
1

Cellular-Connected UAV: Uplink Association,
Power Control and Interference Coordination

Weidong Mei, Qingqing Wu, Member, IEEE, and Rui Zhang, Fellow, IEEE

Abstract—The line-of-sight (LoS) air-to-ground channel brings
both opportunities and challenges in cellular-connected un-
manned aerial vehicle (UAV) communications. On one hand,
the LoS channels make more cellular base stations (BSs) visible
to a UAV as compared to the ground users, which leads to a
higher macro-diversity gain for UAV-BS communications. On
the other hand, they also render the UAV to impose/suffer
more severe uplink/downlink interference to/from the BSs, thus
requiring more sophisticated inter-cell interference coordination
(ICIC) techniques with more BSs involved. In this paper, we
consider the uplink transmission from a UAV to cellular BSs,
under spectrum sharing with the existing ground users. To
investigate the optimal ICIC design and air-ground performance
trade-off, we maximize the weighted sum-rate of the UAV and
existing ground users by jointly optimizing the UAV’s uplink
cell associations and power allocations over multiple resource
blocks. However, this problem is non-convex and difficult to be
solved optimally. We first propose a centralized ICIC design
to obtain a locally optimal solution based on the successive
convex approximation (SCA) method. As the centralized ICIC
requires global information of the network and substantial
information exchange among an excessively large number of BSs,
we further propose a decentralized ICIC scheme of significantly
lower complexity and signaling overhead for implementation, by
dividing the cellular BSs into small-size clusters and exploiting
the LoS macro-diversity for exchanging information between the
UAV and cluster-head BSs only. Numerical results show that
the proposed centralized and decentralized ICIC schemes both
achieve a near-optimal performance, and draw important design
insights based on practical system setups.

Index Terms—Unmanned aerial vehicle (UAV), cellular-
connected UAV, uplink, inter-cell interference coordination, spec-
trum sharing, cell association, power control, macro-diversity.

I. INTRODUCTION

The demand for unmanned aerial vehicles (UAVs), com-
monly known as drones, has been soaring globally over the
recent years, due to their steadily decreasing cost and various
emerging applications for e.g., aerial imaging, cargo transport,
inspection, and communication platform [2]. As projected by
the Federal Aviation Administration (FAA), the number of
UAVs in civilian use, estimated at about 42,000 in 2016, will
skyrocket to as many as 442,000 by 2021 [3]. To pave the
way towards large-scale deployment of UAVs in the future,
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it is of paramount importance to support high-performance
UAV-ground communications with ubiquitous coverage, low
latency, and high reliability/throughput. This helps realize real-
time command and control for UAV safe operation as well
as rate-demanding payload data communication with ground
users in various applications [4]. However, at present, almost
all UAVs in the market rely on the simple direct point-to-point
communication with their ground pilots over the unlicensed
spectrum (e.g., the industrial, scientific and medical (ISM)
band at 2.4GHz). Such communication is typically of limited
data rate, unreliable, insecure, vulnerable to interference, and
can only operate within the visual line-of-sight (VLoS) range,
thus severely limiting the future applications of UAVs.

Recently, cellular-connected UAV has been considered as a
promising new solution, by integrating UAVs into the cellular
network as new aerial user equipments (UEs) served by the
ground base stations (BSs). Thanks to the superior perfor-
mance of today’s Long Term Evolution (LTE) and future fifth-
generation (5G) cellular networks, cellular-connected UAV is
anticipated to achieve significant performance enhancement
over the existing point-to-point UAV-ground communications
over the unlicensed bands, in terms of all of reliability,
coverage and throughput [5]. In fact, the 3rd Generation
Partnership Project (3GPP) approved a new work item [6]
to discuss the enhanced LTE support for aerial vehicles in
early 2017. Preliminary field trials have also demonstrated
that it is feasible to support the basic communication require-
ments for UAVs with the LTE network [7]–[9]. On the other
hand, thanks to the continuous improvement in UAV payload
weight and communication device miniaturization, UAVs can
also be utilized as aerial communication platforms (such as
quasi-stationary aerial BSs/relays [10]–[12], as well as their
mobile counterparts [13]–[22]) to assist in terrestrial wireless
networks by providing/enhancing communication services to
ground UEs. This gives rise to another new research paradigm,
namely UAV-aided terrestrial communication. In this paper, we
focus on the former paradigm, i.e., cellular-connected UAV
communication.

Despite of the evident advantages and significant industrial
efforts for cellular-connected UAV, several crucial issues need
to be resolved for its efficient realization. First, how to achieve
seamless and high-quality three-dimensional (3D) coverage
for both aerial and ground UEs is a challenging problem.
In the current LTE network, BS antennas are usually down-
tilted in order to enhance the performance of ground UEs with
suppressed inter-cell interference (ICI). However, as UAVs
generally fly at higher altitude than the BSs, they may be
served only by the BS antenna side-lobes with weak antenna

ar
X

iv
:1

80
7.

08
21

8v
2 

 [
cs

.I
T

] 
 1

5 
A

ug
 2

01
9



2

gains when integrated into the LTE network. In [23] and [24],
the coverage probability of a downlink cellular network that
serves both aerial and ground users is analyzed in terms of
key system parameters such as BS height, antenna pattern and
UAV altitude under different BS association rules. Moreover,
massive multiple-input multiple-output (MIMO) is proposed
in [25], where the antenna spacing for a large-size array at the
BS is optimized to maximize the uplink capacity of a massive
MIMO-enabled multi-UAV communication system. Second,
the 3D mobility of UAVs offers additional flexibility for im-
proving the communication performance via a communication-
aware UAV trajectory design. For example, the UAV trajectory
can be flexibly designed based on the known locations of
the BSs in its fly direction as well as the distribution of the
ground users to ensure its communication coverage by the
associated BSs and at the same time reduce the interference
to/from the ground users/non-associated BSs. In [26], the
UAV trajectory is optimized to minimize the UAV mission
completion time, subject to a quality-of-connectivity constraint
with its associated BSs specified by a minimum received
signal-to-noise ratio (SNR) requirement which needs to be
satisfied along the UAV trajectory. Two efficient methods are
proposed in [26] to find high-quality approximate trajectory
solutions by leveraging the techniques from graph theory and
convex optimization.

In this paper, we aim to address another challenging issue
on how to ensure the efficient coexistence between ground and
aerial UEs, via proper aerial-ground interference management.
Different from the conventional terrestrial systems, the high
UAV altitude leads to unique UAV-BS line-of-sight (LoS)
channels in cellular-connected UAV communication, which
bring both opportunities and challenges. On one hand, the
presence of LoS links leads to more reliable communication
channels as compared to terrestrial channels between the
ground UEs and BSs, which in general suffer from more
severe path-loss, shadowing and multi-path fading. Besides,
the LoS channels also make a UAV being potentially served
by much more BSs at the same time, thus yielding a higher
macro-diversity gain in cell associations compared to ground
UEs. However, on the other hand, the dominance of LoS
links also renders the UAV to impose/suffer more severe
uplink/downlink interference to/from a much larger number of
BSs than ground UEs. This makes the inter-cell interference
coordination (ICIC) a more challenging problem to solve.
Although ICIC has been extensively studied in terrestrial
cellular networks (see e.g., [27], [28] and the references
therein), such techniques may fail to mitigate the strong UAV
interference and as a result lead to highly limited frequency
reuse in the network after incorporating UAV UEs and hence
low spectral efficiency of both ground and UAV UEs. This is
because existing ICIC techniques are mainly designed to deal
with the terrestrial interference to/from ground UEs, which,
due to the “unfavorable” terrestrial channels, in fact only need
to involve the coordination of at most a few cellular BSs.
Whereas in cellular-connected UAV communication, due to
the dominating LoS channels, a much larger ICIC region
consisting of considerably more (say, tens or even hundred
of) BSs is generally required (see Fig. 1), which incurs pro-
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Fig. 1. Uplink UAV communication in a cellular network.

hibitive complexity and overhead in practical implementation.
Therefore, efficient and yet low-complexity ICIC designs are
needed for enabling efficient spectrum sharing between the
UAV and ground UEs in future cellular network, which, to
the authors’ best knowledge, have not been investigated in the
literature. It is worth noting that there have been some initial
studies on aerial interference mitigation in the literature [5],
[29]–[31], which mainly validate the performance of existing
ICIC techniques for cellular-connected UAVs via simulations
or measurements, but not from an optimal design perspective.

