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Abstract—This paper considers an unmanned aerial vehicle
based mobile edge computing (UAV based MEC) system, where
we assume there is one UAV, acts as an edge cloud, providing
data processing services to the Internet of things devices (IoTDs).
We consider the UAV hovers at difference places for different
time to receive and process data for IoTDs. We aim to minimize
the energy consumption of the UAV, including its hovering
energy and computation energy, by optimizing the hovering time,
scheduling and resource allocation of the tasks received from
IoTDs, subject to the quality of service (QoS) requirement of all
the IoTDs and the computing resource available at UAV. This is
formulated as a mixed-integer non-convex optimization problem,
which is difficult to solve in general. We propose an efficient
iterative algorithm to get a high-quality suboptimal solution.
Simulation results show that our proposed method has a very
good performance compared with the other benchmarks.

Index Terms—Internet of Things, Mobile edge computing,
Unmanned aerial vehicle, Resource allocation.

I. INTRODUCTION

With the increasing popularity of Internet of things devices

(IoTDs), such as smart home, wearable, traffic and other

monitoring devices, more and more interesting applications

(e.g., pattern recognition, augmented-reality (AR), agriculture

monitoring) spring up in our daily life [1]. However, some

kinds of IoTDs (e.g., security cameras, meter collection de-

vices, temperature sensors) normally have very limited or

even no computation capability due to their limited physical

sizes. Therefore, it is difficult for these devices to process

its collected data and respond to environmental or other

changes intelligently. Fortunately, mobile edge computing

(MEC) brings the computation resource [2] closer to the users

and has the potential to provide the IoTDs with ’intelligence’

[3]. Nevertheless, in some areas, e.g., farming, their IoTDs

for monitoring may be too far from the wireless access point

or edge cloud infrastructure. In these cases, it is very difficult

for IoTDs to enjoy the benefit provided by the MEC. On the

other hand, it may not be cost-effective to install the whole

infrastructure to those remote devices as well.

Unmanned aerial vehicle (UAV), due to its high flexibility,

low cost and ease of deployment, has been widely applied

in civilian environment, such as natural disaster rescuing,

delivery of goods, and monitoring [4], [5].

By deploying the cloud computing-enabled UAV to the

remote IoTDs, we can not only save the cost of installing

the physical infrastructure, but also provide the computing

resource on demand [6]. Different from the previous systems

[7][8], the proposed system uses UAV as a flexible and flying

computing platform. Also, compared with traditional wireless

communication networks, UAVs may provide the line-of-sight

(LoS) air-to-ground communication links [9], which can save

the data transmission energy for low-battery IoTDs as well.

To illustrate how our proposed MEC-enabled UAV works,

we take the intelligent farming monitoring system as an

example. Assume the farm is far from the city and it installs

a lot of IoTD devices for monitoring purposes. The IoTD

collects the data from the environment in a certain frequency

and may store the data locally. The MEC-enabled UAV flies

up to the IoTDs to collect data and process them using its

computing capacity. The UAV may apply the trained machine

learning model to process data and then return the instructions

to the IoTDs. According to the computations in UAV, the

instructions to IoTDs may include adjustment of their data

collection frequencies or the working patterns. Then, the

IoTDs will conduct the operations following the instructions

from the UAV and wait for the next time when UAV hovers

up to the IoTDs again.

In this paper, we assume the UAV flies up to IoTDs

and hovering at certain locations. We aim to minimize the

energy consumption of the UAV, including its hovering energy

and computation energy, by optimizing the hovering time,

resource allocation and scheduling of the tasks received from

IoTDs, subject to the quality of service (QoS) requirement

of all the IoTDs and the computing resource available at

UAV. We formulate this problem as a mixed-integer non-

convex optimization, which is difficult to solve in general.

An efficient iterative algorithm is proposed to obtain a high-

quality suboptimal solution. Simulation results show that our

proposed method outperforms other traditional solutions.

The rest of this paper is organized as follows. Section II

introduces the system model and the optimization problem. In

Section III, an efficient iterative algorithm is proposed to solve

the proposed problem. Section IV provides the simulation

results. Finally, we conclude the paper in Section V.



II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model
An UAV-based MEC system for IoT devices is shown in

Fig.1, where we consider there are N IoTDs. The UAV flies

over all the IoTDs at a fixed altitude H meters in order to

process the data for IoTDs.

Fig. 1. A new UAV based MEC system for IoT devices.

