
ar
X

iv
:1

80
7.

05
71

8v
1

 [
cs

.I
T

]
 1

6
Ju

l 2
01

8

Task Replication for Vehicular Edge Computing: A

Combinatorial Multi-Armed Bandit based Approach

Yuxuan Sun∗, Jinhui Song∗, Sheng Zhou∗, Xueying Guo†, Zhisheng Niu∗

∗Beijing National Research Center for Information Science and Technology

Department of Electronic Engineering, Tsinghua University, Beijing, China

Email: {sunyx15, sjh14}@mails.tsinghua.edu.cn, {sheng.zhou, niuzhs}@tsinghua.edu.cn
†Department of Computer Science, University of California, Davis, CA, USA

Email: guoxueying@outlook.com

Abstract—In vehicular edge computing (VEC) system, some ve-
hicles with surplus computing resources can provide computation
task offloading opportunities for other vehicles or pedestrians.
However, vehicular network is highly dynamic, with fast varying
channel states and computation loads. These dynamics are
difficult to model or to predict, but they have major impact on
the quality of service (QoS) of task offloading, including delay
performance and service reliability. Meanwhile, the computing
resources in VEC are often redundant due to the high density of
vehicles. To improve the QoS of VEC and exploit the abundant
computing resources on vehicles, we propose a learning-based
task replication algorithm (LTRA) based on combinatorial multi-
armed bandit (CMAB) theory, in order to minimize the average
offloading delay. LTRA enables multiple vehicles to process the
replicas of the same task simultaneously, and vehicles that require
computing services can learn the delay performance of other
vehicles while offloading tasks. We take the occurrence time of
vehicles into consideration, and redesign the utility function of
existing CMAB algorithm, so that LTRA can adapt to the time
varying network topology of VEC. We use a realistic highway
scenario to evaluate the delay performance and service reliability
of LTRA through simulations, and show that compared with
single task offloading, LTRA can improve the task completion
ratio with deadline 0.6s from 80% to 98%.

I. INTRODUCTION

To support autonomous driving and various kinds of on-

board infotainment services, future vehicles will possess strong

computing capabilities. It is predicted that each vehicle needs

about 106 dhrystone million instructions executed per second

(DMIPS) [1] computing power to enable self-driving. To

deliver safety messages or disseminate infotainment contents,

vehicles also need to communicate with other vehicles or

infrastructures through vehicle-to-vehicle (V2V) and vehicle-

to-infrastructure (V2I) communication protocols [2], such as

dedicated short-range communication (DSRC) [3] protocol

and LTE-V [4]. Consequently, vehicles will be connected with

each other and abundant in computing resources in the future.

To improve the utilization of vehicular computing resources,

the concept of vehicle-as-an-infrastructure has been proposed

[5], where vehicles can contribute their surplus computing

resources to the network, forming Vehicular Edge Computing

(VEC) systems [6]–[8]. VEC has huge potential to enhance

edge intelligence, and can enable a variety of emerging

applications that require intensive computing. Typical use

cases include safety-related cooperative collision avoidance

and collective environment perception for autonomous driving

[9], [10], vehicular crowdsensing for road monitoring and

parking navigation [11], and entertainments such as virtual

reality, augmented reality and cloud gaming for passengers

[12].

In VEC, computation tasks are generated by on-board

driving systems, passengers or pedestrians, and can possibly

be executed by vehicles through task offloading. In this con-

text, vehicles who provide cloud execution are called service

vehicles (SeVs), while vehicles that require task offloading

are called task vehicles (TaVs). In the literature, a semi-

Markov decision process based formulation for centralized

task offloading is given in [13], in order to minimize the

average utility related to delay and energy cost. However,

centralized task scheduling requires to collect the complete

state information of vehicles frequently, and the proposed

algorithm is highly complex to run. An alternative way is to

offload tasks in a distributed manner, i.e., each TaV makes task

offloading decisions individually [14]. In this case, TaV may

not be able to obtain the global state information of channel

states and computation loads of all available SeVs, which can

be learned while offloading tasks based on multi-armed bandit

(MAB) theory, as shown in our previous work [15].

Compared with mobile edge computing (MEC) [12], in

which computing resources are deployed at static base stations,

VEC has two major differences. On the one hand, vehicles

move fast, making the network topology and wireless channels

vary rapidly over time. On the other hand, the density of SeVs

is much higher than static edge clouds, and thus the computing

resources of VEC are more redundant than MEC.