Motivated by the above, this paper studies on the uplink
ICIC design for a cellular network with co-existing UAV and
ground UEs. Our goal is to mitigate the UAV’s strong uplink
interference to co-channel ground UEs at their associated BSs
within the UAV’s large ICIC region (see Fig. 1) and yet achieve
a flexible trade-off between the performances of the UAV and
ground UEs. Towards this end, we maximize the weighted
sum-rate of the UAV and all ground UEs in its ICIC region
by jointly optimizing the UAV’s uplink cell associations and
power allocations over multiple resource blocks (RBs). To
tackle this problem, we first propose a centralized design by
assuming that there exists a central scheduler able to collect
global information from all BSs in the ICIC region and solve
the design problem. As the formulated problem is non-convex,
we apply an iterative successive convex approximation (SCA)
algorithm to obtain a locally optimal solution. The proposed
centralized design invokes the coordination of all BSs in the
UAV’s ICIC region and thus may incur high complexity and
large delay in implementation when the number of involved
BSs is too large (e.g., with small-cell BSs or high-altitude
UAV). As such, we further propose a decentralized ICIC
scheme of much lower complexity and signaling overhead.
Specifically, we divide the cellular BSs into clusters, each
with a cluster head for collecting information from its cluster
BSs and exchanging information with the UAV by exploiting
the LoS-induced macro-diversity. It is shown that the UAV
only needs to solve an approximate convex optimization
problem with the limited local information received from each
cluster-head BS. The optimal solution to the approximate
problem also admits a closed-form solution and thus is easy to
compute. Numerical results show that both of the centralized
and decentralized ICIC schemes achieve the performance
close to the primal-dual based upper bound of the problem
optimal value, and also greatly improve the performance over
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benchmark/conventional ICIC schemes. In addition, based
on practical channel and system models recommended by
3GPP [6], [32], the effects of some key system parameters
(such as network loading factor, UAV altitude and antenna
beamwidth) on the achievable performance are numerically
analyzed and useful insights on the optimal ICIC design for
cellular-connected UAV communication are obtained.

The rest of this paper is organized as follows. Sections
II and III introduce the system model and formulate the
problem of interest, respectively. In Section IV, we propose
a centralized ICIC design and solve the formulated prob-
lem by using the technique of SCA. Section V considers a
decentralized ICIC design for the purpose of reducing the
implementation complexity and overhead. Section VI presents
the simulation results to demonstrate the performance of the
proposed designs. Finally, we conclude the paper in Section
VII.

II. SYSTEM MODEL

As shown in Fig. 1, we consider the uplink transmission in
a given subregion of the cellular network with a UAV UE and
a set of ground UEs1. For simplicity, the shape of each cell is
assumed to be hexagonal. For the purpose of exposition, we
assume that the UAV is equipped with an isotropic antenna
pointing downward2, while each BS employs a fixed antenna
pattern (see Section VI for details). Due to the LoS-dominated
air-to-ground channel, the uplink signal from the UAV may
interfere with the uplink transmissions from a large number
of ground UEs using the same RBs at their associated BSs.
Centered at the UAV’s horizontal location on the ground,
we consider there are in total J BSs located in the UAV’s
ICIC region Du, as shown in Fig. 1. For BSs outside this
region, we assume that the signal strength from the UAV is
attenuated to the level below the background noise and thus
the resulted interference can be ignored. Therefore, we only
need to consider the interference coordination among the J
BSs in the region Du.

A. Cellular Network with Ground Users Only

Assume that each BS j ∈ J , {1, 2, · · · , J} serves Kj

existing ground UEs, with Kj ≥ 1,∀j ∈ J . Denote the total
number of UEs in Du as K =

∑J
j=1Kj . We assume that

the total number of orthogonal RBs assigned for the UAV’s
uplink communication is N , where N < K usually holds in
practice due to frequency reuse, among the K ground UEs. For
convenience, we assume that each ground UE is assigned one
RB for its uplink communication, while the UAV generally
needs to access multiple RBs in the uplink, due to the high-
rate payload data (such as high-resolution video). To mitigate
the terrestrial ICI, we consider that each BS assigns an RB to
its associated UE subject to a given RB allocation criterion.

1The results of this paper can be extended to the general scenario with
multiple UAV UEs in the same region with orthogonal RB allocations (e.g.,
via round robin or proportional fair scheme). The more challenging case with
non-orthogonal RB allocations for the UAV UEs will be left as our future
work.

2Our study can be extended to the case with directional antenna pattern of
the UAV in the horizontal and vertical planes (see Section VI-D for details).

Specifically, we assume that each BS checks the availability of
an RB in its first q tiers (q ≥ 1) of neighboring BSs3 before
assigning it to a new ground UE. Let Nj(q) denote the set
of the first q-tier neighbor BSs of BS j. If an RB has been
occupied by a ground UE in Nj(q), BS j cannot assign this
RB to any new ground UE. By this means, the UEs associated
with BS j will not cause any interference to all cells in Nj(q).
Note that when q is sufficiently large, the terrestrial ICI would
become negligible, thanks to the more severe path-loss and
shadowing of terrestrial channels compared to the UAV-ground
channels.

Accordingly, we define a set J (n) ⊆ J for each given
RB n ∈ N , {1, 2, · · · , N}, in which j ∈ J (n) if RB
n is occupied by a ground UE in cell j, and as a result
J c(n) = J \J (n). Notice that under the terrestrial ICIC
considered above, it must hold that J c(n) 6= ∅, n ∈ N , since
each BS and its first q-tier neighboring BSs cannot assign
the same RB to their respective ground UEs simultaneously.
Let kj(n) be the index of the ground UE transmitting in cell
j and RB n. Then we denote by Hj(n) the channel power
gain between ground UE kj(n) and its serving BS (i.e., BS
j) in RB n, which in general depends on the BS antenna
gain, path-loss, shadowing, and small-scale fading. The ground
UE kj(n)’s transmit power is assumed to be pj(n). Then
the receive signal-to-interference-plus-noise ratio (SINR) for
ground UE kj(n) at its serving BS j can be expressed as

γj(n) =
pj(n)Hj(n)

σ2
j (n)

, (1)

where σ2
j (n) is the total power of background noise and resid-

ual ICI at cell j in RB n (both assumed to be independently
Gaussian distributed). Then the achievable sum-rate of all
ground UEs in Du without the UAV’s uplink transmission is
given by

Rg = B

N∑
n=1

∑
j∈J (n)

log2(1 + γj(n)), (2)

in bits per second (bps), with B denoting the total bandwidth
per RB in Hertz (Hz). For notational convenience, we denote
B = 1 Hz in the sequel of this paper, unless stated otherwise.