Without loss of generality, a three-dimensional (3D) Eu-

clidean coordinate is adopted. We define O as the geometric

center of all IoTDs. The location of each i-th IoTD is given as

(xi, yi, 0), i ∈ N = {1, 2, ... , N }. We assume that the UAV

flies through the target area and hovers at M given locations,

and the location of the UAV is denoted by (X[t], Y [t], H),

t ∈ M = {1, 2, ... , M }. Each t-th hovering duration lasts

the time of T [t] seconds, where each IoTD selects one time

interval to transmit their data and waits for the executions and

instructions from the UAV.
Assume Di as the amount of transmitted data from each

i-th IoTD to the UAV and Fi is the total number of CPU

cycles that the UAV costs to process the data. Thus, one can

express the task from each i-th IoTD as

Ii = (Di, Fi), i = 1, 2, ..., N (1)

Di and Fi can be obtained by using the approaches provided

in [10].
We consider the returned instructions only cost a small

amount of data and therefore can be ignored from our model.

Assume each IoTD only chooses one UAV’s hovering stop to

offload its data but in UAV’s one stop, it can serve more than

one IoTD. Thus, one can have

ai[t] = {0,1}, ∀i ∈ N , ∀t ∈ M (2)

where ai[t] = 1 means the i-th IoTD chooses the t-th time

interval to transmit data, and otherwise, ai[t] = 0. Also, one

has
M∑
t=1

ai[t] = 1, ∀i ∈ N , ∀t ∈ M (3)

In UAV’s t-th hovering duration, we define Ti[t] as the time

allocated to each i-th IoTD. Then one can have

T [t] =

N∑
i=1

Ti[t], ∀i ∈ N , ∀t ∈ M (4)

where, we assume the tasks from IoTDs will be received and

executed sequentially. Then, the time used to send the data

from each i-th IoTD to the UAV in each t-th time slot is

TTr
i [t] =

Di

ri[t]
, ∀i ∈ N , ∀t ∈ M (5)

We define B as the channel bandwidth and Pi as the trans-

mission power of each i-th IoTD, σ2 as the noise power at the

receiver of each IoTD. The channel power gain of each i-th
IoTD in each t-th time slot is hi[t] =

h0

(X[t]−xi)2+(Y [t]−yi)2+H2

[6]. The h0 represents the received power at the reference

distance d0 = 1 m. In each t-th hovering place, the achievable

uplink data rate for each i-th IoTD to the UAV is given by

ri[t] = B log2

(
1 +

Pihi[t]

σ2

)
, ∀i ∈ N , ∀t ∈ M (6)

In each t-th hovering place, the required time for data pro-

cessing at the UAV is

TC
i [t] =

Fi

fi[t]
, ∀i ∈ N , ∀t ∈ M (7)

We assume the maximal computation resource of the UAV

assigning to each IoTD as fmax and then one can have

0 ≤ fi[t] ≤ fmax, ∀i ∈ N , ∀t ∈ M (8)

where fi[t] is the actual computation resource allocated by

the UAV. Assume all the transmitting and computing process

for each IoTD has to be completed in Ti[t], then one has

ai[t](T
Tr
i [t] + TC

i [t]) ≤ Ti[t], ∀i ∈ N , ∀t ∈ M (9)

Also, the UAV is required to provide sufficient computing

resource for each IoTD

M∑
t=1

ai[t]fi[t]T
C
i [t] ≥ Fi, ∀i ∈ N , ∀t ∈ M (10)

We define the computing energy consumption of the UAV for

each task as κi(fi[t])
viTC

i [t], where κi ≥ 0 is the effective

switched capacitance and vi is the positive constant. To match

the realistic measurements, we set κi = 10−27 and vi = 3 [11]

here.

Define Ph as the power consumption when the UAV is

hovering, φ as the weight between the computing energy

consumption (denoted by EC) and the hovering energy con-

sumption (denoted by EH ) of the UAV. Also, define the

hovering energy of the UAV in each t-th stop as Eh[t]. Using

eq. (7), the total energy consumption (denoted by E) of the

UAV can be given as

E = EC + EH (11a)

=

N∑
i=1

M∑
t=1

ai[t]κi(fi[t])
viTC

i [t] + φ

M∑
t=1

Eh[t] (11b)

=

N∑
i=1

M∑
t=1

κiFiai[t](fi[t])
2
+ φPh

N∑
i=1

M∑
t=1

Ti[t] (11c)



B. Problem Formulation

Let A = {ai[t], ∀i ∈ N , ∀t ∈ M}, F = {fi[t], ∀i ∈
N , ∀t ∈ M}, T = {Ti[t], ∀i ∈ N , ∀t ∈ M}. Also,

assume the locations of IoTDs are fixed and known. In the

optimization problem below, we aim to jointly optimize the

scheduling (i.e., A), resource allocation (i.e., F ), and UAV’s

hovering durations (i.e., T ) at each location.

