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Abstract—Data aggregation is an effective solution to enable
cellular support of Internet-of-things (IoT) communications.
Indeed, it helps alleviate channel congestion, reduce the com-
munication range, and extend battery-lifetime. In this paper, we
use stochastic geometry to analyze the performance of uplink
cellular IoT using different deployment strategies of aggregators,
including terrestrial and aerial ones, e.g., drones or unmanned
aerial vehicles. We focus on IoT-specific performance metrics,
that are typically used by 3GPP. Specifically, we derive closed-
form expressions of the average transmit power consumption,
which is key to determine the lifetime of IoT devices, as well as the
maximum coupling loss, which is essential to determine the maxi-
mum coverage the cellular system can support. Simulation results
are presented to validate the derived theoretical expressions. It
is shown that aerial aggregators can significantly extend the
device lifetime and provide superior coverage compared to other
deployment strategies. In addition, random deployment performs
well when aggregators are densely deployed, whereas optimizing
the location of a single terrestrial aggregator is beneficial when
devices are more clustered.

Index Terms—Data aggregation, IoT communications, power
consumption, maximum coupling loss, stochastic geometry, UAVs.

I. INTRODUCTION

Cellular Internet-of-things (IoT) is envisioned to bring a
myriad of transformative opportunities for mobile network
operators across various fields. Nevertheless, the support of
IoT applications requires solutions tailored to their unique
requirements compared to human-type traffic. For instance,
many of these applications rely on the deployment of a large
number of low-cost battery-powered IoT devices, with each
device generating low-rate sporadic traffic [1]. In addition,
some IoT objects are located deep indoors, e.g., utility meters.
For these reasons, recent enhancements of cellular releases
have recognized energy-efficiency and coverage as key pillars
toward realizing large-scale IoT communications [2], [3].

One approach to help support cellular IoT is the deployment
of data aggregators, which act as relays, connecting IoT
devices to the cellular network [1]. Indeed, by deploying
aggregators in a given area, the coverage can be improved
and the transmit power can be reduced as the communication
distance decreases. They also help in signal congestion control,
as a large number of IoT access requests can be condensed
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into fewer links with the core network. One key question is
how such aggregators should be deployed in a given region.
In this paper, we aim to study different deployment strategies
of data aggregators using stochastic geometry. Specifically, we
compare them in terms of (i) the average power consumption,
which affects the lifetime of IoT devices, and (ii) the max-
imum coupling loss (MCL), which determines the coverage
performance that can be supported by the network [4].

Several works have studied the deployment and optimiza-
tion of data aggregators via stochastic geometry. In [5], the
optimal density of randomly deployed aggregators that meets
an outage constraint of randomly deployed devices is given,
in the absence of power control. In [6], the energy-efficiency
of single-hop and multi-hop data aggregation is studied in
the presence of full-channel inversion, where the locations
of aggregators and devices follow the homogeneous Poisson
point process (HPPP). In this paper, we consider uplink (UL)
fractional power control, study different deployment strategies
besides the random deployment of aggregators, and assume
IoT devices are clustered in a circular disk. In [7], the coverage
performance and channel utilization of IoT devices are ana-
lyzed, where devices are centered around data aggregators. We
note all aforementioned works consider terrestrial aggregators,
whereas in this work we also study using aerial ones, e.g.,
unmanned aerial vehicles (UAVs) and drones. For instance,
in [8], using drones as mobile data aggregators is considered
from the perspective of the coexistence of IoT devices and
legacy cellular users. In this paper, we instead focus on power
consumption (or lifetime) and the MCL.

To summarize, the key contributions of this paper are as
follows. We present different deployment strategies of data
aggregators, highlighting their use cases. These deployments
include (i) randomly deployed aggregators or small cells, (ii)
randomly selecting a single or multiple devices as cluster
heads, and (iii) optimizing the location of the aggregator to be
at the centroid of the cluster, where the aggregator can be aerial
or terrestrial. We then compare these schemes using stochastic
geometry, focusing on key 3GPP metrics related to cellular
IoT. Specifically, we find the average transmit power con-
sumption, which is used then to determine the lifetime of IoT
devices, following the 3GPP evaluation methodology [9]. We
also study the MCL, also denoted as the IoT coverage, which
is a metric used by 3GPP to evaluate the coverage performance
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of IoT-based solutions [10]. The derived expressions help
glean design insights on the deployment of data aggregators,
and they are validated via Monte Carlo simulations.

