
Joint Offloading and Resource Allocation in
Vehicular Edge Computing and Networks

Yueyue Dai, Du Xu,
Key Laboratory of Optical Fiber Sensing and Communications,

University of Electronic Science and Technology of China
Email:{daiyyue,xudu.uestc}@gmail.com

Sabita Maharjan
Simula Research Laboratory

Norway
Email: sabita@simula.no

Yan Zhang
University of Oslo

Norway
Email: yanzhang@ieee.org

Abstract—The emergence of computation intensive on-vehicle
applications poses a significant challenge to provide the required
computation capacity and maintain high performance. Vehicular
Edge Computing (VEC) is a new computing paradigm with
a high potential to improve vehicular services by offloading
computation-intensive tasks to the VEC servers. Nevertheless,
as the computation resource of each VEC server is limited,
offloading may not be efficient if all vehicles select the same
VEC server to offload their tasks. To address this problem, in
this paper, we propose offloading with resource allocation. We
incorporate the communication and computation to derive the
task processing delay. We formulate the problem as a system
utility maximization problem, and then develop a low-complexity
algorithm to jointly optimize offloading decision and resource
allocation. Numerical results demonstrate the superior perfor-
mance of our Joint Optimization of Selection and Computation
(JOSC) algorithm compared to state of the art solutions.

I. INTRODUCTION

The advancements in Internet of Things (IoT) and wire-
less technologies have paved a way towards realizing new
applications with advanced features. For instance, on-vehicle
cameras and embedded sensors, can play a crucial role to-
wards efficient and safe transportation systems. However, the
resource-constrained vehicles can be strained by computation-
intensive applications, resulting in bottlenecks and making it
challenging for the vehicles to ensure the required level of
Quality of Service (QoS) [1]. Mobile Edge Computing (MEC)
can alleviate the need of heavy computation from the vehi-
cles, yet enable such applications by providing computation
capabilities at the edge of the radio access network and in
close proximity to mobile users [1], [2].

Computation offloading is a process where mobile users
offload their computation-heavy and latency-sensitive tasks
to base stations (BSs) for edge execution [2]. There has
been considerable amount of work focusing on computation
offloading under MEC where each user independently chooses
whether to execute the task locally or to offload the task
to edge servers, to minimize energy consumption and/or
computation latency [3], [4], [5], [6]. In [3] and [4], the
offloading problem was studied with an objective to minimize
the weighted energy consumption under the constraint on
computation latency. The authors in [5] proposed a multi-
user MEC system by integrating a multi-antenna Access Point
(AP) with an MEC server by jointly optimizing offloading

and computing. In [6], a delay-optimal computation offloading
algorithm was proposed by jointly considering the offloading
decision, the CPU-cycle frequencies, and the transmit power.
In general, these schemes consider there is only one MEC
server located at BS and all mobile users have to offload their
tasks to the only one MEC server to execute computation.
With the limitation of the amount of MEC servers, some
users’ tasks may not be accomplished within the permissible
latency threshold.

Vehicular Edge Computing (VEC) is a promising new
paradigm that has received much attention lately, as it can
extend the computation capability to vehicular network [7]. In
conventional MEC network, all mobile users have to offload
their tasks to the only one MEC server located at the BS.
Different from MEC, in VEC, lightweight but ubiquitous edge
resources deployed at nearby Road Side Units (RSUs) can
offer high QoS. Further, localized processing is enabled to
save backhaul bandwidth and awareness about location is also
beneficial to resource allocation.

A few studies investigated computation offloading for ve-
hicle networks. In [8], the authors considered that a vehicular
network consisted of multiple VEC servers and each vehicle
selected one of them as its target offloading server to max-
imize the utilities of both the vehicles and the computing
servers. The authors in [9] proposed a similar computation
offloading strategy. However, these schemes may result in a
severe overload as all vehicles greedily select the VEC server
with the highest utility. It further leads to low offloading effi-
ciency and prolongs task processing delay. To overcome this
shortcoming, we propose an offloading scheme by balancing
the load among VEC server, at the same time, to maximize
system utility. In addition, as the mobility of vehicles also
has a significant impact on task processing delay, we also
incorporate the mobility aspect into problem formulation.