P: minimize
A,F ,T

N∑
i=1

M∑
t=1

κiFiai[t](fi[t])
2
+ φPh

N∑
i=1

M∑
t=1

Ti[t]

(12a)

s.t.

M∑
t=1

ai[t]fi[t]T
C
i [t] ≥ Fi, ∀i ∈ N , ∀t ∈ M

(12b)

ai[t](T
Tr
i [t] + TC

i [t]) ≤ Ti[t], ∀i ∈ N , ∀t ∈ M
(12c)

ai[t] = {0,1}, ∀i ∈ N , ∀t ∈ M (12d)

0 ≤ fi[t] ≤ fmax, ∀i ∈ N , ∀t ∈ M (12e)

M∑
t=1

ai[t] = 1, ∀i ∈ N , ∀t ∈ M (12f)

One can see that P is a mixed-integer non-convex problem,

which is difficult to solve in general. Next, we will propose an

efficient iterative algorithm to obtain a high-quality suboptimal

solution.

III. PROPOSED ALGORITHM

To solve P , firstly, we relax the binary variables in the

constraint (12d) into continuous variables as

0 ≤ ai[t] ≤ 1, ∀i ∈ N , ∀t ∈ M (13)

However, due to the non-convex objective function (12a)

and non-convex constraints (12b-d), P still cannot be solved

directly using standard optimization methods. Thus we pro-

pose an efficient iterative algorithm for the relaxed problem

by using the block coordinate descent [12] optimization tech-

nique.

A. Computing Resource Allocation Optimization

Given any IoTDs selection scheme A and the UAV hovering

durations T , we can obtain the following computing resource

allocation optimization problem as

minimize
F

N∑
i=1

M∑
t=1

κiFiai[t](fi[t])
2

(14a)

s.t.
ai[t]ri[t]Fi

Ti[t]ri[t]− ai[t]Di
≤ fi[t] ≤ fmax (14b)

(12b), ∀i ∈ N , ∀t ∈ M
The constraint (14b) is obtained by simplifying the con-

straint (12c) and combining the constraint (12e) with (12c).

The objective function (14a) is the sum of N × M convex

functions and the constraint function of (12b) and (14b) is also

convex. Therefore, problem (14) is a convex problem and can

be solved by applying convex optimization technique such

as the interior-point method [13]. To gain more insight, we

next use the Lagrange dual method to obtain a well-structured

solution for gaining essential engineering insights.
The Lagrange multipliers associated with the constraints

in (12b) is given as μ � {μi ≥0, ∀i ∈ N}. The partial

Lagrangian function of problem (14) is

L(F ,μ) =

N∑
i=1

M∑
t=1

κiFiai[t](fi[t])
2
+

N∑
i=1

μi(Fi −
M∑
t=1

ai[t]fi[t]T
C
i [t])

(15)

Then the dual function of problem (14) can be given as

g(μ) = min
F

L(F ,μ)

s.t. (14b)
(16)

Thus, the dual problem of problem (14) is

max
μ

g(μ) (17a)

s.t. μi ≥ 0, ∀i ∈ N (17b)

Since problem (14) is convex and it also satisfies the Slater’s

condition, strong duality holds between problems (14) and

(17). As a result, one can solve problem (14) by equivalently

solving its dual problem (17).
1) Derivation of Dual Function g(μ): Given any μ, we

obtain g(μ) by solving problem (16). Note that problem (16)

can be decomposed into the following N ×M subproblems.

min
F

κiFiai[t](fi[t])
2 − μiai[t]fi[t]T

C
i [t] (18)

s.t. (14b)
According to the monotonicity of objective function, we

present the optimal solution of problem (18) as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f∗
i,a[t] =

ai[t]ri[t]Fi

Ti[t]ri[t]− ai[t]Di
, if 0 ≤ μi,a < bi[t](19a)

f∗
i,b[t] =

μiTi[t]

2κiFi
, if bi[t] ≤ μi,b ≤ 2κiFifmax

TC
i [t]

(19b)

f∗
i,c[t] = fmax, if μi,c >

2κiFifmax

TC
i [t]

(19c)

In eq. (19a-c), we divide the optimal solution to F as f∗
i,a[t],

f∗
i,b[t] and f∗

i,c[t], respectively, in accordance with three parts

of μ’s defined domain in (19a-c). Let μi,a, μi,b and μi,c

represent three different kinds of μi in (19a-c) intervals. Also,

we define bi[t] =
2κiai[t]ri[t]F

2
i

TC
i [t](Ti[t]ri[t]−ai[t]Di)

for simplification.