To further improve the delay performance and service

reliability in VEC system, while exploiting the redundancy of

computing resources, task replication is a promising method,

in which task replicas are offloaded to multiple SeVs at the

same time and executed independently. Once one of these

SeVs transmits back the result, the task is completed. The

basic idea of task replication is to exchange the redundancy of

computing resources for QoS improvement. A centralized task

replication algorithm is proposed in [16], in order to maximize

the probability of completing a task before a given deadline.

However, the optimal task assignment policy is derived under

the assumption that the arrival of SeV follows Poisson process,

http://arxiv.org/abs/1807.05718v1

which may not be the realistic vehicle mobility model.

In this paper, we propose a learning-based task replication

algorithm (LTRA) based on combinatorial multi-armed bandit

(CMAB) theory [17]. To be specific, we first propose a

distributed task replication framework, in order to minimize

the average offloading delay. Based on CMAB theory, we

then design LTRA to deal with the challenge that TaV lacks

global state information of channel states and computation

loads of candidate SeVs, and characterize the upper bound

of its learning regret. We simulate the traffic in a realistic

highway scenario via traffic simulator Simulation for Urban

MObility (SUMO), and compare LTRA with our previously

proposed single offloading algorithm in [15]. Results show that

both the average offloading delay and service reliability can

be improved substantially through task replication.

The rest of this paper is organized as follows. In Section

II, we present the system model and problem formulation.

The task replication algorithm is then proposed in Section

III, followed by the performance analysis in Section IV.

Simulation results are shown in Section V. And finally, we

conclude the work in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Overview

In the VEC system, moving vehicles are classified into two

categories according to their roles in task offloading: TaVs

and SeVs. TaVs are the vehicles who generate computation

tasks that require cloud execution, while SeVs can share their

surplus computing resources and execute these computation

tasks. Note that each vehicle may be either a TaV or a SeV,

and its role can change over time, depending on whether it

has surplus computing resources to share.

Each TaV first discovers the SeVs within its communication

range for task offloading. In order to maintain a relatively long

contact duration, each TaV only selects its neighboring SeVs

with the same moving direction as candidates. Such infor-

mation can be acquired from V2V communication protocols

such as beaconing messages in DSRC [3]. Moreover, we do

not make any assumptions on the mobility model of vehicles.

We adopt task replication technique to improve the reliabil-

ity, and thus the delay of task offloading. Besides, we consider

distributed offloading in this work: each TaV makes the task

offloading decision on which SeVs should be selected to serve

each task independently, without inter-vehicle coordinations.

An exemplary task replication in VEC system is shown in Fig.

1, where TaV 1 finds SeVs 1-3 as candidates, and decides to

offload the current task replicas to SeV 1 and SeV 3.

B. Task Offloading Procedure

Since tasks are offloaded in a distributed manner, we then

focus on a single TaV of interest and design the corresponding

task offloading algorithm. Consider a discrete-time system

with a total number of T time periods. The candidate SeV

set at time period t is denoted as Nt, which may change over

time. Assume that the density of SeV is high enough such

that Nt 6= ∅ for ∀t, otherwise the TaV may seek help from

Fig. 1. Task replication in VEC system.

cloud servers at RSUs or in the Internet. The computation task

that requires to be offloaded at time period t is modeled by

three parameters (xt, yt, wt) according to [12]: xt is the input

data size (in bits) to be transmitted from TaV to SeV, yt is

the output data size (in bits) which is the computation result

transmitted back from SeV to TaV, and wt is the computation

intensity (in CPU cycles per bit) representing how many CPU

cycles are required to process one bit input data. The total

required CPU cycles to execute the task is then given by xtwt.

There are three offloading steps:

Task upload: During time period t, the TaV selects a subset

St of candidate SeVs with St ⊂ Nt, and offloads the task

replica to them simultaneously. We assume that the number

of selected SeVs is fixed as K , i.e., |St| = K ≤ |Nt|. For

each SeV n ∈ Nt, denote the uplink wireless channel state as

h
(u)
t,n , and the interference power I

(u)
t,n . The channel bandwidth

and transmission power are fixed as W and P , and the noise

power is σ2. Then the uplink transmission rate r
(u)
t,n between

the TaV and SeV n can be written as

r
(u)
t,n = W log2

(

1 +
Ph

(u)
t,n

σ2 + I
(u)
t,n

)

. (1)

Thus the delay of uploading the task from TaV to SeV n is

d
(u)
t (t, n) =

xt

r
(u)
t,n

. (2)