The rest of the paper is organized as follows. The system
model and the deployment strategies are introduced in Section
II. The performance analysis of the different schemes is
presented in Section III. Simulation results are provided in
Section IV, whereas the conclusions are drawn in Section V.

II. SYSTEM MODEL AND DEPLOYMENT STRATEGIES

We consider a cluster of devices that are uniformly dis-
tributed over an area of radius R. When R is small, this
amounts to sensors and machines having a similar task, e.g.,
deploying sensors in a farm for pest control, inside an infras-
tructure or a warehouse for monitoring, etc. For very large
values of R, this amounts to random deployment of sensors
over large geographical areas. Each device is assumed to use
fractional power control for uplink (UL) data communications,
as specified in [10]. Specifically, assuming the device is at
distance r from the aggregator and the path loss is l(r), then
the transmit power is

PT = min{Pol(r)εα, Pmax}, (1)

where Po is the open-loop transmit power, Pmax is the max-
imum allowable transmit power, α is the path-loss exponent,
and ε ∈ [0, 1] is the power control factor (PCF). Note that if
an extended coverage mode is used, then PT = Pmax [10].

For a ground-to-ground link between the device and a
terrestrial aggregator, we consider the path loss lg(r) = Lor

αg ,
where αg is the path loss exponent and Lo is the path loss at a
reference distance of 1m. For ground-to-air links between IoT
devices and an aerial aggregator, e.g., a UAV or a drone, it
is shown in [11] that the channel can be decomposed into
two groups: line-of-sight (LOS) and non-LOS (NLOS). In
this paper, we assume that the aerial aggregator flies at an
altitude such that the NLOS propagation occurs with very low
probability, and hence it can be ignored as done in [12], [13].1

To this end, the path loss for the ground-to-air link is modeled
as la(r) = Lor

αa where αa is its path loss exponent. This
assumption facilitates a tractable analysis, and it is further
validated for the following 3GPP channel models: RMa-AV
for rural areas, UMa-AV for macro urban areas, and UMi-AV
for micro urban areas. In particular, let h and d2D denote the
UAV’s altitude and the two-dimensional distance between the
device and the UAV, respectively. Then, the LOS probability
is given as [14]2

PLOS =

{
1, d2D ≤ γ1

γ1
d2D

+ exp
(
−d2Dγ2

)(
1− γ1

d2D

)
, d2D > γ1

,

(2)

1Since we focus on the MCL, or the link budget, small-scale fading is
ignored [4], yet it can be accounted for by adding a fade margin.

2It is assumed here that 22.5 < h ≤ 300m. We also note that these models
also consider the link between the UAV and a base station (BS) at a fixed
height. Since devices are generally at lower heights, we add an offset to the
UAV’s altitude, which is equal to the difference between the BS given height
and a device at height 1m.

Fig. 1: LOS probability with variations of drone’s altitude for
different channel models.

where γ1 and γ2 are constants that depend on the environment
[14, Table B-1]. Fig. 1 shows the LOS probability with
variations of the UAV’s altitude. It is observed that the LOS
probability is typically very high, particularly in rural and
macro urban areas. Since micro urban areas are typically
dense, we can expect that the UAV is at a higher altitude,
making the LOS assumption reasonable.

A. Deployment Strategies

We study three different deployment strategies, which are
presented next.

1) Random deployment: In this deployment strategy, terres-
trial aggregators are randomly deployed in the region without
utilizing prior knowledge on the locations of the devices.
Hence, we model the locations of these aggregators using
the HPPP with density λ. The device connects to the nearest
aggregator. This deployment strategy can be interpreted as
a cellular operator densifying a coverage area with data
aggregators or utilizing existing small cells. This deployment
is shown in Fig. 2a, and it has been widely assumed in the
literature, but under different distributions of devices [5], [6].

2) Cluster-interior deployment: In this deployment strat-
egy, N terrestrial aggregators are randomly deployed inside the
same cluster that contains the devices. Each device connects
to its nearest aggregator. Such deployment strategy can be
interpreted as: (i) randomly assigning a device to act as a
cluster head, or (ii) the environment is densely occupied by
obstacles that hinder deploying the aggregator at a desired
position. Fig. 2b shows the cluster-interior deployment with a
single cluster head.