2) Obtaining μ∗ to Maximize g(μ): Solving dual problem

(17) means obtaining μ∗ in their defined domain to maximize

g(μ). In accordance with eq. (19a-c), we first put eq. (19b)

into problem (17), thus we obtain

max
μ

g(μ) =

N∑
i=1

[−(

M∑
t=1

ai[t]T
C
i [t]

2

4κiFi
)μ2

i + Fiμi] (20a)

s.t. bi[t] ≤ μi ≤ 2κiFifmax

TC
i [t]

(20b)



Note that problem (20) can be decomposed into the following

N sub problems.

max
μ

− (

M∑
t=1

ai[t]T
C
i [t]

2

4κiFi
)μ2

i + Fiμi

s.t. (20b)

(21)

According to the monotonicity of objective quadratic func-

tion, one can have μ∗ under the constraint (20b). Similarly,

we can obtain μ∗ under the constraint (19a) and (19c), thus

the optimal solution to μ∗ is

μ∗
i,a =

⎧⎪⎨
⎪⎩
bi[t]

M∑
t=1

ai[t]
2
ri[t]T

C [t]

Ti[t]ri[t]− ai[t]Di
< 1

0 otherwise

(22)

For brevity, we define βi =
M∑
t=1

ai[t]T
C[t]2

4κiFi
, thus we obtain

μ∗
i,b =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2κiFifmax

TC
i [t]

βi <
TC
i [t]

4κifmax

bi[t]
Fi

2βi
< bi[t]

Fi

2βi
otherwise

(23)

μ∗
i,c =

⎧⎪⎨
⎪⎩

2κiFifmax

TC
i [t]

Fi ≤
M∑
t=1

ai[t]T
C
i [t]fmax

+∞ otherwise

(24)

Duo to (12b), Fi ≤
M∑
t=1

ai[t]T
C [t]fmax can always be

achieved, thus

μ∗
i,c =

2κiFifmax

TC
i [t]

(25)

Therefore, the optimal solution to F ∗ can be obtained by

f∗
i [t] =

argmax
f∗
i [t], μ∗

i

{g(f∗
i,a[t], μ∗

i,a), g(f∗
i,b[t], μ∗

i,b), g(f∗
i,c[t], μ∗

i,c)}
(26)

We introduce the computing resource allocation between the

UAV and IoTDs as Algorithm 1.

Algorithm 1 Computing resource allocation algorithm

1: Use eq. (22-24) to obtain μ∗
i,x ∀i ∈ N , ∀x ∈ {a, b, c};

2: Obtain f∗
i,x[t] in accordance with eq. (19) ∀i ∈ N , ∀t ∈

M, ∀x ∈ {a, b, c};

3: Use eq. (26) to obtain f∗
i [t] ∀i ∈ N , ∀t ∈ M;

4: Return: The optimal computing resource allocation F ∗.

B. Joint IoTDs Selection and Hovering Duration Optimization

Given any computing resource allocation scheme F , we can

obtain the following IoTDs selection and hovering duration

optimization problem

minimize
A,T

N∑
i=1

M∑
t=1

κiFiai[t](fi[t])
2
+ φPh

N∑
i=1

M∑
t=1

Ti[t]

(27a)

s.t. Ti[t] ≥ ai[t](
Fi

fi[t]
+

Di

ri[t]
), ∀i ∈ N , ∀t ∈ M

(27b)

(13), and (12f)

Given any fi[t] and using eq. (7), constraint (12b) can be

replaced by (12f). Constraint (27b) is non-convex because the

optimization variable Ti[t] is directly divided by the other

optimization variable ai[t]. Notice that the object function

of problem (27) consists of two independent parts, including

computing energy and hovering energy. As for the hovering

energy saving purpose, the equality of the time constraint

holds for (27b), thus we obtain

T ∗
i [t] = ai[t](

Fi

fi[t]
+

Di

ri[t]
) (28)

And the total optimal hovering duration of each t-th time slot

can be obtained by eq. (4). Hence we obtain

minimize
A

N∑
i=1

M∑
t=1

[κiFi(fi[t])
2
+ φPh(

Fi

fi[t]
+

Di

ri[t]
)]ai[t]