B. Cellular Network with New UAV User Added

Let F̃j(n) be the channel power gain between the UAV and
BS j in RB n. Due to the dominance of LoS propagation, we
assume that the communication links from the UAV to BSs
are frequency-flat over the spectrum of interest for simplicity.
Thus, we have F̃j(n) = F̃j ,∀j ∈ J , n ∈ N . To exploit
the LoS-induced macro-diversity, we consider a flexible cell
association scheme for the UAV in which the UAV can be
associated with different cells in Du over different RBs.
Specifically, for all n ∈ N , suppose that the UAV accesses
an available RB n in cell jn with jn ∈ J c(n) for the uplink
transmission, and the UAV’s transmit power is pn at RB
n. By treating the UAV’s interference as Gaussian noise for

3With the considered hexagon network structure, the first q-tier neighboring
BSs of BS j ∈ J refer to all BSs in the first q rings around BS j.
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simplicity, the sum-rate of all ground UEs in RB n can be
expressed as

Rg,u(n) =
∑

j∈J (n)

log2

(
1 +

pj(n)Hj(n)

σ2
j (n) + pnF̃j

)

=
∑

j∈J (n)

log2

(
1 +

γj(n)

1 + pnFj(n)

)
, (3)

where Fj(n) , F̃j/σ
2
j (n),∀j ∈ J , n ∈ N . Moreover, the

achievable rate of the UAV in RB n is given by

Ru(n) = log2(1 + pnFjn(n)). (4)

III. PROBLEM FORMULATION

To mitigate the severe uplink interference from the UAV
to its non-associated BSs and achieve a flexible performance
trade-off between UAV and ground UEs, we aim to maximize
the weighted sum-rate of the UAV and all ground UEs in its
ICIC region, denoted by Q({jn, pn}n∈N ), i.e.,

Q({jn, pn}n∈N ) = µu
∑
n∈N

Ru(n) + µg
∑
n∈N

Rg,u(n), (5)

where µu ≥ 0 and µg ≥ 0 are constant weights assigned
to the UAV’s achievable rate and the ground UEs’ sum-
rate, respectively. By jointly optimizing the UAV’s uplink cell
associations {jn} and transmit power allocations {pn} over
all RBs n ∈ N , the design problem is formulated as

(P1) max
{jn,pn}n∈N

Q({jn, pn}n∈N )

s.t.
∑
n∈N

pn ≤ Pmax, pn ≥ 0,∀n ∈ N , (6a)

jn ∈ J c(n),∀n ∈ N , (6b)

where Pmax denotes the maximum transmit power at the UAV,
and constraint (6b) ensures that the UAV can only access RB
n that has not been occupied by any ground UE at its serving
BS jn (but not necessarily for other non-associated BSs in
J (n)).

Remark 1: It is worth noting that our system model and
problem formulation are extendable to the general case with
multiple RBs assigned to each ground UE. Consider, for
example, a ground UE served by BS j ∈ J is assigned with
L RBs (L ≤ N ) for its uplink communication. In this case,
we can simply treat this ground UE as L virtual ground UEs
in the same cell, each assigned with a different RB from the
L RBs.

Remark 2: By relaxing constraint (6b) into jn ∈ J ,∀n ∈
N , i.e., the UAV is allowed to access each RB n that
has been occupied by a ground UE at its serving BS jn,
the network weighted sum-rate may be increased since the
feasible region of (P1) is enlarged. However, according to
our simulation results, constraint (6b) is always met at the
optimality of (P1) under the practical setup that we considered.
This is because constraint (6b) avoids causing any intra-cell
interference between the UAV and the ground UEs, which can
significantly degrade the UAV’s achievable rate as well as the
network weighted sum-rate.

Note that the optimal cell association solution of (P1) can
be easily obtained under any given power allocations {pn}
based on the following lemma.

Lemma 1: The optimal cell association solution to (P1),
denoted by {j∗n}, is given by j∗n = arg max

j∈J c(n)
Fj(n),∀n ∈ N .

Proof: It suffices to show that for any feasible cell
association solution to (P1), the corresponding objective value
is no larger than Q({j∗n, pn}). Suppose that {j0n} is an arbitrary
feasible cell association solution to (P1). It is then verified that

Q({j∗n, pn})−Q({j0n, pn})

=µu
∑
n∈N

log2

(
1 + pnFj∗n(n)

)
−µu

∑
n∈N

log2

(
1 + pnFj0n(n)

)
.

(7)

As Fj∗n(n) ≥ Fj0n(n) for any n ∈ N , we must have
Q({j∗n, pn}) ≥ Q({j0n, pn}).

Lemma 1 implies that for each RB n ∈ N , the optimal
serving BS for the UAV should be the one with the maximum
Fj(n) among all available BSs (without any served ground
UE) in the ICIC region. As such, the UAV is anticipated
to achieve considerably higher macro-diversity gain in cell
association as compared to ground UEs, which have far less
available BSs to associate with. In addition, Lemma 1 shows
that the optimal cell association solution is regardless of the
UAV’s transmit power allocations {pn}, which simplifies our
design.

In the sequel, we will focus on the power allocation solution
to (P1) under the optimal cell association given in Lemma 1.
For ease of exposition, we define Fu(n) , Fj∗n(n),∀n ∈ N ,
and (P1) is simplified as

(P2) max
{pn}n∈N

µu
∑
n∈N

log2(1 + pnFu(n)) + µg
∑
n∈N

Rg,u(n)

s.t.
∑
n∈N

pn ≤ Pmax, (8a)

pn ≥ 0,∀n ∈ N . (8b)

Note that two feasible solutions to (P2) can be easily
obtained by considering an egoistic scheme and an altruistic
scheme, corresponding to the optimal solutions for the two
extreme cases with µg = 0 and µu = 0, respectively.
Specifically, when µg = 0, the UAV only aims to maximize its
own achievable rate. Obviously, the optimal power allocation
in this egoistic scheme should be water-filling over all RBs,
i.e.,

peg
n =

(
1

λ ln 2
− 1

Fu(n)

)+

,∀n ∈ N , (9)

where (·)+ , max{·, 0}, and λ is a constant ensuring that∑
n∈N p

eg
n = Pmax. However, this egoistic scheme overlooks

the strong interference to ground UEs and may result in
significant network sum-rate loss.

On the other hand, when µu = 0, the UAV avoids causing
any interference to the ground UEs in order to preserve the
ground UEs’ maximum sum-rate. To this end, the UAV is
only permitted to transmit in the RBs that have not been
occupied by any ground UEs in all cells, denoted by N ′ ,
{n |n ∈ N ,J (n) = ∅}. Accordingly, if N ′ 6= ∅ (i.e., when
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the network is not heavily loaded with ground UEs), the
optimal power allocation should be water-filling over the RBs
in the set N ′, similarly as given in (9) (by replacing n ∈ N
with n ∈ N ′). Otherwise, the UAV will be denied for the
access to the network. The major drawback of this altruistic
scheme lies in that it significantly compromises the UAV’s
rate performance by limiting the number of RBs available
to the UAV (especially when the network is heavily loaded
with ground UEs). In the next two sections, we propose more
efficient solutions to (P2) than the above two simple schemes
and their corresponding implementations for centralized and
decentralized ICIC, respectively.

IV. CENTRALIZED ICIC

In this section, we solve problem (P2) by assuming that
there is a central scheduler in the network. Specifically, it
collects the required information from all the BSs in Du,
computes the power allocation (as well as cell association)
solutions, and informs them to the corresponding BSs which
the UAV will be associated with.

