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Abstract—The use of aerial anchors for localizing terrestrial
nodes has recently been recognized as a cost-effective, swift
and flexible solution for better localization accuracy, providing
localization services when the GPS is jammed or satellite recep-
tion is not possible. In this paper, the localization of terrestrial
nodes when using mobile unmanned aerial vehicles (UAVs) as
aerial anchors is presented. We propose a novel framework
to derive localization error in urban areas. In contrast to the
existing works, our framework includes height-dependent UAV to
ground channel characteristics and a highly detailed UAV energy
consumption model. This enables us to explore different trade-
offs and optimize UAV trajectory for minimum localization error.
In particular, we investigate the impact of UAV altitude, hovering
time, number of waypoints and path length through formulating
an energy-constrained optimization problem. Our results show
that increasing the hovering time decreases the localization error
considerably at the cost of a higher energy consumption. To
keep the localization error below 100m, shorter hovering is only
possible when the path altitude and radius are optimized. For
a constant hovering time of 5 seconds, tuning both parameters
to their optimal values brings the localization error from 150m
down to 65m with a power saving around 25%.

Index Terms—Unmanned aerial vehicle (UAV), localization,
received signal strength, trajectory planning, optimal altitude

I. INTRODUCTION

A. Motivation

Location-aware services have been acknowledged as an
indispensable functionality for a vast majority of wireless
communication applications. In fact, location information can
be exploited in different layers, from communication aided
purposes to the application level where location information
is needed to meaningfully interpret the collected data [1].
To this end, the global positioning system (GPS) is used for
outdoor applications where it provides a satisfactory perfor-
mance. However, GPS is known of its expensive cost and vul-
nerability to jamming [2]. Therefore, alternative localization
techniques have attracted considerable research focus over the
past decade.

Several ground anchor based localization techniques have
been extensively studied in the literature [3]. In particular, the
received signal strength (RSS) technique is attractive due to
its intrinsic simplicity and the fact that the RSS estimation
functionality is readily available in all chipsets [4]. However,
the variation around the mean signal power due to shadowing
significantly affects the reliability of this method. This is
particularly important in urban areas where the shadowing
effect is more severe and hence the localization accuracy drops

remarkably. To address this issue, unmanned aerial vehicles
(UAVs) deployed as aerial anchors is an emerging solution in
order to localize ground devices [5]–[8]. The main benefits of
UAV anchors are their higher probability of line-of-sight (LoS)
with ground terminals and less shadowing effect at higher
altitudes [9]. Therefore, aerial anchors potentially are capable
of resolving the main drawback of ground node localization
when using RSS technique. In fact, UAV anchors can combine
the benefits of satellites with a good link probability of LoS
and the advantages of ground anchors with a short link length
and hence higher received signal strength.

On the other hand, UAVs are typically battery-limited which
introduces an important challenge towards their deployment
as aerial anchors. This fact restricts UAVs operational life-
time and hence reduces the number of measurements that
can be collected during their mission, which can negatively
affects the accuracy of localization. In fact, depending on
the hovering duration, speed of the UAV, and length of the
path, the energy consumption of the UAV varies. Moreover,
when the probability of LoS is low, e.g., at low altitudes,
more measurement locations should be sampled due to sever
shadowing effect. However, at lower altitudes the range is
shorter and the link budget hence better. The range is also
shorter when the UAV is circling around a given area, giving
localization services only to a small area at the ground. There
clearly is a trade-off between the area that can be served,
the energy consumption of the UAV and the localization
accuracy. These trade-offs given realistic path loss, shadowing
and energy consumption models derive our study in this paper.

B. Related Works

The localization problem using terrestrial anchors (TAs) is
well investigated in the literature [3], [4]. Moreover, several
recent works addressed the case where aerial anchors such
as UAVs are used for localizing terrestrial nodes (TNs) [5]–
[8]. The path planning of a single mobile UAV for localizing
TNs is addressed in [6] and [5]. In Particular, authors in [6]
defined a bound on the positioning error of terrestrial nodes
(TNs). In [5], on the other hand, path planning algorithms that
allow a drone to measure and verify TNs positions securely
are proposed. However, in both [6] and [5] round trip time is
used for distance estimation which requires special waveforms
and very reliable clock. Path planning when using RSS for
localization is presented in [8]. A hybrid of static and adaptive
paths is proposed to minimize the localization accuracy and
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the trajectory length. Nevertheless, in this work the RSS-
distance relation is represented by a simplified model that
does not consider the dependency of path loss and shadowing
characteristics on the UAV altitude.