3) Centroid deployment: In this deployment strategy, the
locations of all devices are used to position the aggregator at
the point that minimizes the sum of distances squared (between
devices and the aggregator), i.e., the (xA, yA) coordinate of the
aggregator is the solution of

(xA, yA) = argmin
(x,y)

E

[∑
i∈Φ

(xi − x)2 + (yi − y)2

]
, (3)

where Φ is the set of devices’ locations. It can be shown that
the solution to this minimization problem is the centroid of
the cluster, i.e., (xc, yc), since E

[
(xi − x)2 + (yi − y)2

]
=

R2

2 + (x − xc)
2 + (y − yc)

2. We consider two centroid
deployments: a terrestrial one and an aerial one, where the



(a) Random deployment (b) Cluster-interior deployment (c) Centroid deployment

Fig. 2: Three different deployment strategies are studied.

UAV is positioned at (xA, yA, h).3 Note that the latter deploy-
ment is more practical due to the UAV’s mobility and the
few obstructions incurred at higher altitudes. This deployment
strategy is shown in Fig. 2c.

B. Performance Metrics
1) Average transmit power consumption: At the transmit-

ting device side, we consider the average power consumption
as a performance metric. Specifically, we model the power
consumption as [6]

PTX = PCP + η−1PT , (4)

where PCP denotes the circuitry power consumption, which
is assumed to be constant, and η denotes the power amplifier
efficiency. Hence, different deployment strategies are com-
pared in terms of P̄TX = E[PTX], where the expectation
is with respect to the distance r. To determine the lifetime
of the device, for a given transmit power consumption, we
follow the 3GPP evaluation methodology in [9]. Specifically,
in the process of UL transmission, the device operates in four
different stages: standby, idle, transmission, and reception. Let
PS, PI, and PRX be the power consumption of the standby,
idle, and reception, stages, respectively, and let the duration
of each stage be denoted by TS, TI, TRX, and TTX. Let Nrep

denote the number of reports per day, then the average total
energy consumed per day, in Joules, is

ĒIoT = Nrep

(
TTXP̄TX + TRXPRX + TIPI

)
+ TSPS. (5)

Thus, for a battery capacity of CIoT, given in Wh, the device
lifetime, in years, is given as

Y =
CIoT

ĒIoT
× 3600

365
. (6)

2) Coupling loss: At the aggregator side, we consider the
coupling loss as a performance metric, which quantifies the
link budget needed for a target signal-to-noise ratio (SNR)
and the coverage enhancement needed to arrive at a desired
maximum coupling loss (MCL) [4]. In particular, the MCL is
defined as [4]

MCLdB = S −Q+G, (7)

3Since we only consider a LOS component, then the optimal h in terms
of the criterion used in (3) is the smallest h for which the NLOS component
remains negligible. Below that, decreasing h further can increase the path loss
as the NLOS probability increases.

where S is the transmitter’s maximum power (dBm), i.e, in
this case S = 10 log10(Pmax), Q is the receiver sensitivity
(dBm), and G is the gain achieved, in dB, using some
coverage enhancement techniques, e.g., signal repetition or
power spectral density boosting [4]. The receiver sensitivity
is calculated as

Q = N0 + PNF + 10 log10(W ) + τ, (8)

where N0 is the thermal noise density (dBm/Hz), PNF is the
noise figure (dB), W is the occupied channel bandwidth (Hz),
and τ is the required SNR (dB), e.g., τ = −7.8dB and τ =
−4.3dB for the physical uplink control channel (PUCCH) and
shared channel (PUSCH) in cellular networks, respectively [4].

Let µ = 10MCLdB /10 be the MCL in linear scale, then we
define the IoT coverage probability as

C(µ) = P(l(r) ≤ µ|S). (9)

In other words, the device is considered in coverage if the
device-aggregator link path loss is less than µ.