A. Successive Convex Approximation

Note that (P2) is a non-convex optimization problem due to
its objective function, in which the second term of the ground
UEs’ sum-rate is not concave in the power allocation {pn}.
To efficiently solve this problem, we adopt the SCA technique
to obtain a locally optimal solution. The basic idea of the
SCA is to approximate the non-concave objective function as a
concave one given a local point in each iteration. By iteratively
solving a sequence of approximated convex problems, we can
obtain a locally optimal solution to (P2).

Specifically, define {p(r)n } as the given power allocation
solution of the UAV in the r-th iteration. In the following,
we explain how to approximate the objective function of (P2)
based on the first-order Taylor approximation.

Lemma 2: For any given {p(r)n }, the ground UEs’ sum-rate∑
n∈N Rg,u(n) can be lower-bounded by∑

n∈N
Rg,u(n) ≥ A(r) −

∑
n∈N

B(r)
n (pn − p(r)n ), (10)

where

A(r) =
∑
n∈N

∑
j∈J (n)

log2

(
1 +

γj(n)

1 + p
(r)
n Fj(n)

)
, (11)

B(r)
n =

∑
j∈J (n)

Fj(n)γj(n)

ln 2(1 + p
(r)
n Fj(n) + γj(n))(1 + p

(r)
n Fj(n))

.

(12)

Proof: First, it can be shown that for each n ∈ N ,
Rg,u(n) given in (3) is convex with respect to pn. As such, the
ground UEs’ sum-rate

∑
n∈N Rg,u(n) is a convex function in

the UAV’s power allocation {pn}. By using the property that
the first-order Taylor approximation of a convex function at
any point is a global under-estimator of the convex function,
we obtain the inequality (10).

With any given local point {p(r)n } and the lower bound given
in (10), (P2) is approximated as the following problem in the
r-th iteration of the SCA algorithm, i.e.,

max
{pn}n∈N

µu
∑
n∈N

log2(1 + pnFu(n))− µg
∑
n∈N

B(r)
n pn (13)

s.t. (8a), (8b),

where the constant term µgA
(r) +µg

∑
n∈N B

(r)
n p

(r)
n is omit-

ted in the objective function of (13) for brevity.
Remark 3: It is interesting to note that problem (13) has a

price-based interpretation. The objective function of (13) can
be viewed as a utility function for the UAV, which consists of
two parts: profit (first term) and cost (second term). The cost
parameter µgB

(r)
n represents the price per unit power imposed

by the UAV due to its co-channel interference in RB n. Such
interference price is iteratively updated by the SCA algorithm
in order to achieve the maximum payoff (weighted sum-rate
of the network).

Problem (13) is a convex optimization problem, and thus,
its optimal solution can be obtained efficiently by applying the
Karush-Kuhn-Tucker (KKT) conditions (for which the details
are omitted for brevity). We present the optimal solution to
(13) in the following proposition.

Proposition 1: The optimal solution to (13) is given by

p(r)∗n =

p̃
(r)
n , if

∑
n∈N p̃

(r)
n ≤Pmax(

µu

(µgB
(r)
n +ν) ln 2

− 1
Fu(n)

)+
, otherwise,

(14)
for all n ∈ N , where

p̃(r)n ,

(
µu

µgB
(r)
n ln 2

− 1

Fu(n)

)+

,

and ν is a constant ensuring that
∑
n∈N p

(r)∗
n = Pmax.

The optimal power allocation in (14) resembles the water-
filling power allocation in (9) but with the following key
difference: in (14) the “water levels” depend on the channel
power gains from the UAV to all BSs {Fj(n)}j,n, receive
SINRs for all ground UEs {γj(n)}j,n, and the rate weights µu
and µg , whereas their counterpart in (9) is merely a constant.

After solving problem (13) given any local point {p(r)n }, the
SCA algorithm proceeds by iteratively updating {pn} based
on the solution to problem (13). Denote by Q(r) the objective
value by the SCA algorithm in the r-th iteration. By applying
the SCA convergence result in [33], it follows that a monotonic
convergence is guaranteed here, i.e., Q(r) ≥ Q(r−1), ∀r ≥ 2.

The proposed centralized ICIC scheme, which includes the
above algorithm to solve (P2), is summarized in Algorithm 1.
For simplicity, in this paper we set the initial power allocations
{p(1)n } identical to that by the altruistic scheme and the egoistic
scheme for µg ≤ µu and µg > µu, respectively.

B. Primal-Dual Based Upper Bound

Though problem (P2) can only be locally optimally solved
by the SCA algorithm, we can efficiently obtain an upper
bound on its objective value by optimally solving its dual
problem (which is convex). Note that the obtained upper bound
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Algorithm 1 Centralized ICIC Protocol
1: The central scheduler collects the following parameters,

i.e., Fj(n), γj(n),∀j ∈ J , n ∈ N from all BSs in Du.
2: Determine the optimal cell association solution to (P1)
{j∗n} based on Lemma 1.

3: Initialize {p(1)n }. Let r = 1.
4: Repeat
5: Find the optimal solution to problem (13) according to

Proposition 1 as {p(r)∗n }.
6: Update p(r+1)

n = p
(r)∗
n , ∀n ∈ N .

7: Set r = r + 1.
8: Until Q(r)−Q(r−1) ≤ ε, where ε is a small positive con-

stant to control the algorithm convergence and accuracy.
9: The central scheduler informs each serving BS in {j∗n}

the assigned RBs n ∈ N and the UAV transmit power
{p(r)n }, which are then sent to the UAV to initiate uplink
data transmission.

would be tight if the strong duality holds between (P2) and
its dual problem [34]. Specifically, let ν ≥ 0 be the Lagrange
dual variable corresponding to the total power constraint (8a).
The partial Lagrangian of (P2) can then be expressed as

L({pn}, ν) = µu
∑
n∈N

log2(1 + pnFu(n))

+ µg
∑
n∈N

∑
j∈J (n)

log2

(
1 +

γj(n)

1 + pnFj(n)

)

+ ν

(
Pmax −

∑
n∈N

pn

)
. (15)

The Lagrange dual function of (P2) is then defined as

g(ν) = max
pn≥0,∀n∈N

L({pn}, ν), (16)

which is a convex function in ν. For (16), it is easy to verify
the following lemma.

Lemma 3: In order for the dual function g(ν) to be upper-
bounded from above (i.e., g(ν) <∞), it must hold that ν > 0.

Based on the lemma above, the dual problem of (P2) is
given by

(P2-D) min
ν>0

g(ν). (17)

Then, we can obtain an upper bound on the optimal value of
(P2) by solving its dual problem (P2-D). In the following, we
first solve problem (16) to obtain g(ν) under any given ν > 0,
and then solve (P2-D) to find the optimal ν to minimize g(ν).

Consider first the problem (16) of maximizing the La-
grangian over {pn}. It follows from (15) that problem (16)
can be decomposed into N parallel subproblems, and the nth
subproblem is given by

max
pn≥0

µulog2(1+pnFu(n))+µg
∑

j∈J (n)

log2

(
1+

γj(n)

1+pnFj(n)

)
−νpn.

(18)
Denote pDn the optimal solution to (18). Depending on the

cardinality of J (n), we consider the following two cases to
obtain pDn , respectively.

Case 1: If J (n) = ∅, then the optimal solution to problem

(18) can be expressed as pDn =
(

1
ν ln 2 −

1
Fu(n)

)+
by checking

the first-order derivative of the objective function of (18) with
respect to pn.

Case 2: If |J (n)| ≥ 1, it is difficult to obtain the closed-
form solution of pDn . Nonetheless, it can be shown that prob-
lem (18) is equivalent to maximize a monotonically increasing
function within a normal set [35]. Thus, we can still obtain pDn
by applying the classical monotonic optimization technique,
e.g., outer polyblock approximation (OPA) algorithm. The
detailed procedures of the OPA algorithm is given in the
appendix for interested readers.