Task execution: After receiving the input data from TaV,

each SeV n ∈ St executes the task independently. Denote the

maximum CPU frequency of SeV n as Cn (in CPU cycles per

second). Each SeV may process multiple computation tasks at

the same time, either from its own user equipments or other

TaVs, and the allocated CPU frequency for the TaV of interest

is ft,n ∈ [0, Cn]. Then the computation delay of SeV n in time

period t is

dc(t, n) =
xtwt

ft,n
. (3)

Result feedback: The computation result is finally transmit-

ted back from each selected SeV n ∈ St to the TaV. Similar to

(1), the downlink transmission rate between SeV n and TaV

in time period t is given by

r
(d)
t,n = W log2

(

1 +
Ph

(d)
t,n

σ2 + I
(d)
t,n

)

, (4)

where h
(d)
t,n and I

(d)
t are the downlink channel state and the

interference at the TaV respectively. Therefore the downlink

delay from SeV n to TaV is

d
(d)
t (t, n) =

yt

r
(d)
t,n

. (5)

As a result, the offloading delay d(t, n) of SeV n is

the sum of uplink and downlink transmission delay and the

computation delay, written as

d(t, n) = d
(u)
t (t, n) + dc(t, n) + d

(d)
t (t, n). (6)

The actual offloading delay of each task that the TaV

experiences only depends on

min
n∈St

d(t, n). (7)

However, we still require all the other SeVs to finish execution

and transmit the result, in order to record the offloading delay

for the learning purposes, which will be introduced in detail

in Section III.

C. Problem Formulation

Given a total number of T time periods, our objective is to

minimize the average offloading delay of tasks, by deciding

which subset of SeVs should be selected to serve each task.

The problem is formulated as:

P1: min
S1,...,ST

1

T

T
∑

t=1

min
n∈St

d(t, n). (8)

The delay performance of each SeV mainly depends on

three variables: uplink transmission rate r
(u)
t,n , allocated CPU

frequency ft,n, and downlink transmission rate r
(d)
t,n . If these

variables are known to the TaV before it offloads each task,

the TaV can then calculate the exact offloading delay d(t, n)
of each SeV n, and select single SeV argminn∈Nt

d(t, n).
However, due to the movements of vehicles, the transmission

rates r
(u)
t,n and r

(d)
t,n are fast varying and hard to predict.

Meanwhile, the allocated CPU frequency ft,n is not easy to

know in prior due to the varying computation loads of SeVs.

Thus TaV may lack the exact global state information, and can

not distinguish which SeV provides the fastest computation for

each task.

Our solution is learning while offloading: we let the TaV

learn the delay performance of candidate SeVs through delay

observations while offloading tasks. To be specific, till time

period t, the TaV gets delay records {d(1, n), n ∈ S1},
..., {d(t − 1, n), n ∈ St−1}, estimates the delay perfor-

mance at the current time period, and selects a subset St =
argminS∈Nt

minn∈S d(t, n) to offload the task replica.

III. LEARNING WHILE OFFLOADING

In this section, we design learning-based task replication al-

gorithm, which guides the TaV to learn the delay performance

of candidate SeVs while offloading tasks, in order to minimize

the average offloading delay. We consider a simplified scenario

by assuming that tasks are of equal input, output data size

xt = x0, yt = y0 and computation intensity wt = w0 for

∀t. In fact, tasks often have similar input and output data size

ratio and computation intensity if they are generated by the

same kind of applications. And tasks with diverse input data

size can be partitioned into several subtasks of the same input

data size and offloaded in sequence, e.g., a long video frame

for object detection or classification can be divided into short

video clips through video segmentation [18].

The task replication is an online sequential decision making

problem, which have been investigated under the MAB frame-

work. In classical MAB problem [19], there are a fixed number

of base arms with unknown loss distributions. In each time

period, a decision maker tries a candidate base arm, observes

its loss, and update the estimates of its loss distribution.

The objective is to minimize the cumulative loss over time.

The classical MAB problem has been further extended to the

CMAB problem [17], where in each time period the decision

maker can try a subset of base arms (defined as a super arm),

observe the loss of all the base arms composing this super

arm, and minimize the cumulative loss of the system.

Our problem is similar to the CMAB problem with non-

linear loss function: each candidate SeV corresponds to a base

arm with unknown delay distribution, while the TaV is the

decision maker who selects a subset St of SeVs in each time

period t. The TaV can observe the delay d(t, n) (loss) of all

selected SeVs, and the system loss, i.e., the offloading delay,

is the minimum of the observed delay minn∈St
d(t, n), which

is a non-linear function.