III. ANALYSIS OF DIFFERENT DEPLOYMENT STRATEGIES

The probability density function (pdf) of the random dis-
tance between a typical device and the data aggregator, i.e.,
fR(r), is critical in performance evaluation. Indeed, the aver-
age transmit power can be rewritten as

P̄TX = PCP + η−1P̂oE[rεα1(r ≤ ζ)] + η−1PmaxP(r > ζ),
(10)

where P̂o = Po(L0)εα and ζ is a threshold, denoted henceforth
as the critical distance, and it depends on the deployment
strategy. Similarly, the IoT coverage can be expressed as

C(µ) = P(r ≤ µ̂1/α|S), (11)

where µ̂ = µ/Lo. In the next sections, we analytically
compare the different strategies in terms of the aforementioned
metrics.

A. Random deployment

In this strategy, the pdf of the distance between the terrestrial
aggregator and a typical device can be shown to be as follows.

Lemma 1. The pdf of the distance between a device and the
nearest aggregator is given by

fRA(r) = 2πλr exp
(
−πλr2

)
. (12)



This follows using the void probability of the HPPP [15].
Using (12), the performance of the IoT device under this
deployment strategy is given as follows.

Theorem 1. The average transmit power consumed in the UL
under random deployment is given by

P̄RA
TX = PCP + η−1P̂o (πλ)

− εαg
2 γ

(
q2
2 , πλζ

2
RA

)
+η−1Pmax exp(−πλζ2

RA),
(13)

where ζRA = (Pmax

P̂o
)

1
εαg , qi = i + εαg, and γ(·, ·) is the

lower incomplete Gamma function. Further, the IoT coverage
is given as

CRA(µ) = 1− exp(−πλµ̂2/αg). (14)

Proof: See the Appendix. �
Remarks: When Pmax →∞, we can simplify (13) as follows

P̄RA
TX,∞ = PCP + η−1P̂o (πλ)

− εαg
2 Γ

(q2

2

)
. (15)

The key insight here is that power consumption under this
strategy is proportional to λ−ε. In addition, the minimum
density of data aggregators required to achieve an MCL of
µ with a probability of β is

λ? =
ln
(

1
1−β

)
πµ2/αg

. (16)

Clearly, λ? increases with the path loss exponent, and hence
urban environments require higher density of data aggregators.

B. Cluster-interior deployment
In this strategy, the pdf of the distance between the aggre-

gator and a typical device is equivalent to the distribution of
the distance between two randomly deployed points in a circle
of radius R, which is given in the following lemma.

Lemma 2. The pdf of the distance between a device and a
randomly deployed aggregator inside a disk of radius R is
given by [16]

fCI(r) =

{
4r
πR2 cos−1

(
r

2R

)
− 2r2

πR4

√
R2 − 1

4r
2, r ≤ 2R

0, r > 2R
(17)

Using (17), we can obtain the following expressions of
power consumption and IoT coverage.

Theorem 2. The average transmit power consumed in the UL
under cluster-interior deployment with N aggregators is

P̄CI
TX = PCP + η−1N

(
Pmax

∫ 2R

ζCI

fCI(r) (1−Ψ(r))
N−1

dr

+P̂o

∫ ζCI

0

rεαgfCI(r) (1−Ψ(r))
N−1

dr

)
,

(18)
where ζCI = min{2R, (Pmax

P̂o
)

1
εαg } and

Ψ(r) =
1

π

(
4 csc−1

(
2R
r

)
+ 2

(
r
R

)2
sec−1

(
2R
r

)
− 2 tan−1

(
r√

4R2−r2

)
− r(r2+2R2)

√
4R2−r2

4R4

)
.

(19)

The IoT coverage probability is given as

CCI(µ) = N

∫ min{µ
1
αg ,2R}

0

fCI(r) (1−Ψ(r))
N−1

dr

(N=1)
= min

{
Ψ(min{µ

1
αg , 2R}), 1

}
.

(20)

Proof: See the Appendix. �
Remarks: Assuming N = 1 and unbounded transmit power,
then we can simplify (18) to

P̄CI
TX,∞ = PCP + η−1P̂o

(
8Γ( q32 )
√
πq2Γ( q62 )

)
(2R)εαg . (21)

The insight here is that the average power is proportional to
(2R)ε. Hence, for more dispersed devices over space, using
one cluster-interior aggregator becomes inefficient.

C. Centroid deployment

Recall that the aerial aggregator is located at the centroid,
and thus we can obtain the pdf of the distance between the
device and the aggregator using a pdf transformation of the
distance between the center of a disk and a random point on
that disk. This is shown in the following lemma.