After optimally solving (18) for each n ∈ N , the dual
function g(ν) can be obtained as L({pDn }, ν). We then op-
timally solve the dual problem (P2-D) to find the solution
ν to minimize g(ν). As the dual function g(ν) is always
convex but generally non-differentiable, problem (P2-D) can
be optimally solved via applying the bisection method over
ν. In Section VI, the above primal-dual based upper bound
is used to evaluate the performance of the SCA algorithm
numerically. If the SCA performance is sufficiently close to
the upper bound, it is inferred that the SCA algorithm yields
a near-optimal performance.

V. DECENTRALIZED ICIC
The centralized ICIC achieves locally optimal performance

but requires exorbitant information exchange between the
central scheduler and all involved BSs, which may incur
significant overhead and large delay in the network, especially
when J is very large and the UAV’s ICIC region dynamically
changes when it moves. To reduce the implementation com-
plexity, in this section, we propose a decentralized ICIC design
by applying BS clustering and exploiting the macro-diversity
thanks to the UAV-BS LoS links.

A. BS Clustering

We divide the BSs in the whole network (subsuming the
ICIC region of our interest here) into non-overlapping but
intra-connected clusters, and for each cluster, one BS (assumed
to have a clear LoS channel with the UAV) is appointed as
the cluster head to coordinate the BSs in the same cluster.
For example, the cluster head can be selected as the BS with
the best channel condition with the UAV. We assume that the
clustering is static and the cluster size is uniform over the
whole network. For example, Fig. 2 depicts all the BS clusters
in the UAV’s ICIC region Du when the number of BSs per
cluster is equal to 4. Upon receiving a beacon signal from the
UAV, each cluster head collects the required information from
other BSs in its cluster via high-speed backhaul links with low
overhead (e.g, the existing X2 interface in LTE4). The cluster
heads first process the information collected independently,
and report their results to the UAV via separate downlink
(data or control) channels. Then the UAV solves a simplified

4The X2 interface has been enabled in practice to support various network
functions such as ICIC, coordinated multi-point (CoMP) processing, load
management, handover and so on. Interested readers may refer to [36]–[38]
for more details.
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problem of (P1) (to be specified later) with only the limited
local information from the cluster heads. Assume that the total
number of clusters involved in the UAV’s ICIC region is M .
Note that if M = 1, i.e., there only exists a single cluster,
the single cluster head can play the role of central scheduler
to implement the centralized ICIC proposed in Section IV.
Hence, we only consider the general case with M ≥ 2 in this
section. For convenience, we number all clusters/cluster heads
from 1 to M , where cluster m is denoted by Cm.

ICIC region of the UAV Cluster head Backhaul link

Fig. 2. Illustration of BS clustering with four BSs per cluster as an example.

B. Decentralized Protocol

Next, we first show that the SCA algorithm introduced
in Section IV can be implemented in a decentralized man-
ner with the BS clustering. To this end, the UAV needs
to construct and solve problem (13) in an iterative fash-
ion. Let Q̃({pn}) denote the objective function of prob-
lem (13), i.e., Q̃({pn}) = µu

∑
n∈N log2(1 + pnFu(n)) −

µg
∑
n∈N B

(r)
n pn. Define Jm(n) = J (n)∩Cm and J cm(n) =

J c(n) ∩ Cm,∀n ∈ N ,m ∈ M, where M = {1, 2, · · · ,M}.
According to (12), the function Q̃({pn}) can be explicitly
written as

µu
∑
n∈N

log2(1 + pnFu(n))− µg
∑
n∈N

pn
∑
m∈M

∑
j∈Jm(n)

B
(r)
j,n

=µu
∑
n∈N

log2(1 + pnFu(n))− µg
∑
n∈N

pn
∑
m∈M

V (r)
m,n, (19)

where B(r)
j,n , Fj(n)γj(n)

ln 2(1+p
(r)
n Fj(n)+γj(n))(1+p

(r)
n Fj(n))

and V (r)
m,n ,∑

j∈Jm(n)B
(r)
j,n. Moreover, based on Lemma 1, Fu(n) in (19)

can be rewritten as

Fu(n) = max
m∈M,j∈J cm(n)

Fj(n) = max
m∈M

Wm,n, (20)

where Wm,n , max
j∈J cm(n)

Fj(n). From (19) and (20), we have

Q̃({pn})=µu
∑
n∈N

log2(1+pn max
m∈M

Wm,n)−µg
∑
n∈N

pn
∑
m∈M

V (r)
m,n.

(21)
Thus, in order to construct problem (13) in the r-th iteration,
the UAV only needs to know V

(r)
m,n and Wm,n, ∀m ∈M, n ∈

N , which can be reported by each cluster head m. Specifically,
the UAV first broadcasts a beacon signal to inform all BSs
the current power allocation {p(r)n } in the r-th iteration. Upon

receiving the beacon signal, each BS j ∈ J measures the
channel power gain Fj(n) and calculates the parameter B(r)

j,n

in each RB n ∈ N . For each cluster head m, the value of
V

(r)
m,n can be obtained by collecting the parameters B(r)

j,n from
the BSs in Cm and summing them up. For the cells in J cm(n),
the value of B(r)

j,n can be set to zero for convenience. On the
other hand, the value of Wm,n can be obtained by collecting
the parameters Fj(n) from the BSs in Cm and taking the
maximum by the cluster head of Cm. Similarly, for the cells
in Jm(n), the value of Fj(n) can be set to zero.

Hence, the centralized SCA algorithm in Algorithm 1 can
be implemented in the following decentralized way. To start
with, the UAV broadcasts a beacon signal to inform all BSs the
initial power allocation {p(1)n }. Then each cluster head m ∈M
reports 2N parameters to the UAV in the first iteration, i.e.,
V

(1)
m,n and Wm,n for all n ∈ N . Next, the UAV determines

the optimal serving cluster head in each RB, given by m∗n =
arg max

m∈M
Wm,n,∀n ∈ N . The optimal serving BS in RB n

can be found at cluster head m∗n, i.e.,

j∗n = arg max
j∈Cm∗n

Fj(n).

In addition, the UAV broadcasts the updated power allocation
{p(2)n } to the ground BSs, which can be obtained by replacing
Fu(n) and B

(r)
n in (14) with max

m∈M
Wm,n and

∑
m∈M V

(1)
m,n,

respectively. In the subsequent r-th (r ≥ 2) iteration, each
cluster head m ∈M only needs to report N parameters to the
UAV, i.e., V (r)

m,n for all n ∈ N , and then the UAV broadcasts
the updated power allocation {p(r+1)

n } to ground BSs. The
information exchange between the UAV and the cluster-head
BSs proceeds until the convergence of SCA.

By this means, a locally optimal solution to (P2) can be
obtained at the UAV in a decentralized manner. However, as
full implementation of the SCA algorithm requires multiple
information exchanges between the UAV and the cluster-head
BSs, we consider a simple one-round SCA in this paper,
i.e., the power allocation is only updated once at the UAV.
In addition, we consider that the UAV sets the initial power
allocation as p(1)n = 0,∀n ∈ N for reducing the computational
burden at all BSs. As a result, each cluster head m ∈ M
should report the following 2N simplified parameters only,
i.e.,

Vm,n =
∑

j∈Jm(n)

Bj,n,

Wm,n = max
j∈J cm(n)

Fj(n),
(22)

where Bj,n , Fj(n)γj(n)
ln 2(1+γj(n))

. Essentially, the one-round SCA
aims to maximize an approximate network sum-rate, deter-
mined by its first-order Taylor approximation at the point
pn = 0,∀n ∈ N . As will be shown in Section VI, the
one-round SCA can achieve a performance close to the iter-
ative SCA. Let {pD

n} denote the computed power allocation
solution at the UAV. Then the UAV should only transmit
in the RBs with positive transmit power, denoted by Nd ,{
n
∣∣n ∈ N , pD

n > 0
}

. For each n ∈ Nd, the UAV should
report two parameters to all cluster heads, i.e., the indices
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of RB n and the associated cluster head m∗n. Thus, the total
number of exchanged parameters is at most 2MN+2N in the
proposed decentralized ICIC with one-round SCA. The above
algorithm is summarized in Algorithm 2.