The major difference between our task replication problem

and the existing CMAB problem is that, the candidate SeV

set Nt may change over time since vehicles are moving, and

it is difficult to predict when SeVs may appear or disappear,

and how long they can act as candidates. How to efficiently

learn the delay performance of candidate SeVs under such a

dynamic environment has not been investigated in the existing

work of CMAB.

We thus take into consideration the time varying feature of

candidate SeVs, and revise the existing CMAB algorithm in

[20] into learning-based task replication algorithm (LTRA), as

shown in Algorithm 1. Let d̃(t, n) = d(t,n)
dmax

be the normalized

delay, where d(t, n), ∀n ∈ St is the delay observed by

TaV, and dmax is the maximum delay allowed of each task

offloading. If in time period t, the computation result from

SeV n is not successfully received by the TaV till dmax,

we regard that the task is failed by SeV n, and set the

observed delay d(t, n) = dmax for learning purpose. And thus

d̃(t, n) ∈ [0, 1]. Denote D̂n as the empirical distribution of

the normalized delay d̃(t, n) of SeV n, and F̂n the cumulative

distribution function (CDF) of D̂n. Let kt,n be the number of

tasks offloaded to SeV n so far, β a constant factor, and tn
the occurrence time of SeV n.

In Algorithm 1, Lines 2-4 are the initialization phase, during

which the TaV selects a subset of K SeVs that contains at least

one newly appeared SeV. Note that the initialization phase not

only happens at the beginning of task offloading, but whenever

new SeVs occur.

Algorithm 1 Learning-based Task Replication Algorithm

1: for t = 1, ..., T do

2: if Any SeV n ∈ Nt has not connected to TaV then

3: Connect to any subset St ∈ Nt once, with n ∈ St.
4: Update empirical CDF F̂n of normalized delay

d̃(t, n) and selected times kt,n for each n ∈ St.
5: else

6: For each n ∈ Nt, define CDF Gn as

Gn(x) =

{

0 x = 0,

min
{

F̂n(x) +
√

β ln(t−tn)
kt−1,n

, 1
}

0 < x ≤ 1
.

(9)

7: Select a subset of candidate SeVs, such that

St = argmin
S⊂Nt

ED

[

min
n∈S

d(t, n)

]

, (10)

where Dn is the distribution of CDF Gn, and D = D1×
D2 × ...×D|Nt|.

8: Offload the task replica to all the SeV ∀n ∈ St.
9: Observe delay d(t, n) for each n ∈ St.

10: Update F̂n and kt,n ← kt−1,n+1 for each n ∈ St.
11: end if

12: end for

Lines 6-10 are the main learning phase. Due to the non-

linearity of the offloading delay minn∈St
d(t, n), the offload-

ing decision St depends on the entire delay distribution of each

candidate SeVs, rather than their means. Thus the learning

algorithm keeps updating the empirical CDF F̂n to learn the

entire distribution, and makes offloading decisions according

to F̂n. In Line 6, the CDF Gn(x) defined in (9) is a numerical

upper confidence bound on the real delay CDF of each SeV

n, which can balance the exploration-exploitation tradeoff

during the learning process: The TaV tends to explore SeVs

with fewer selected times kt,n to learn good estimates of

their delay distributions, while at the same time to exploit

SeVs with better empirical delay performance to optimize the

instantaneous offloading delay. The padding term

√

β ln(t−tn)
kt−1,n

also considers the occurrence time tn of each SeV n, such

that the newly appeared SeVs can be well explored, while the

empirical information of the existing SeVs can be exploited.

In Line 7, the TaV selects a subset of candidate SeVs that

minimizes the expectation of offloading delay according to

(10), where Dn is the distribution of CDF Gn, and D =
D1×D2× ...×D|Nt| is the joint distribution of all candidate

SeVs. Calculating St is actually a minimum element problem,

which can be solved by greedy algorithms [21]. Then the TaV

offloads the task replica to all the selected SeVs n ∈ St, waits

for their feedbacks to observe the delay, and finally updates

the empirical CDF F̂n of normalized delay d̃(t, n) and selected

times kt,n.