Lemma 3. The pdf of the distance between a device inside
a disk of radius R and an aerial aggregator at altitude h is
given by

fCN(r) =

{
2r
R2 , h ≤ r ≤

√
R2 + h2

0, otherwise.
(22)

Using (22), the performance of the device under the centroid
deployment is given as follows.

Theorem 3. The average transmit power consumed in the UL
under the centroid deployment is given by

P̄CN
TX = PCP + η−1P̂o

2

p2R2
(ζp2CN − h

p2)

+ η−1Pmax
R2 + h2 − ζ2

CN

R2
,

(23)

where ζCN = min{
√
R2 + h2,max{h, (Pmax

P̂o
)

1
εαa }} and pi =

i+ εαa. In addition, the IoT coverage is given as

CCN(µ) =
min{µ̂2/αa , R2 + h2} −min{µ̂2/αa , h2}

R2
.

(24)

Proof: See the Appendix. �
Remarks: The performance of a terrestrial aggregator can be
found by making h→ 0 and replacing αa with αg. In addition,
the average power consumption in (23) under the unbounded
transmit power is given as

P̄CN
TX,∞ = PCP + η−1P̂o

2

p2R2

(
(R2 + h2)p2/2 − hp2

)
.

(25)
Thus, comparing (25) with (21), we observe that centroid
deployment of the aggregator scales with Rε compared to
the (2R)ε scaling when the aggregator is randomly deployed
inside the cluster.



TABLE I: Main parameters

Description Parameters
Path loss αg = 3.5, αa = 2.2 [14] , and L0,dB ≈ 38dB

UAV altitude h = 100m
Tx power model PCP = 90mW and η = 0.44 [9]

IoT device
NB-IoT with W = 180KHz, Pmax,dBm = 20dBm,
Po,dBm = −46dBm (or −100dBm/Hz)
CIoT = 5Wh [10], and Nrep = 12

Powers PRX = 90mW, PI = 3mW,
and PS = 0.015mW [9, Table 1]

Durations TTX = 983ms, TRX = 565ms,
TI = 22451ms, and TS = 86400s [9, Table 6]

MCL N0 = −174dBm/Hz, τ = −4.3dB, PNF = 5,
and MCLdB = 154dB [4]

IV. SIMULATION RESULTS

We validate the theoretical results via Monte Carlo simu-
lations, where we run 1000 realizations, each with different
locations of devices. We use lines and markers to denote the
theoretical expressions and the simulations, respectively. A
summary of the simulation parameters is given in Table I. It is
assumed that each device transmits a packet of size 200bytes
every two hours [9], and the durations are based on the UL
specifications when the MCL is 154dB [9].

We first study the average power consumption and device
lifetime with variations of the PCF, as shown in Fig. 3a. We
vary the PCF because, in general, this parameter is set by
the network for each device [10], and thus we want to study
the performance for the different possible values. We consider
two densities for random and cluster-interior strategies. In the
low density, we assume N = 1 and λ = 5/km2, whereas in
the high density, we consider N = 5 and λ = 25/km2. It
is evident that the theoretical curves match well with simula-
tions. In addition, centroid deployment of a single terrestrial
aggregator outperforms the cluster-interior deployment with a
single cluster head, showing that optimizing the location of the
aggregator tangibly increases the device lifetime. The gains of
centroid deployment are more significant when using aerial
aggregators instead of terrestrial ones as ground-to-air links
have higher LOS and low path loss exponent [10]. To improve
the performance of random and cluster-interior strategies, a
higher density of aggregators is needed. We remark that all
schemes have the same performance when ε is very large, as
a higher value implies higher compensation of the path loss,
forcing the device to transmit at Pmax, which is constant for
all schemes. Similar trends follow when ε is very small, as the
transmit power becomes dominated by Po when ε→ 0.

Fig. 3b shows the performance for different cluster sizes.
Recall that random deployment of aggregators is independent
of the cluster radius (cf. (13)). It is observed that the centroid
deployment of terrestrial aggregators is useful when devices
are more clustered. Since increasing the radius R makes
devices appear randomly deployed over space, instead of
being clustered, the centroid terrestrial deployment performs
very similarly to the cluster-interior deployment. Last, aerial
aggregators are shown to be more robust to different cluster
sizes due to the low path loss of ground-to-air links.