We propose integrating offloading and resource allocation
in order to carefully address the following critical challenges:
1) VEC server selection for offloading, 2) determining optimal
computation resource to maximize system utility. To address
these challenges, we consider a VEC network that multiple
VEC servers equipped on RSUs locate along the road. Vehi-
cles can select a VEC server to offload their tasks for satis-
fying stringent latency requirements. We model VEC server
selection as a binary decision. By jointly optimizing selection

ar
X

iv
:1

80
7.

08
71

8v
1

 [
cs

.N
I]

 2
3

Ju
l 2

01
8

offloading decision and computation resource allocation, we
obtain the optimal strategy for maximizing system utility. The
key contributions of our work are as follows:
• We jointly model VEC server selection for offloading,

and resource allocation to execute tasks associated with
vehicular applications.

• We formulate the joint offloading and resource allocation
problem as a system utility maximization problem under
the latency constraint.

• We propose a Joint Optimization of Selection and Com-
putation (JOSC) algorithm to find the solution of the
optimization problem in a distributed manner and with
less overhead.

The rest of this paper is organized as follows. In Section II, we
introduce the system model. In Section III, we formulate the
joint offloading and resource allocation problem and propose
a low-complexity JOSC algorithm to solve this problem. We
evaluate the performance of the JOSC algorithm and provide
illustrative results in Section IV. We conclude the paper in
Section V.

II. SYSTEM MODEL

We consider a unidirectional road, where M RSUs are
located along the road, as shown in Fig. 1. The road
is correspondingly divided into M segments, with length
{L1, L2, .., LM} respectively. Each RSU is equipped with a
VEC server, whose computation resources are limited. We
denote the id set of these RSUs as M = {1, ...,M}.

There are N vehicles arriving at the starting point of the
road. The vehicles are running at speed v. Each vehicle has
a computation task to be completed with a stringent delay
constraint. The tasks include interactive gaming, real-time
financial trading, virtual reality and etc. Each computation
task can be described as Di , (di, ci, T

max
i), i ∈ N =

{1, 2, ..., N}, where di denotes the size of computation input
data (e.g. the program codes and input parameters), ci is the
required computation resource for computing task Di, and
Tmax
i denotes the maximum latency allowed to accomplish

the task.
Each task can either be offloaded to a selected VEC server

to process, or be executed locally at the vehicle. Denote the
selection decision variables by xij and xi0 indicating whether
the task of vehicle i is processed on the selected VEC server
on RSU j (i.e. xij = 1) or locally (i.e. xi0 = 1). The selection
decision variables should satisfy the constraint

∑M
j=0 xij = 1

which indicates that only one of xij could be 1.

A. Offloading to VEC Server

If vehicle i chooses to offload task Di to a selected VEC
server to process, the task processing delay can be divided into
four parts. The first one is the time taken for vehicle i from the
starting point to the coverage of RSU j (i.e.

∑j
k=1 Lk)/v).

The second part is the communication time that the task is
transmitted from vehicle i to RSU j. The third component is
the computation time. The fourth part is the communication
time that the result of the task is transmitted from RSU j to

…RSU1
VEC
server

RSU2
VEC
server RSUM

VEC
server

L1 L2

…
LM

Fig. 1: The VEC offloading in a vehicular network.

vehicle i. However, since the size of the result is often much
smaller than the input data size, we do not consider the energy
consumption and latency of this part [10], [11], [12].

1) Communication Time:
We assume the wireless communication between vehicles

and RSUs is based on the Orthogonal Frequency Division
Multiple Access (OFDMA). The RSUs in this system are
also allocated orthogonal spectrum such that the inter-cell
interference among RSUs can be ignored.

Let hij denote the channel gain and pij the transmission
power for vehicle i. Then the achievable rate, denoted by rij ,
is given as:

rij = B log(1 +
pijhij
N0

) (1)

where N0 is the noise power and B is the system bandwidth.
The communication time for offloading di from vehicle i

to RSU j can be written as
T com
ij =

di

B log(1 +
pijhij
N0

)

(2)

2) Computation Time:
Since multiple vehicles may choose the same VEC server

as their offloading target and the computation resource of each
VEC server is limited, we need to allocate this computation
resource to satisfy all vehicles’ latency constraints. Denote Fj

as the total computation resource of VEC server on RSU j
and fij is the amount of computation resource that the VEC
server assigns to vehicle i. We have