(29)

s.t. (13), and (12f)

Problem (29) is a linear programming (LP) problem, which

can be solved by the well established optimization tool-

box, e.g., CVX [14] optimally and efficiently. Fortunately,

for each i-th IoTD, given fi[t], ai[t] = 1 if and only

if κiFi(fi[t])
2
+ φPh( Fi

fi[t]
+ Di

ri[t]
) is minimum, otherwise,

ai[t] = 0. Consequently, the optimal solutions A to the LP

problem (29) can all be obtained at A’s boundary, thus the

optimal solution A of subproblem (29) is binary, and there’s

no need to reconstruct a binary solution to the original P .

C. Overall Algorithm

Algorithm 2 Overall algorithm for joint optimization problem

1: Initialize: A0, T 0 and let k = 1;

2: Repeat:
3: Use algorithm 1 to obtain F k;

4: Use CVX tool box, and (28) to obtain Ak, T k;

5: Update k = k+1;

6: Until: the fractional decrease of E is below a threshold

ε or a maximum number of iterations (kmax) is reached;

7: Return: The optimal IoTDs selection scheme A∗, com-

puting resource allocation F ∗, and hovering durations T ∗

in each time slot.

In general, we first use the Lagrange dual method to

optimize the UAV computing resource allocation scheme F



under the given IoTDs selection scheme A and the UAV

hovering durations T , then for given computing resource

allocation scheme F , we use the LP optimization technique

to obtain A and T . Fortunately, the optimal solution to the

LP subproblem is obtained at A’s boundary, and there’s no

need to reconstruct a binary solution to the original P . In

general, we introduce the overall iterative algorithm to solve

P as Algorithm 2.

IV. SIMULATION RESULTS

In this section, simulation results are presented to show

the effectiveness of the proposed joint optimization design.

We suppose an UAV flies over N = 100 IoTDs, which are

distributed within a geographic area of size 1 × 1 km2, and

hovers M = 3 times at the given locations. Moreover, the

UAV maximum total computation capacity is set to 10 G CPU

cycles per second and the UAV flies and hovers at a fixed

altitude H = 40 m. We set the bandwidth as B = 1 MHz,

the channel power gain at the reference distance of 1 m as

- 40 dB and the noise power at each IoTD as - 60 dBm.

The transmission power of each IoTD is set as 2.82 mW. The

maximum transmission rate is below 250 kbps. We set the

effective switched capacitance κi = 10−27. The UAV hovering

power consumption is set as Ph = 59.2 W [15]. We set the

weight φ as 8.4 × 10−4.

In Fig.2 and Fig.3, we show the energy-effectiveness and

the time-effectiveness of our proposed algorithm, respectively.

We compare our proposed solutions with random selection and

fixed frequency benchmarks. The random selection means that

the IoTDs select UAV’s hovering locations randomly, while

the fixed frequency benchmark means that the UAV sets its

computing frequency as 1/2 fmax for all the IoTDs.
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Fig. 2. The UAV energy consumption versus the IoTD sensed data size Di.

In Fig. 2, one can see that with the increase of the trans-

mitted data from each IoTD, the UAV’s energy consumption

rises correspondingly.

Next, we show the total hovering time including the re-

quired time for data processing at the UAV and the transmis-

sion time from all IoTDs to the UAV.
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Fig. 3. The UAV total hovering time versus the number of IoTDs.

In Fig. 3, with the increase of the number of IoTDs, the

UAV hovering time rises as well, as expected. One can also

see that in both figures, our proposed algorithm outperforms

the other two benchmarks.
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Fig. 4. The gap between the optimal solution and our proposed suboptimal
solution.

In Fig. 4, we set the data size as 500 KBytes and com-

pare our proposed algorithm with the exhaustive search. The

exhaustive search can be considered as the optimal solution.

However, it just searches all the feasible solutions, which has

the lowest efficiency. One can see that the performance of our

algorithm is very close to the exhaustive algorithm but we

have much less complexity.

V. CONCLUSION

In this paper, we propose an UAV based MEC system, in

which we assume the UAV with cloud computing enhanced

system, hovering at several places to receive data from the

IoTDs and to process data for them. We formulate the whole

process as an mixed-integer non-convex optimization problem.

To solve this problem, an efficient iterative algorithm has

been proposed, by jointly optimizing the resource allocation,



scheduling and UAV’s hovering time. Simulation results show

that our proposed design has better performance than other

benchmarks.
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