0 0.2 0.4 0.6 0.8 1

Power control factor, 

18

20

22

24

26

A
vg

. P
T
 (

dB
m

)

Random
Cluster-interior
Centroid: Aerial
Centroid: Terrestrial

0 0.2 0.4 0.6 0.8 1

Power control factor, 

6

8

10

12

14

Li
fe

tim
e 

(y
ea

rs
)

high density

high density

low density

low density

(a) Impact of the PCF ε (R = 200m)

0 200 400 600 800 1000

Cluster radius (m)

18

20

22

24

26

A
vg

. P
T
 (

dB
m

)

Random
Cluster-interior
Centroid: Aerial
Centroid: Terrestrial

0 200 400 600 800 1000

Cluster radius (m)

6

8

10

12

14
Li

fe
tim

e 
(y

ea
rs

)

20 60

8

9 high density

(b) Impact of cluster radius R (ε = 0.4)

Fig. 3: Comparison of different deployment strategies in terms
of transmit power consumption and device lifetime.

Fig. 4a shows the IoT coverage probability in the presence
of different penetration losses, where the target maximum cou-
pling loss is MCLdB = 154dB. It is shown that densification
of randomly deployed aggregators is necessary to support deep
coverage. It is also observed that aerial aggregators can support
very deep coverage requirements thanks to its proximity to de-
vices and the low ground-to-air propagation losses. In Fig. 4b,
we study the IoT coverage for different cluster radii. Random
deployment of aggregators can provide high coverage when
they are densely deployed over space, irrespective whether
devices are clustered or not. In contrary, the terrestrial centroid
deployment performs poorly once devices become dispersed
over space, i.e., randomly deploying multiple aggregators is
more coverage-efficient than deploying a single aggregator
with optimized location.

V. CONCLUSION

Data aggregation is an attractive solution to support cellular
IoT communications as it helps in improving coverage and
extending device lifetime. A critical aspect to data aggregation
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Fig. 4: IoT coverage performance comparison.

is how to deploy aggregators over space. In this paper, we
use stochastic geometry to study and analyze three different
deployment strategies in terms of cellular IoT-specific met-
rics, following the same 3GPP evaluation methodology. In
particular, we derive closed-form theoretical expressions of the
average transmit power consumption and the IoT coverage. It
is shown that the coverage achieved with aerial aggregators
is superior to that achieved with terrestrial ones. However,
several implementation issues may hinder practical implemen-
tation of aerial aggregators, e.g., the drone typically has a short
lifetime over the air, its trajectory must be optimized, etc. For
these reasons, terrestrial aggregators are still useful due to their
ease of implementation. In case devices are clustered, a single,
yet location-optimized, terrestrial aggregator is sufficient. As
devices become more dispersed over space, it becomes more
beneficial to randomly deploy aggregators at a high density.

APPENDIX

1) Random deployment: We have from (4),

E [rεαg ] = 2πλ

∫ ζRA

0

r1+εαa exp(−πλr2)dr. (26)

Using
∫
xm exp(βxn)dx = −Γ(γ,βxn)

nβγ , where γ = m+1
n and

2πλ
∫∞
ζRA

r exp(−πλr2)dr = exp(−πλζ2
RA) we arrive at (13).

Similar approach is used to derive the IoT coverage and the
power consumption with unbounded transmit power.

2) Cluster-interior deployment: Let Ri be the distance
between a device and the i-th aggregator, and F (n) be the
cumulative distribution function (CDF). Then, the distribution
of the distance between the device and the nearest aggregator
is given as FN (r) = P (miniRi ≤ r) = 1 − [1 − F (n)]N ,
and thus the pdf is given as fN (r) = NfCI(r)[1−F (r)]N−1.
Since F (r) =

∫ r
0
fCI(r)dr, we can be show F (r) = Ψ(r).

Since CCI(µ) is the CDF of fN (r), we arrive at (20).
3) Centroid deployment: Note in (22) that the distance is

bounded between h and
√
R2 + h2. Thus, the cutoff distance

ζCN ≤
√
R2 + h2. The lower bound on the cutoff distance

similarly follows. Hence, E [rεαg ] = 2
R2

∫ ζCN

h
r1+εαadr can

be directly evaluated to get (23). The derivations of the IoT
coverage follows similarly.
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