Algorithm 2 Decentralized ICIC Protocol
1: The UAV broadcasts a beacon signal to initiate the proto-

col.
2: Each BS j individually computes Bj,n and Fj(n),∀n ∈
N , and sends the values to its associated cluster head.

3: Each cluster head m individually computes Vm,n and
Wm,n for all n ∈ N based on (22), and sends the values
to the UAV.

4: The UAV determines the optimal serving cluster head m∗n
in each RB n ∈ N as m∗n = arg max

m∈M
Wm,n.

5: The UAV determines the power allocation {pD
n} based on

Proposition 1, by replacing Fu(n) and B(r)
n in (14) with

max
m∈M

Wm,n and
∑
m∈M Vm,n, respectively.

6: The UAV broadcasts n and m∗n,∀n ∈ Nd to all cluster
heads.

7: Each cluster head m∗n informs BS j∗n in its cluster to
initiate uplink data communication with the UAV in RB
n, ∀n ∈ Nd.

VI. SIMULATION RESULTS

In this section, simulation results are provided to evaluate
the performance of our proposed centralized and decentralized
schemes. An orthogonal frequency-division multiple access
(OFDMA) system is considered. Unless otherwise specified,
the simulation settings are as follows. The tier of neighbor
BSs is q = 2 for the conventional terrestrial ICIC5. The
total number of RBs in the subband that the UAV is allowed
to access is N = 30. Each RB consists of 12 consecutive
OFDM subcarriers, with the subcarrier spacing being 15 kHz.
The total number of active UEs in the subband of interest
is K = 60. The transmit powers of all active ground UEs
are assumed to be identical as 23 dBm. The cell radius
is 500 m, and the height of BSs and UEs are set to be
HB = 25 m and HUE = 1.5 m, respectively. The altitude
of the UAV is fixed to H = 60 m. The carrier frequency fc
is at 2 GHz, and the noise power spectrum density at the
receiver is −164 dBm/Hz including a 10 dB noise figure.
For the terrestrial channels, the path-loss and shadowing are
modeled based on the urban macro (UMa) scenario in the
3GPP technical report [32]. The small-scale fading is modeled
as Rayleigh fading. The BS antenna pattern is assumed to
be directional in the vertical plane but omnidirectional in
the horizontal plane. Specifically, we consider in this paper
a BS antenna pattern synthesized by a uniform linear array
(ULA) with 10 co-polarized dipole antenna elements [39]. The
antenna elements are placed vertically with half-wavelength
spacing and electrically steered with downtilt angle θtilt = 10
degree. The ground UEs are all equipped with an isotropic

5We verify via simulations that the terrestrial ICI attenuates to the level
below background noise with high probability under q = 2 and the considered
settings.

antenna. On the other hand, the UAV-BS channels follow the
probabilistic LoS/Non-LoS (NLoS) channel model based on
the UMa scenario in the most recent 3GPP technical report
[6]. The UAV’s maximum transmit power Pmax is set to be
23 dBm, same as that of ground UEs. We consider five tiers
of cells centered at the cell underneath the UAV (named cell
1) to cover the UAV’s ICIC region, and thus the total number
of cells considered is J = 91. The BS in cell 1 is assumed to
be located at the origin without loss of generality. The UAV’s
horizontal location is fixed at qu =(150 m, 420 m) in cell 1.
The ground UEs’ locations are randomly generated in Du.

In the simulation, the two heuristic schemes introduced in
Section III, namely the egoistic and the altruistic schemes,
are both included as benchmarks. In the egoistic scheme, the
UAV only aims to maximize its own achievable rate without
protecting the ground UEs’ rate performance. In contrast, in
the altruistic scheme, the UAV needs to preserve the ground
UEs’ maximum sum-rate (i.e., Rg in (2)) by only transmitting
in the RBs that have not been occupied by any ground UEs
in all cells.

A. Network Rate Performance versus UAV Transmit Power

First, by setting µu = µg = 1, Fig. 3 shows the net-
work sum-rate after integrating the UAV into the network
versus the UAV’s maximum transmit power Pmax, where the
terrestrial ICIC described in Section II-A is also included
as a benchmark. In the terrestrial ICIC case, the UAV is
treated as a ground UE, which simply selects a single BS
with the strongest signal strength to associate with [36],
denoted by ju = arg maxj∈J F̃j . Then BS ju assigns all
available RBs to the UAV, subject to the RB allocation
criterion introduced in Section II-A with q = 2 for ICI
mitigation. The set of available RBs can be expressed as
N ◦ , {n |n ∈ N , ju ∈ J c(n),Nju(q) ⊆ J c(n)}. Since in
this case the UAV causes no interference to all cells in Nju(q),
we assume that the UAV applies the water-filling power control
over N ◦ to maximize its achievable rate (by replacing n ∈ N
in (9) with n ∈ N ◦). From Fig. 3, it is observed that both of
the proposed centralized and decentralized ICIC designs can
achieve almost the same performance as the primal-dual based
upper bound, which implies that the proposed designs achieve
a near-optimal performance. In addition, the gap between
the centralized and decentralized ICIC designs is not large,
which remains below 1.5% over the whole range of transmit
powers. It is also observed that the network sum-rate increases
with the total transmit power Pmax, but at a slower rate
in the high transmit power regime. This observation reveals
that increasing the UAV’s transmit power may not provide
significant performance gain in terms of network sum-rate.
This is because the rate loss of ground UEs is also increased
with Pmax, and the UAV’s transmit rate may not be sufficiently
large to compensate for the rate loss of ground UEs. As a
consequence, the UAV only consumes a fraction of its total
power budget in order to maximize the network sum-rate. On
the other hand, one can notice that the achievable network
sum-rate by the egoistic scheme even degrades the network
sum-rate in the high transmit power regime owing to the
severe uplink interference caused by the UAV. In addition, the
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Fig. 3. Network sum-rate versus UAV transmit power.
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Fig. 4. UAV achievable rate versus UAV transmit power.
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Fig. 5. Ground UEs’ sum-rate versus UAV transmit power.

terrestrial ICIC is observed to yield a worse performance than
the egoistic scheme. This is because the RB allocation criterion
for terrestrial ICI avoidance limits the number of available RBs
to the UAV. Moreover, it is observed that the terrestrial ICIC
still degrades the network sum-rate in the high transmit power
regime. The reason lies in that the size of Nju(q) is practically
much smaller than that required by the UAV’s ICIC region Du

(see Fig. 1). A large number of BSs located outside Nju(q) is
simply overlooked by the terrestrial ICIC and as a result they
still suffer from the UAV’s uplink interference. Finally, the
altruistic scheme is observed to yield the worst performance

of all schemes considered due to the lack of available RBs
for the UAV (even fewer than with the terrestrial ICIC). The
inferior performance of the benchmark/conventional schemes
demonstrates the necessity of engaging more BSs for ICIC
in the presence of strong UAV uplink interference, as in our
proposed ICIC designs.