A. Implementation Considerations

Since the offloading delay is continuous, LTRA may suffer

from large storage usage and computational complexity as

t grows. To be specific, the observed delay values d(t, n)
of each SeV n might be different in each time period, and

thus the required storage for each empirical CDF F̂n is O(t).
Meanwhile, it takes O(t) time to calculate the numerical upper

confidence bound Gn(x), and the minimum element problem

in (10) is more complex to solve. To reduce the storage

usage and computational complexity of the algorithm, we can

discretize the empirical CDF F̂n to be F̃n, by partitioning

the range [0, 1] into l segments with equal interval 1
l
. The

support of the discretized CDF F̃n is { 1
l
, 2
l
, ..., 1}, and if the

normalized delay d̃(t, n) belongs to
(

j−1
l
, j
l

]

, the delay used

to update F̃n is j
l
.

IV. ALGORITHM PERFORMANCE

In this section, we characterize the performance of the

proposed LTRA. To carry out theoretical analysis, we assume

that the candidate SeV set Nt remains constant as N for the

total T time periods, and the delay d(t, n) of each candidate

SeV n is independent from other SeVs and i.i.d across time.

We will prove later through simulations in Section V that

without the aforementioned two assumptions, LTRA can still

work well.

Let dt = (d(t, 1), ..., d(t, N)) be the delay vector of

all candidate SeVs in time period t with N = |N |, and

L(dt,St) = minn∈St
d(t, n) the loss function. The expected

loss µSt
for choosing a subset St of candidate SeVs does

not change over time due to the i.i.d assumption, thus we

omit the subscript t and let µS = E[L(d,S)]. Moreover,

let S∗ = argminS⊂N µS be the optimal subset of SeV, and

µS∗ = minS⊂N µS its expected loss.

Define the cumulative learning regret RT as

RT = E

[

T
∑

t=1

L(dt,St)

]

− TµS∗ , (11)

which is the expected loss brought with learning as compared

to the optimal decisions, since the TaV does not know which

candidate SeV performs the best.

For any suboptimal subset S, let the expected delay gap

∆S = (µS − µS∗)/dmax. Define

∆n = min{∆S |S ⊂ N , n ∈ S, µS > µS∗}, (12)

and let Ns be the set of candidate SeVs which is contained in

at least one suboptimal subset.

In the following theorem, we provide an upper bound of the

cumulative learning regret of LTRA.

Theorem 1. Let β = 2
3 , then RT is upper bounded by:

RT ≤ dmax

(

C1K
∑

n∈Ns

lnT

∆n

+ C2

)

, (13)

where C1 = 2136 and C2 =
(

π2

3 + 1
)

N are two constants.

Proof. See Appendix A.

Theorem 1 shows that, our proposed LTRA can provide

a delay performance with bounded regret, compared to the

genie-aided case, where the delay distributions of candidate

SeVs are known in prior. To be specific, the cumulative

learning regret grows logarithmically with T , and is also

related to the number of selected SeVs and the performance

gap between different subsets of SeVs.

V. SIMULATIONS

In this section, we carry out simulations to evaluate the

delay performance and service reliability of the proposed

LTRA. We first use SUMO1 to simulate the traffic, and

then import the floating car data generated by SUMO into

MATLAB to evaluate the performance of LTRA.

The road used for traffic simulation is a 12km segment

of G6 Highway in Beijing, with two lanes and two ramps,

downloaded from Open Street Map (OSM)2. Vehicles come

from either the start of the road or the ramps, and when a

vehicle meets a ramp, it leaves the highway with a probability

of 0.5. The maximum speed allowed of both SeVs and TaVs

is 20m/s. The arrival rate of SeV ranges from 0.05s−1 to

0.4s−1, and the arrival rate of TaV ranges from 0.01s−1 to

0.2s−1.

The floating car data of SUMO includes the type, ID,

position, speed and angle of each vehicle, so that we can

calculate the distance of each SeV and TaV in MATLAB.

The communication range is set to 300m, and the wireless

channel h
(u)
t,n = h

(d)
t,n = A0d

−2
st , with A0 = −17.8dB and

dst the distance between TaV and SeV, according to [22].

The channel bandwidth W = 10MHz, transmission power

P = 0.1W, and noise power σ2 = 10−13W.

For each task, we set the input data size x0 = 1Mbits, its

computation intensity ω0 = 1000Cycles/bit, and the output

data size is very small and omitted. The maximum CPU fre-

quency Cn of each SeV is uniformly chosen within [2, 8]GHz.
In each time period, the allocated CPU frequency for TaVs

is randomly distributed from 0 to 60%Cn (each SeV also

needs to process tasks from its own driving system or UEs,

so it can not allocate all the computing resources for TaVs).