To the best of our knowledge [7] is the only report that
takes into account the variation of path loss exponent and
shadowing with UAV elevation angle in urban areas. In this
study, the optimum positioning of multiple UAVs hovering at
the same altitude is investigated. It has been shown that the
UAVs altitude has a significant influence on the localization
accuracy. In particular, UAVs at an optimum altitude provides
localization accuracy remarkably higher than that obtained
by ground anchors. However, this work requires multiple
UAVs which is more expensive than using one UAV and
requires communication coordination between them resulting
in high interface complexity. Moreover, in [7] the UAVs energy
consumption is not taken into account, which is of high
importance due to their limited source of energy resulting in
limited number of measurements; hence limited localization
accuracy.

C. Contribution and Paper Structure

In this paper we investigate the localization of stationary
TNs using a mobile aerial anchor. To this end, a rotary-wing
UAV is deployed that collects RSS measurements at different
waypoints. We propose a generic analytical framework that
includes height-dependent path loss and shadowing effects
for urban environments. Moreover, a model for UAV energy
consumption which enables us to provide practical insights
into the design of mobile UAV anchors is detailed. We
formulate the optimization problem and study the impact of
different design factors such as UAV’s altitude, number of
waypoints and hovering time. Furthermore, we characterize
the localization coverage using the Cramér-Rao lower bound
(CRLB). Our main objective is to minimize the localization
error for a given energy constraint via optimizing the UAV
trajectory, which is a novel design framework that needs to
jointly minimize the localization error and yet consider the
on-board energy limits. Our results show that flying at the
optimal altitude and trajectory radius that contains 4 waypoints
brings the average localization error from around 140m to
less than 70m for TNs uniformly distributed in a given area.
Trajectories with three and four waypoints are examined in
our simulations where in general the one with four waypoints
shows better performance. Moreover, the results show that
increasing the hovering time at waypoints can remarkably
decrease the localization error at the cost of higher energy
consumption.

The rest of this paper is organized as follows. In Section II
we introduce system assumptions and the employed channel
model. Section III discusses the UAV energy consumption
model. Subsequently, we formulate the optimization problem
for minimum localization error in Section IV. Section V
includes numerical results and guidelines for various design
factors. Finally, the conclusion is presented in Section VI.
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Fig. 1. An illustration of a UAV moving in a steady trajectory with
waypoints w = {wo,wi,wi+1,wo} and trying to localize TN.

II. SYSTEM MODEL

In this section we present the assumptions that our work
is based on. Subsequently, the channel model is thoroughly
explained.

A. System Assumptions

Consider a UAV flying at altitude h and acting as a mobile
aerial anchor to localize TNs. The on-board communication
technology depends on specific application communication
requirements. Appropriate technologies could be as advanced
as LTE or WiFi, or as simple as LPWAN. We assume that
the UAV follows a certain path that consists of a sequence of
waypoints, w = {wo,w1,w2, ...,wm,wo}, as illustrated in Fig.
1. Each path is characterized by its radius R and the number of
waypoints denoted as M = m+1. The direct distance between
a UAV at the i-th waypoint and a TN to be localized is denoted
by di . Moreover, as shown in the figure, ri and θi represent
the horizontal distance and the elevation angle with regard to
TN, respectively.

The first waypoint, namely wo, is the home waypoint at
which the UAV starts and ends the path. At each waypoint the
UAV collects data from TNs from which RSS measurements
are determined. Once the UAV has collected RSS measure-
ments from a TN at three waypoints, it can determine the
distances di , and consecutively the position of such a node
by multilateration. Subsequently, the estimated location of the
TN is updated by taking into account all the waypoints during
the mission. A well-known natural representation of the RSS-
distance relation is obtained from the path loss model equation.

