactions on Information Theory, vol. 23, no. 3, pp.
337–343, May 1977.

[2] J. Cleary and I. Witten, “Data compression using adaptive coding and
partial string matching,” IEEE Transactions on Communications, vol. 32,
no. 4, pp. 396–402, Apr 1984.

[3] A. El-Shimi, R. Kalach, A. Kumar, A. Ottean, J. Li, and S. Sengupta,
“Primary data deduplication—large scale study and system design,” in
Annual Technical Conference, Boston, MA, 2012, pp. 285–296.

[4] A. Venish and K. S. Sankar, “Study of chunking algorithm in data
deduplication,” Proc. of Int. Conf. on Soft Computing Systems, Advances
in Intelligent Systems and Computing, Springer India, 2016.

[5] “Quantum white book: Effectiveness of variable-block vs fixed-
block deduplication on data reduction: A technical analysis,”
www.quantum.com, Tech. Rep., 2015.

[6] L. L. You, K. T. Pollack, and D. D. E. Long, “Deep store: an archival
storage system architecture,” in 21st International Conference on Data
Engineering (ICDE’05), April 2005, pp. 804–815.

[7] U. Niesen, “An information-theoretic analysis of deduplication,” in IEEE
Int. Symp. on Information Theory (ISIT), June 2017, pp. 1738–1742.

[8] S. M. S. T. Yazdi and L. Dolecek, “A deterministic polynomial-time proto-
col for synchronizing from deletions,” IEEE Transactions on Information
Theory, vol. 60, pp. 397–409, 2014.

[9] F. Sala, C. Schoeny, N. Bitouze, and L. Dolecek, “Synchronizing files
from a large number of insertions and deletions,” IEEE Transactions on
Communications, vol. 64, no. 6, pp. 2258–2273, June 2016.