Note that each SeV may provide service for multiple TaVs

at the same time, and in the simulation, tasks offloaded by

TaVs are served by the first-come-first-serve queue discipline.

Moreover, parameter β in (9) is 0.6, and the default number

of discretization segments is 50.

We compare our proposed LTRA with 3 other algorithms:

1) Genie-aided Policy: assume that the TaV knows the global

state information of all candidate SeVs, and always selects

single SeV with minimum delay. This policy can not be

realized in the realistic VEC system. 2) Random Policy:

a naive policy, in which TaV randomly selects a SeV in

each time period to offload the task. 3) Single Offloading: a

learning-based task offloading policy proposed in our previous

1http://www.sumo.dlr.de/userdoc/SUMO.html
2http://www.openstreetmap.org/

0 100 200 300 400

Time period t

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

A
v
e

ra
g

e
 o

ff
lo

a
d

in
g

 d
e

la
y
 (

s
)

Genie-aided policy
LTRA, K=2
LTRA, K=3
LTRA, K=4
Single offloading
Random policy

Fig. 2. Average offloading delay of LTRA.

work [15], in which each TaV only selects a single SeV for

each task.

Fig. 2 shows the average offloading delay of LTRA with

the number of task replicas K = 2, 3, 4. On average, there

are about 8 candidate SeVs and 1 other TaV around our

target TaV. It is shown that with task replication, the delay

performance is improved to about 0.25s, while learning-based

single offloading algorithm can only achieve 0.33s. With

increasing number of task replicas, the average offloading

delay is closer to the genie-aided policy.

Fig. 3 shows the delay performance and service reliability

under different SeV densities. The x-coordinate, ranges from

2 to 11, is the average number of candidate SeVs around

our target TaV, and still there is another 1 TaV around. In

Fig. 3(a), the average offloading delay of LTRA decreases

along with the increasement of candidate SeVs, since LTRA

can exploit the redundant computing resources through task

replication. However, more task replicas do not always bring

performance improvement. When computing resources are

insufficient, too many task replicas may lead to long task

queues at candidate SeVs, which is not efficient. Fig. 3(b)

shows the task completion ratio given deadline 0.6s. When

there are more than 3 candidate SeVs, the task completion ratio

of LTRA outperforms single offloading. And when there are

more than 7 candidate SeVs, the service reliability of LTRA

can reach over 98%, while single offloading only achieves

about 80%. Therefore, with sufficient computing resources in

the VEC system, task replication is a promising method to

enhance the reliability of computing services .

In Fig. 4, the density of SeV is fixed, with about 8
candidates around the target TaV. As more TaVs competing the

computing resources with each other, the average offloading

delay of LTRA increases. To be specific, when the density

ratio of TaV and SeV is below 0.3, LTRA with 4 task replicas

outperforms LTRA with only 2 replicas. However, as the

density ratio grows higher, fewer number of replicas achieves

better delay performance. Thus the number of task replica

should be carefully selected under different traffic conditions.

Finally, we explore the impact of discretization level l on

2 4 6 8 10

Average candidate SeVs

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65
A

v
e

ra
g

e
 o

ff
lo

a
d

in
g

 d
e

la
y
 (

s
)

Genie-aided policy

Single offloading

Random policy

LTRA, K=2

LTRA, K=3

LTRA, K=4

(a) Average offloading delay.

2 4 6 8 10

Average candidate SeVs

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

T
a

s
k
 c

o
m

p
le

ti
o

n
 r

a
ti
o

Genie-aided policy

Single offloading

Random policy

LTRA, K=2

LTRA, K=3

LTRA, K=4

(b) Task completion ratio.

Fig. 3. Performance of LTRA under different number of candidate SeVs.

0 0.1 0.2 0.3 0.4 0.5

TaV/SeV density ratio

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

A
v
e

ra
g

e
 o

ff
lo

a
d

in
g

 d
e

la
y
 (

s
)

Genie-aided policy

Single offloading

Random policy

LTRA, K=2

LTRA, K=3

LTRA, K=4

Fig. 4. Average offloading delay of LTRA under different TaV and SeV
density ratio.

the average offloading delay and the runtime of the algo-

rithm. When the delay distribution is discretized into very

few segments, the runtime of LTRA is low, but the average

offloading delay is very poor and fluctuates severely. When the

discretization level is too high, the delay performance does not

improve much, but it takes more time to run LTRA. To get

good estimates of the realistic delay distributions, while saving

0 20 40 60 80

Discretization level

0.25

0.3

0.35

0.4

0.45

0.5

A
v
e

ra
g

e
 o

ff
lo

a
d

in
g

 d
e

la
y
 (

s
)

Genie-aided policy
LTRA, K=2
LTRA, K=3
LTRA, K=4
Single offloading

(a) Average offloading delay.