B. Channel Model

The communication channels between the UAV and the
TNs are mainly LoS and non-LoS (NLoS). Following [10],
we consider LoS and NLoS links separately along with their
probabilities of occurrence. Accordingly, the path loss model
for LoS and NLoS links in dB are respectively [10]

PLLoS = 20 log(d) + 20 log
(
4π f

c

)
+ ψLoS, (1a)

PLNLoS = 20 log(d) + 20 log
(
4π f

c

)
+ ψNLoS, (1b)



where f is the carrier frequency, c denotes the speed of light
and d is the distance between the UAV and the TN, given
by d =

√
h2 + r2. Moreover, ψLoS and ψNLoS represent the

variations around the mean1 for LoS and NLoS, respectively.
Both ψLoS and ψNLoS represent log-normal random variables
[9]

ψj ∼ N(µj, σ2
j (θ)), j ∈ {LoS ,NLoS} (2)

where µj is the mean and σ2
j (θ) is the variance (in dB) given

by

σj(θ) = aj exp (−bjθ), j ∈ {LoS ,NLoS} (3)

with aj and bj being frequency and environment dependent
parameters. The probability of having a LoS link between the
UAV and TN can be expressed as

PLoS =
1

1 + ao exp (−boθ)
, (4)

where ao and bo are environment dependent constants and
θ is the elevation angle shown in Fig. 1. Furthermore, the
probability of NLoS is simply PNLoS = 1 − PLoS.

III. ENERGY CONSUMPTION OF UAV MISSIONS

The total energy consumption of a UAV includes two com-
ponents: the communication-related energy and the propulsion
energy, which is required to ensure that the UAV remains
aloft as well as for supporting its mobility. Practically, the
communication-related energy is usually ignorable compared
with the UAV’s propulsion energy, e.g., a few watts versus
hundreds of watts [11], and thus is ignored in this paper.
In this work we consider UAV paths at which UAVs have
two operational modes: the hovering mode in which the UAV
collects data from the TN and the forward flight mode in which
the UAV moves from one waypoint to another, in an straight
line connecting the two waypoints.

In fact for both flight modes there are three main sources
of power consumption [11], [12]:
• Blade Profile is the power required just to turn the rotors’

blade.
• Parasitic power which is the power used to overcome

the drag force that results when UAV moves through air.
This parasitic power is proportional to the cube of the
UAV airspeed v, making it zero when hovering and very
large at high speeds.

• Induced power is the power required to overcome the
induced drag of lift creation, which is an aerodynamic
drag force that occurs whenever a moving object redirects
the airflow coming at it. The induced power is inversely
proportional to the UAV airspeed. When hovering, all
the airflow which is available for lift creation must
be generated by the rotation of the main rotors. This
means that a small amount of air must be considerably
accelerated. However, when the UAV adds forward speed,

1In [9], [10] the authors called it excessive path loss. In this work the terms
shadowing and excessive path loss are used interchangeably.
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Fig. 2. Propulsion powers for a 5kg UAV versus the horizontal
velocity

it can achieve a higher mass flow through the rotor i.e.,
in forward flight the blade disc is getting more lift due
to the increased downward airflow. Subsequently, less
acceleration of air is needed from the motors to achieve
the same thrust for lift.

Now assuming a small tilt angle2 (< 5◦) of the UAV at
forward flight mode, by following [12] and [13], the total
power consumption can be written as:

Pf f = mgvind︸  ︷︷  ︸
induced

+
1
2
ρv3Cds︸     ︷︷     ︸
parasitic

+ ko

(
1 + 3

v2

v2
t

)
︸          ︷︷          ︸

blade profile

, (5)

where Cds is a constant depends on the UAV drag coefficient
and the reference area, ρ is known as the air density, g denotes
the standard gravity, m is the mass of the UAV in kilograms,
ko is a constant depends on the dimensions of the blade and
vt is the tip speed of the rotor blade. In (5), moreover, vind
is the mean propellers’ induced velocity in the forward fight
mode, given by

vind =

√√√√√
−v2 +

√
v4 +

(
mg
ρAd

)2

2
, (6)

where Ad is the area of the UAV. In case of hovering, i.e.,
v = 0, the power required for a quad-copter UAV to hover is

Ph = ko +

√
(mg)3
2ρAd

. (7)

In Fig. 2 we show the typical trends of the three propulsion
powers individually along with the total power consumption
versus UAV velocity v. As shown in the figure, when v = 0 the
UAV consumes more power compared with forward flight at
optimal velocity. Therefore, one has to minimize the number of
waypoints at which the UAV hovers with v = 0 and fly with the
optimal forward velocity to minimize the energy consumption.

2The angle that represents the small tilt UAV does in forward flight mode.



It is worth noting that the power consumption model in-
troduced in this section is not a new aerodynamic model
for the power consumption of rotary-wing UAVs. However,
it is a simplified model that is suitable for researchers in
communications theory. Interested readers may refer to [12]
for more comprehensive theoretical derivations.