To further verify our observations, we plot in Fig. 4 and
Fig. 5 the UAV achievable rate

∑
n∈N Ru(n) and the sum-

rate of all ground UEs
∑
n∈N Rg,u(n), respectively. As seen

from Fig. 4, the egoistic scheme gives rise to the highest UAV
achievable rate over the whole range of powers. While for
the two proposed ICIC schemes, the UAV achievable rate is
smaller in the high transmit power regime. This result implies
that from a network throughput maximization perspective, the
UAV should moderately sacrifice its own rate to maximize
the network sum-rate. In contrast, the altruistic scheme, as
expected, yields the lowest UAV achievable rate. In addition, it
is also observed that the decentralized ICIC yields lower UAV
achievable rates than the centralized ICIC. This phenomenon
is due to the fact that the decentralized design exaggerates the
influence of UAV interference to ground UEs in the approx-
imation, which results in more conservative transmit power
allocations of the UAV. Fig. 5 demonstrates that the ground
UEs achieve the highest sum-rate with the altruistic scheme,
and the lowest with the egoistic scheme. The terrestrial ICIC
is observed to yield lower rate loss of ground UEs than the
egoistic scheme, but still higher than the two proposed ICIC
schemes in the high transmit power regime. Such results are
consistent with those in Figs. 3 and 4.

Fig. 6 plots the achievable rate regions for the considered
system with different UAV maximum transmit power Pmax =
13 dBm, 18 dBm and 23 dBm, which characterize the trade-off
between the UAV’s achievable rate and the ground UEs’ sum-
rate by varying the ratio of µg to µu. It is observed that when
Pmax is increased from 13 dBm to 23 dBm, the achievable
rate region is also enlarged due to the increasing maximum
achievable rate of the UAV. However, the boundaries of the
rate regions for different Pmax values deviate from each other
more significantly when the UAV’s achievable rate becomes
large. This result indicates that ICIC becomes more crucial
when the rate demand of the UAV is high, which is usually
the case as uplink UAV communication is mainly for sending
high-rate payload data (such as high-resolution video) back to
the ground.

B. Network Rate Performance versus Number of Ground UEs

Fig. 7 plots the achievable rate regions for the considered
system with the number of ground UEs K = 100, 140,
and 180, with an increasing ground traffic loading factor.
As the number of ground UEs increases, the total number
of available RBs for the UAV decreases. From Fig. 7, it is
observed that with increasing K, the ground UEs’ sum-rate
is enlarged thanks to the spatial reuse of RBs. However, in
contrast, the maximum UAV achievable rate by the egoistic
scheme is observed to decrease with increasing K. This is
because increasing the number of ground UEs results in higher
average interference level in each RB. On the other hand, for
the altruistic scheme, it is observed that the UAV achievable
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rate also decreases with K and becomes zero with K = 140
and 180, i.e., the UAV is denied for the access to the network
due to the lack of unoccupied RBs. The proposed ICIC designs
are shown able to achieve flexible rate trade-offs between the
UAV and ground UEs for different values of K.
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Fig. 7. Achievable rate region versus number of ground UEs.

C. Network Rate Performance versus UAV Altitude

In this subsection, we investigate the achievable rate region
versus the UAV altitude, H . Although lowing UAV altitude
shortens the distances from the UAV to the BSs (both as-
sociated and non-associated/interfered), and in general yields
larger BS antenna (side-lobe) gains, it also increases the
NLoS probability and the path-loss exponent of UAV-BS links
according to [6]. Hence, there is a non-trivial relationship
between the UAV altitude and the network achievable rate.

To illustrate this, we plot the achievable rate regions for the
considered system with H = 1.5 m, 60 m and 200 m in Fig. 8.
Note that the case with UAV altitude 1.5 m may correspond to
either a benchmark ground UE or a UAV in take-off/landing
status. As seen from Fig. 8, the UAV achieves its maximum
rate at a moderate altitude H = 60 m. This is because at
the lower altitude of H = 1.5 m, the UAV achievable rate
is significantly compromised by the unfavorable terrestrial

channel condition and hence the lack of macro-diversity. On
the other hand, at the higher altitude of H = 200 m, the
UAV will more likely fall into the antenna nulls of nearby
BSs due to the down-tilted main lobe. As a result, the UAV
has to be associated with more distant BSs with higher path-
loss. Our simulation results show that the UAV is generally
associated with 4-6 BSs at high altitude, as compared to
at most 2 BSs at low-to-moderate altitude. Accordingly, the
control overhead for UAV communication may be increased
at high UAV altitude. A potential solution is by limiting the
number of UAV’s serving BSs. However, this in turn reduces
the macro-diversity gain in BS association and the number
of available RBs for the UAV, thus degrading the UAV’s
achievable rate. Moreover, from Fig. 8, it is observed that at
H = 1.5 m the ground UEs suffer the smallest rate loss when
the UAV achieves its maximum rate. This is expected since
the interference from the UAV is at the lowest level when
H = 1.5 m. In contrast, for H = 200 m, the rate loss
of ground UEs rapidly increases due to the increased UAV
interference level. This is because the channel power gain is
small between the UAV and its serving BSs at a high altitude,
due to the increased distance or reduced BS antenna side-lobe
gain. To achieve the maximum rate, the UAV needs to increase
transmit power, which thus raises the interference level. Fig. 8
reveals that from the network rate performance perspective,
the UAV should operate at moderate altitude.
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D. Network Rate Performance versus UAV Antenna
Beamwidth

Last, we consider that the UAV is equipped with a direc-
tional antenna with tunable beamwidth and boresight direction
pointing downward. The azimuth and elevation half-power
beamwidths are both assumed to be 2Φu in degree with
Φu ∈ (0, 90◦). Specifically, the antenna gain of the UAV as
seen by the BS j ∈ J can be approximately expressed as [39]

Gu(dj) =

{
G0/Φ

2
u, if dj ≤ rc

g0 ≈ 0, otherwise,
(23)

where G0 = 7500, dj is the horizontal distance between the
UAV and BS j in m, and rc = (H − HB) tan Φu is the
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Fig. 9. Achievable rate region versus UAV antenna beamwidth.

radius of the coverage area of the UAV antenna main-lobe
projected on the horizontal plane at the BS’s height6. As seen
from (23), the antenna gain in the main lobe is reduced with
increasing the antenna beamwidth. For the extreme case of
Φu = 90◦, the UAV antenna becomes an isotropic antenna
pointing downward, as considered in the previous subsections.

It is worth noting that there is in general a trade-off between
maximizing the macro-diversity gain and reducing the UAV
uplink interference in adjusting the antenna beamwidth of the
UAV. Specifically, reducing the UAV antenna beamwidth helps
reduce and even eliminate the uplink interference to ground
BSs, but at the cost of UAV’s own achievable rate due to the
reduced number of serving BSs or macro-diversity gain. On
the other hand, an increase in the UAV antenna beamwidth
would cover more BSs and yield higher macro-diversity gain,
but with increased uplink interference and hence rate loss of
ground UEs.