0 20 40 60 80

Discretization level

0

5

10

15

20

R
u

n
ti
m

e
 o

f
L

T
R

A
 (

m
s
)

LTRA, K=2

LTRA, K=3

LTRA, K=4

Single offloading

(b) Runtime of LTRA.

Fig. 5. Impact of discretization level l.

the runtime of LTRA at the same time, the discretization level

should be carefully selected. For example, under our settings,

the discretization level l should be about 40 to 50.

VI. CONCLUSIONS

In this work, we have investigated the task offloading

problem in VEC system, and proposed LTRA by combining

the task replication and sequential learning techniques, in order

to minimize the average offloading delay. LTRA enables each

TaV to learn the delay performance of candidate SeVs while

offloading tasks, and can adapt to the highly dynamic vehicular

environment. We have carried out simulations under a realistic

highway scenario, and compared the delay performance and

service reliability of LTRA to the existing single offloading

algorithm. Simulation results have shown that the average

delay of LTRA is close to the optimal genie-aided policy

and better than the single offloading policy. And when there

are sufficient SeVs, the performance can be highly improved

through a small number of task replications. Specifically, with

a given deadline 0.6s, the task completion ratio of LTRA can

reach 98% with only two replicas, while single offloading can

only achieve about 80%.

ACKNOWLEDGMENT

This work is sponsored in part by the Nature Science

Foundation of China (No. 91638204, No. 61571265, No.

61621091), and Intel Collaborative Research Institute for

Mobile Networking and Computing.

APPENDIX A

PROOF OF THEOREM 1

We prove that, under the assumption that the number of

candidate SeVs is fixed, our delay minimization problem is

equivalent to the reward maximization problem of standard

CMAB investigated in [20], and the proposed algorithm LTRA

is equivalent to the stochastically dominant confidence bound

(SDCB) algorithm proposed in [20].

First, the objective functions are equivalent, since

min
S1,...,ST

1

T

T
∑

t=1

min
n∈St

d(t, n)

=dmax min
S1,...,ST

1

T

T
∑

t=1

min
n∈St

d̃(t, n)

⇔ max
S1,...,ST

1

T

T
∑

t=1

[

max
n∈St

(

1− d̃(t, n)
)

]

. (14)

Since d̃(t, n) ∈ [0, 1], the reward function R(dt,St) =

maxn∈St

(

1− d̃(t, n)
)

∈ [0, 1], satisfying assumption 2 in

[20] with upper bound M = 1. Also, R(dt,St) is monotone,

which satisfies assumption 3 in [20].

Second, the numerical upper confidence bound Gn(x) can

be transformed to CDF Fn(x) defined in the SDCB algorithm

in [20]. Define F̂n(x) as the CDF of d̃(t, n), and F̂ ′
n(x) the

CDF of 1− d̃(t, n). It is easy to see that F̂ (x) = 1−F̂ ′(1−x).
Thus

Gn(x) = 1− Fn(1− x)

= 1−

{

max
{

F̂ ′
n(1− x)−

√

β ln t
kt−1,n

, 0
}

0 ≤ 1− x < 1,

1 1− x = 1

= 1−

{

max
{

1− F̂n(x)−
√

β ln t
kt−1,n

, 0
}

0 < x ≤ 1,

1 x = 0

=

{

0 x = 0,

min
{

F̂n(x) +
√

β ln t
kt−1,n

, 1
}

0 < x ≤ 1
. (15)

By substituting the reward upper bound M = 1, and let

α = 1 in Theorem 1 in [20], (13) can be derived.

REFERENCES

[1] Intel, “Self-driving car technology and computing requirements,” [On-
line] Available: https://www.intel.com/content/www/us/en/automotive/
driving-safety-advanced-driver-assistance-systems-self-driving-technol
ogy-paper.html

[2] S. Zhang, W. Quan, J. Li, W. Shi, P. Yang, and X. Shen, “Air-ground
integrated vehicular network slicing with content pushing and caching,”
[Online]. Available: https://arxiv.org/abs/1806.03860.

[3] J. B. Kenney, “Dedicated short-range communications (DSRC) stan-
dards in the United States,” Proceedings of the IEEE, vol. 99, no. 7,
pp. 1162-1182, Jul. 2011.