IV. TRAJECTORY DESIGN FOR MINIMIZING THE
LOCALIZATION ERROR

Here, we formulate the optimization problem under consid-
eration. First we introduce the localization error model and
subsequently, present the coverage of the UAV during the
mission. Second, we propose our framework of choosing the
design parameters of the trajectory in order to minimize the
localization error. Trajectory design parameters are altitude,
hovering time, number of waypoints and the straight distance
between them.

A. Localization Error and Coverage

Following the channel model presented in Section II and
assuming that ELoS and ENLoS respectively represent the lo-
calization errors corresponding to LoS and NLoS components,
the average localization error can be written as

E = PLoS(θ) ELoS + [1 − PLoS(θ)]ENLoS. (8)

Without loss of generality we assume a 3D Cartesian coordi-
nate in which the TN location is (xg, yg, 0) whereas the UAV
position at any given time is (xa, ya, h). Consequently, given
the estimated distance r̂i and known projection (x(i)a , y

(i)
a ) of

the UAV at the ith waypoint, the position of the TN can be
estimated by finding the point (x̂ , ŷ) that satisfies

(x̂, ŷ) = argmin
x,y

{ M∑
i=1

(√
(x(i)a − xg)2 + (y(i)a − yg)2 − r̂i

)2
}
. (9)

where r̂i =
√

d̂i − h2 and d̂i is the estimated distance obtained
from (21) for LoS or NLoS link. Now, for an estimated
location (x̂ , ŷ) of a TN, the localization error is expressed
as

E j = ‖ r̂ − r ‖ =

√√√
M∑
i=1
| r̂i − ri |2, j ∈ {LoS ,NLoS} (10)

where r = [r1, r2, ..., rM ], r̂ = [r̂1, r̂2, ..., r̂M ] and ‖.‖ represents
the euclidean distance.

In order to localize a given TN and to exploit the benefits
of the trajectory, it must present in the coverage region of
the UAV at all waypoints. Mathematically speaking, the UAV
coverage for the distance estimator bounded by CRLB at the
i-th waypoint is written as

r (i)c = r |σ(d̂)=δσCRLB
, (11)

where σ(d̂) is the standard deviation of the distance estimator,
δ is the localization coverage factor and σCRLB denotes the
CRLB. The CRLB is known as one of the most important
performance benchmarks for ranging estimators [16]. Based
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Fig. 3. Localization coverage versus UAV altitude. M = 3 and R =
120m.

on the channel model considered in this work, the average
CRLB is expressed as

σ2
CRLB(θ) = P2

LoS(θ) σ
2
CRLB | LoS(θ)

+ [1 − PLoS(θ)]2σ2
CRLB |NLoS(θ), (12)

where σCRLB | LoS and σCRLB |NLoS are defined in the following
theorem.

Theorem 1. The Cramér-Rao lower bound for the RSS-based
distance estimator using an aerial anchor is given by:

σCRLB | LoS ≥ d ln(10)
20

aLoS exp(−θbLoS) (13)

σCRLB | NLoS ≥ d ln(10)
20

aNLoS exp(−θbNLoS) (14)

for LoS and NLoS, respectively.

Proof. The proof is given in Appendix A �

Now the radius r (i)c in (11) represents a coverage area Ac
(i).

Consequently, one can define the localization coverage area
as the intersection of the UAV coverage areas at all trajectory
waypoints in which the distance estimation error is bounded
by a factor of the Cramér-Rao lower bound. Mathematically,
for a trajectory with M waypoints it is given by

Ac
(loc) =

M⋂
i=1
Ac
(i). (15)

For a trajectory of three waypoints with identical coverage
radius, i.e., r (1)c = r (2)c = r (3)c = rc , a closed-form expression
for the intersection area is given by [14]

Ac
(loc) =

√
3

4
c2 +3

(
r2
c arcsin

(
c

2rc

)
− c

4

√
4r2

c − c2
)
, (16)

where

c =

√
3r2

c −
l2

2
− l

√
3r2

c −
3l2

4
(17)



and l is the distance between any two adjacent waypoints.
As an example, Fig. 3 presents Ac

(loc) together with Ac
(i)

for different UAV altitudes. The figure shows that for h ∈
[150, 1900] one guarantees a minimum localization coverage
of 0.12km2.