Fig. 9 plots the achievable rate regions for the considered
system with Φu = 80◦, 85◦ and 90◦, with the UAV altitude
H and horizontal location qu set to 200 m and (80 m, 100 m),
respectively. It is observed that the UAV’s maximum achiev-
able rate by the egoistic scheme is significantly increased
when Φu is increased from 80◦ to 85◦. This is expected since
wider beamwidth brings in higher macro-diversity gain, which
compensates for the loss in the UAV’s antenna gain as shown
in (23). Nonetheless, the UAV’s maximum achievable rate is
observed to slightly decrease when Φu is further increased
to 90◦. Moreover, it is also observed that increasing the
UAV antenna beamwidth results in decreasing UAV achievable
rate by the altruistic scheme. This is expected since a wider
beamwidth enlarges the size of ICIC region and increases the
number of co-channel ground UEs. As a result, the number
of unoccupied RBs is decreased, which leads to smaller rate
of the UAV under the altruistic scheme. Finally, one can
observe that increasing the UAV antenna beamwidth results
in considerably larger rate loss of ground UEs. This is due
to the rapidly enlarged ICIC region and increased number

6By adjusting the beamwidth of the UAV’s directional antenna, the size of
the UAV’s ICIC region can be changed accordingly.

of interfered BSs. Remarkably, the achievable rate region for
Φu = 85◦ is observed to be larger than that for Φu = 90◦.
This demonstrates that directional antenna at the UAV can
help improve the network rate performance by providing a
new design degree of freedom.

VII. CONCLUSIONS

This paper proposed new ICIC designs to mitigate the
strong uplink interference due to the UAV’s LoS channels
with ground BSs in cellular-connected UAV communication.
Specifically, the weighted sum-rate of the ground UEs and
the UAV was maximized via jointly optimizing the UAV’s
uplink cell associations and transmit power allocations over
multiple RBs. For the centralized ICIC design, it was shown
that a locally optimal solution can be efficiently obtained via
the SCA algorithm. To reduce the implementation complexity
and overhead of the centralized ICIC, we further proposed a
decentralized ICIC design, which only requires local process-
ing within BS clusters and low-complexity signaling between
the cluster-head BSs and the UAV by exploiting the UAV-
ground macro-diversity. It was shown that an approximate
problem can be efficiently solved in a decentralized manner,
with significantly reduced overhead.

Simulation results demonstrated that the performance gap
between the centralized ICIC design and the decentralized
counterpart is practically small, and both achieve near-optimal
rate performance. It was also demonstrated that the proposed
ICIC designs are able to efficiently mitigate the air-to-ground
interference and at the same time exploit the macro-diversity
gain for rate enhancement, as compared to the benchmark and
terrestrial ICIC schemes, especially when the UAV transmit
power or the ground traffic load is high. Finally, it was shown
that the network throughput is maximized by deploying the
UAV at a moderate altitude and equipping the UAV with a
tunable directional antenna, which help further improve the
achievable rate trade-off between the UAV and ground UEs.
Potential directions for future work include more advanced
ICIC designs with 3D beamforming at the BS, CoMP among
BSs, as well as new aerial-ground non-orthogonal multiple
access (NOMA), for both UAV uplink and downlink commu-
nications.

APPENDIX
SOLUTION TO PROBLEM (18) VIA OPA ALGORITHM

Due to the space limitation, we omit several important
definitions that will be used in the following OPA algorithm,
e.g., normal set, box, and polyblock. Readers may refer to
[40] for the detailed introduction of these notions. In order to
apply the OPA algorithm for solving problem (18), we need
to determine an upper bound on the optimal solution pDn , as
given in the following lemma.

Lemma 4: For problem (18), it must hold that pDn ≤ p̂n ,(
µu
ν ln 2 −

1
Fu(n)

)+
.
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Proof: As pDn is the optimal solution to (18), the following
inequality must hold, i.e.,

µulog2(1+pDn Fu(n))+µg
∑

j∈J (n)

log2

(
1+

γj(n)

1+pDn Fj(n)

)
−νpDn

≥µulog2(1+p̂nFu(n))+µg
∑

j∈J (n)

log2

(
1+

γj(n)

1+p̂nFj(n)

)
−νp̂n.

(24)

Notice that p̂n = arg max
pn≥0

µulog2(1+pnFu(n))−νpn. Hence,

it must hold that

µulog2(1 + pDn Fu(n))− νpDn ≤ µulog2(1 + p̂nFu(n))− νp̂n.
(25)

By combining (24) and (25), it is easy to obtain∑
j∈J (n)

log2

(
1+

γj(n)

1+pDn Fj(n)

)
≥
∑

j∈J (n)

log2

(
1+

γj(n)

1+p̂nFj(n)

)
.

(26)
As the function

∑
j log2

(
1 +

γj(n)
1+pnFj(n)

)
is monotonically

decreasing with pn, we then have pDn ≤ p̂n from (26). Lemma
4 is thus proved.

Next, by introducing two slack variables z1 and z2, it is easy
to verify that the original problem (18) has the same optimal
solution to the following one, i.e.,

max
z1,z2,pn≥0

U(z) , z1z2

s.t. 0 ≤ z1 ≤ (1 + pnFu(n))
µu , (27a)

0 ≤ z2 ≤ 2−νpn
∏

j∈J (n)

(
1 +

γj(n)

1 + pnFj(n)

)µg
,

(27b)

where we define the vector z = (z1, z2).

For problem (27), we have the following two facts.

Fact 1: The objective function of problem (27) is a strictly
increasing function with respect to z.

Fact 2: The feasible region of problem (27), denoted by G,
is a normal set.

Facts 1 and 2 imply that problem (27) maximizes a strictly
increasing function over a normal set. This type of problems
can be solved with global optimality by using the OPA
algorithm [40].

In the OPA algorithm, a sequence of polyblocks of shrinking
sizes are iteratively constructed to approximate the feasible
region G with the increasing accuracy for problem (27).
According to Lemma 4, the polyblock can be initialized as
a box [0, z(0)], where

z(0) =(z
(0)
1 , z

(0)
2 )=

(1 + p̂nFu(n))
µu ,

∏
j∈Jn

(1 + γj(n))
µg

 .

(28)
The subsequent polyblocks can be successively generated by
following the method presented in [40]. In each OPA iteration,
the optimal value of problem (27) is found by enumeration
of the vertices of a given polyblock. Let z(q) = (z

(q)
1 , z

(q)
2 )

denote the optimal vertex in the q-th iteration, i.e.,

z(q) = arg max
z∈Z(q)

z1z2,

where Z(q) represents the vertex set in the q-th iteration. A
key step of the OPA algorithm is to compute the intersection
point r(q) on the Pareto boundary of the feasible region G
with the line δz(q). Next, we will show how to obtain such
an intersection point.

In order to find δ, the following optimization problem needs
to be solved, i.e.,

max δ s.t. δz(q) ∈ G. (29)

Problem (29) is solvable via the bisection search. Specifically,
given a fixed δ, we need to solve the following feasibility
problem, i.e.,

find pn

s.t. δz(q)1 ≤ (1 + pnFu(n))
µu , (30a)

δz
(q)
2 ≤ J(pn) , 2−νpn

∏
j∈J (n)

(
1 +

γj(n)

1 + pnFj(n)

)µg
,

(30b)
pn ≥ 0. (30c)

The feasibility problem can be solved efficiently as follows.

First, from (30a), we can obtain pn ≥ χ(δ) , (δz
(q)
1 )

1/µu−1
Fu(n)

.
Let χ̂(δ) = max{0, χ(δ)}. Since the function J(pn) is
monotonically decreasing with respect to pn, problem (30)
is feasible if δz(q)2 ≤ J(χ̂(δ)); otherwise, it is infeasible. By
updating the upper and lower bounds on δ, the optimal solution
to (29), denoted by δ(q), can be found. The intersection
point r(q) should be (δ(q)z

(q)
1 , δ(q)z

(q)
2 ). Then the vertex set

is updated by replacing the point z(q) = (z
(q)
1 , z

(q)
2 ) with

two new points (δ(q)z
(q)
1 , z

(q)
2 ) and (z

(q)
1 , δ(q)z

(q)
2 ). The above

algorithm is summarized in Algorithm 3.
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