[4] S. Chen, J. Hu, Y. Shi, and L. Zhao, “LTE-V: A TD-LTE-based V2X
solution for future vehicular network,” IEEE Internet Things J., vol. 3,
no. 6, pp. 997-1005, Dec. 2016.

[5] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, “Vehicular fog
computing: A viewpoint of vehicles as the infrastructures,” IEEE Trans.

Veh. Technol., vol. 65, pp. 3860-3873, Jun. 2016.
[6] S. Abdelhamid, H. Hassanein, and G. Takahara, “Vehicle as a resource

(VaaR),” IEEE Netw., vol. 29, no. 1, pp. 12-17, Feb. 2015.
[7] S. Bitam, A. Mellouk, and S. Zeadally, “VANET-cloud: A generic

cloud computing model for vehicular ad hoc networks,” IEEE Wireless

Commun., vol. 22, no. 1, pp. 96-102, Feb. 2015.
[8] J. S. Choo, M. Kim, S. Pack, and G. Dan, “The software-defined

vehicular cloud: A new level of sharing the road,” IEEE Veh. Technol.

Mag., vol. 12, no. 2, pp. 78-88, Jun. 2017.
[9] 3GPP, “Study on enhancement of 3GPP support for 5G V2X services,”

3GPP TR 22.886, V15.1.0, Mar. 2017,
[10] S. Zhang, J. Chen, F. Lyu, N. Cheng, W. Shi, and X. Shen, “Vehicular

communication networks in automated driving era,” [Online]. Avail-
able: https://arxiv.org/abs/1805.09583.

[11] J. Ni, A. Zhang, X. Lin and X. S. Shen, “Security, Privacy, and Fairness
in Fog-Based Vehicular Crowdsensing,” IEEE Commun. Mag., vol. 55,
no. 6, pp. 146-152, Jun. 2017.

[12] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE

Commun. Surveys Tut., vol. 19, no. 4, pp. 2322-2358, Fourthquarter
2017.

[13] K. Zheng, H. Meng, P. Chatzimisios, L. Lei, and X. Shen, “An SMDP-
based resource allocation in vehicular cloud computing systems,” IEEE

Trans. Ind. Electron., vol. 62, no. 12, pp. 7920-7928, Dec. 2015.
[14] J. Feng, Z. Liu, C. Wu, and Y. Ji, “AVE: autonomous vehicular edge

computing framework with aco-based scheduling,” IEEE Trans. Veh.

Technol., vol. 66, no. 12, pp. 10660-10675, Dec. 2017.
[15] Y. Sun, X. Guo, S. Zhou, Z. Jiang, X. Liu, and Z. Niu, “Learning-

based task offloading for vehicular cloud computing systems,” IEEE

Int. Conf. Commun. (ICC) 2018, accepted.
[16] Z. Jiang, S. Zhou, X. Guo, and Z. Niu, “Task replication for deadline-

constrained vehicular cloud computing: Optimal policy, performance
analysis and implications on road traffic,” IEEE Internet Things J.,
vol. 5, no. 1, pp. 93-107, Feb. 2018.

[17] W. Chen, Y. Wang, and Y. Yuan. “Combinatorial multi-armed bandit:
General framework and applications,” Int. Conf. on Machine Learning

(ICML), Atlanta, GA, USA, Jun. 2013.
[18] M. Grundmann, V. Kwatra, M. Han, and I. Essa, “Efficient hierarchical

graph-based video segmentation,” in Proc. IEEE Conf. Comput. Vis.

Pattern Recog. (CVPR), San Francisco, CA, USA, Jun. 2010.
[19] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the

multiarmed bandit problem,” Machine learning, vol. 47, no. 2-3, pp.
235–256, 2002.

[20] W. Chen, W. Hu, F. Li, J. Li, Y. Liu, and P. Lu, “Combinatorial
multi-armed bandit with general reward functions,”Advances in Neural

Information Processing Systems, vol. 29, 2016.
[21] A. Goel, S. Guha, and K. Munagala, “How to probe for an extreme

value,”ACM Trans. on Algorithms, vol. 7, no. 1, Nov. 2010.
[22] M. Abdulla, E. Steinmetz and H. Wymeersch, ”Vehicle-to-vehicle

communications with urban intersection path loss models,” in Proc.

IEEE Global Commun. Conf. (GLOBECOM), Washington, DC, USA,
Dec. 2016.

https://arxiv.org/abs/1806.03860
https://arxiv.org/abs/1805.09583