B. Trajectory Design

Consider a trajectory of radius R and M waypoints as shown
in Fig. 4, the distance between any two adjacent waypoints in
the trajectory is given by

lM = 2R sin
(
ϑ

2

)
, (18)

where ϑ = 2π
M is the angle between any two adjacent waypoints

within the trajectory. Using (18) one can control the trajectory
design parameters M and R. For instance, in Fig. 4 we fixed
R and plotted the cases for M = 3 and M = 4. Once M and R
are defined, the energy consumption of the trajectory can be
written as

Et =

M∑
i=1

t(i)
h

P(i)
h
+

M∑
j=1

l(j)M
v

P(j)
f f
, (19)

where t(i)
h

is the hovering time at the i-th waypoint. Now
assuming a limited on-board energy of Eth , in order to find
the design parameters that minimize the localization error, the
optimization problem can be written as

minimize
h, R, M, th

E

subject to Ñ = N,
M∑
i=1

t(i)
h

P(i)
h
+

M∑
j=1

l(j)M
v

P(j)
f f
= Eth,

M ≥ 3,

(20)

where N is the total number of TNs and Ñ is the number of
TNs within the localization coverage. Based on the formula-
tion provided in (20), various design parameters influence the
localization error. Firstly, h, as changing h affects both the
shadowing and the path loss. From (3), increasing h decreases
the variation around the mean which positively affects the
localization accuracy. However, concurrently, the slop of the
curve decreases due to the logarithmic RSS-distance relation.
At low slop, small variations produce large localization error.
Secondly, the radius, at which the trajectory is design around,
is crucial for both the localization accuracy and the energy
requirements. In one hand, large values of R are required,
preferably bigger than the radius of the serving area, so that
the multilateration method can preform better [5]. On the other
hand large values of R implies longer trajectories and hence
more energy consumption. Another important parameters in
(20) are the hovering time and the number of waypoints. Intu-
itively, the more RSS measurements the better the localization
accuracy. More RSS measurements can be collected by either
adding more waypoints or increasing the hovering time at

Fig. 4. An elevation view of UAV trajectories with 3 and 4 waypoints

Table I. Parameters list
Parameter Description value
M Number of waypoints 3 , 4
N Number of TNs 100
f Carrier frequency [GHz] 2
A Total area of TNs [km2] 0.12
E Localization error –
Eth Energy threshold –
lj Waypoints inter distance [m] –
h UAV’s altitude 200
h Hovering time [s] 5
R Trajectory radius 120
ρ Air density 1.225
m UAV mass [kg] 5
Cds drag and reference area coefficient 0.4
vt Tip speed of the blade 100
Ad UAV’s surface area [m2] 0.25
v UAV’s forward velocity [km/h] 40
ko Blade dimension constant 570
aLoS Shadowing constant 10
bLoS Shadowing constant 2
aNLoS Shadowing constant 30
bNLoS Shadowing constant 1.7
ao PLoS constant 47
bo PLoS constant 20
δ Localization coverage factor 2

each. However, hovering with strictly zero speed is known to
be energy-inefficient for rotary-wing UAVs. Thus, the energy-
constrained trajectory design on Eth needs to strike an optimal
balance between maximizing the localization accuracy and
minimizing the UAV’s propulsion energy consumption.

V. CASE STUDY: TRAJECTORIES WITH 3 AND 4
WAYPOINTS

In this section we investigate UAV trajectory design for
localization, numerically. In our simulations we assume 100
TNs uniformly distributed in a circular area with a radius
of 200m, centered at (x, y) = (0, 0). We consider a system
communication frequency of 2GHz. Moreover, we assume
that, the hovering time th is equal at all waypoints. During
the hovering time th at any given waypoint, the UAV collects
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data from TNs from which RSS is measured in rate of 2
RSS samples per second. The relevant system parameters and
their corresponding values are specified in details in Table I,
unless mentioned otherwise. In the following we investigate
each design parameter of the proposed framework.

1) UAV Altitude: Evidently, Fig. 5 and 6, show that the
UAV anchor outperforms the ground anchor when flying at
the optimal altitude. In Fig. 5, the localization error assuming
LoS and NLoS for a trajectory with M = 3 is illustrated. As
one can see, for both LoS and NLoS cases the error decreases
and then increases with h. The error decreases with h because
of the exponentially decreasing variance of the ψj with h [9].
On the other hand, for large values of h, and hence d, the low
resolution curve will be more vulnerable to excessive path loss
effects (i.e., tiny variations in the path loss model curve will
lead to a large estimation error), making localization accuracy
inversely related to h. Finally the figure also shows that The
localization error is always better for a LoS channel.

The localization error follows the same trend when it is
averaged over LoS and NLoS using (8) as shown in Fig. 6.
The figure also compares the localization error of trajectories
1 with 3 waypoints, and 2 with 4 waypoints, shown in Fig. 4.
Interestingly, we can see that optimizing the trajectory’s alti-
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tude can decrease the localization error from 150m to around
90m. Moreover, the trajectory with 4 waypoints provides better
performance than the one with 3 waypoints for the same
hovering time at each waypoint.

2) Trajectory Radius: In Fig. 7 we present how the tra-
jectory radius influences the localization error performance
when h and th are fixed. Furthermore, the figure presents
the energy requirements for each radius. The figure shows
that high localization errors occur when R is small (i.e.,
R = 50). This is due to the fact that, for multilateration, at
small distances between the anchor points, a small estimation
error in the distance will lead to a large error in the estimated
location. Hence, increasing R decreases the localization error
from 150m to 80m in trajectory 1 and from 95m to 65m in
trajectory 2 at optimal R. The cost here is the energy required
for larger R. For instance, 55kJ and 70 kJ are required at
optimal R for trajectory 1 and trajectory 2, respectively.

3) Hovering Time: Fig. 8 shows the localization error as a
function of hovering time. Increasing the hovering time implies
more RSS measurements collected which is very beneficial
to improve the accuracy at the cost of increased energy
consumption. As one can see in the figure, after 40 seconds
the two trajectories approach the same behavior based on our



simulations. An interesting finding here, is that optimizing
the trajectory matters more in the cases of low hovering
time and hence, limited energy. Otherwise, a trajectory with
three waypoints would be enough if the energy on-board can
supports longer hovering.

4) Number of Waypoints: The number of waypoints is yet
another important parameter in trajectory planning for local-
ization of TNs. In general, adding more waypoints improves
the system performance as shown in Fig. 6, Fig. 7 and Fig.
8. Nevertheless, injecting more waypoints in the trajectory
implies a longer total hovering time and longer traveling
distances for the UAV, leading to a higher energy consumption.

VI. CONCLUSION

In this paper, we studied the use of a moving UAV for
ground node localization in urban environments. We proposed
a generic analytical framework that enables us to study various
trade-offs when designing UAV networks for localization.
We provided a qualitative and quantitative understanding of
how the design parameters such as UAV altitude, hovering
time, traveling distance and number of waypoints affect the
localization service while considering the on-board energy-
constrained. Our findings show that mobile UAV anchor is
capable of providing a desirable localization service when
design parameters are optimized, outperforming that obtained
by ground anchors. In particular we showed that the UAV
altitude has a major influence on the localization accuracy
compared to other design parameters. However, for a short
hovering time the trajectory optimization is more crucial.

APPENDIX A
PROOF OF THEOREM 1

The time-averaged received power (in dBm) for j ∈ {LoS,
NLoS} can be written as

P(j)r = −20 log(d) − K − ψj + C, (21)

where C is a constant (in dBm) which depends on the
transmit power and received power to RSS transduction and
K = 20 log

(
4π f
c

)
. Note that for a given distance d, the time-

averaged received power given in (21) is a stochastic variable
following a shifted version of the probability density function
(PDF) of ψ(θ). Accordingly, the PDF of Pr conditioned on d
and θ is given by

f (j)Pr |d,θ (w) = fψ |d,θ (−w − 20 log(d) − K + C), (22)

where w is an auxiliary variable. The CRLB of the estimated
distance denoted as d̂ is then expressed as [16]

σ2
CRLB ≥

1

EPr |d,θ

{[
∂
∂d ln fPr |d,θ (w)

]2} , (23)

where EPr |d,θ {.} is the expectation conditioned on d and θ.
Using the PDF given in (22), it is straightforward to show that

∂

∂d
ln f (j)Pr |d,θ (w) = [−w − 20 log(d) − K + C]

× 20
d ln(10) σ2

j (θ)
(24)

We now substitute (3) in (24) and subsequently (24) in (23).
Then, after simplifications, one obtains (13) and (14) for LoS
and NLoS respectively.
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