∑N
i=1 xijfij ≤ Fj . The

computation execution time T vec
ij will be

T vec
ij =

ci
fij

(3)

Then, the task processing delay for offloading Di from
vehicle i to RSU j can be expressed as

Tij =

j∑
k=1

Lk

v
+ T com

ij + T vec
ij (4)

B. Local Processing

If vehicle i executes its computation task Di locally, the
task processing delay is determined by its own computation
resource. Let fi denote the computational resource of vehicle
i, which varies for different users and can be obtained through
offline measurement [13]. The local computation execution
delay Ti0 can now be expressed as

Ti0 =
ci
fi

(5)

C. System Utility Function

Different from the task offloading in previous works which
aim to optimize energy consumption [3], [4], [5], the task
processing time is a critical metric for vehicles. We therefore
design a QoS based utility function, i.e., based on the task
processing time.

Since each task can either be offloaded to a selected VEC
server to process, or be executed locally, the task processing
time can be expressed as

Ti =

M∑
j=1

xijTij + xi0Ti0 =

M∑
j=0

xijTij (6)

Due to the fact that moving vehicles may have a higher
satisfaction with a smaller Ti, the utility function should
monotonically decrease with Ti. Moreover, because of the
limitation of computation resource, offloading can be less
efficient and result in overload, if all vehicles select the same
VEC server to offload their task to. The utility function also
should balance the load among VEC servers. According to
[14], the logarithmic utility is known as proportional fairness,
which is able to achieve load balancing. Therefore, we define
the utility function as

Ui(xij , fij) = α log(1 + β − Ti) (7)

where α is a satisfaction parameter, β is used to normalize
the satisfaction to be nonnegative. The higher the α, the more
gain of satisfaction. The system utility function can be written
as U =

∑N
i=1 Ui.

III. PROBLEM FORMULATION AND SOLUTION

In this section, we formulate the joint offloading and
resource allocation scheme as an optimization problem. The
objective is to maximize the system utility. Define x = {xij}
as the vector of VEC server selection decision and f = {fij}
as the computation resource vector, respectively. We formulate
the optimization problem as follows:

max U(x, f) =

N∑
i=1

α log(1 + β − Ti) (8a)

s.t. Ti 6 Tmax
i , ∀ i ∈ N (8b)

M∑
j=0

xij = 1, ∀ i ∈ N (8c)

N∑
i=1

xijfij 6 Fj , ∀ j ∈M (8d)

0 6 fij 6 Fj ∀ i ∈ N , j ∈M (8e)
xij ∈ {0, 1}, ∀ i ∈ N , j ∈M∪ {0} (8f)

The first constraint (8b) guarantees that the task processing
time cannot exceed the maximum allowed latency Tmax

i .
Constraints (8c) and (8f) state each vehicle offloads its task
to one and only one VEC server. Constraints (8d) and (8e)

ensure that the sum of the computation resource assigned to
all tasks, which choose the VEC server on RSU j, does not
exceed the total computation capacity of this VEC server. The
key challenge in solving this problem is the integer constraint
xij ∈ {0, 1}, which makes (8) a mixed-integer non-linear
programming problem and this is in general non-convex and
NP-hard [15].

In order to solve (8), we first transform it into an equivalent
form as shown in Lemma 1.

Lemma 1. The optimization problem (8) can be transformed
into the following equivalent problem:

max U(x, f) =

N∑
i=1

M∑
j=0

α log(1 + β − xijTij) (9a)

s.t.

M∑
j=1

xij(Λij +
ci
fij

) 6 T ′i , ∀ i ∈ N (9b)

(8c), (8d), (8e), (8f)

where Λij =
∑j

k=1

Lk

v
+ T com

ij − ci
fi

and T ′i = Tmax
i − Ti0.

Proof. See Appendix A.

It is still challenging to solve (9) which has non-linear
objective function and integer constraint (8f). Therefore, we
decouple selection decision and computation resource allo-
cation into two subproblems to develop a low-complexity
algorithm. That is, we determine x under given f and then f
under obtained x, and repeat this process until convergence.

A. Selective Decision

The selection decision problem for a given f from (9) takes
the form

max U(x) =

N∑
i=1

M∑
j=0

α log(1 + β − xijTij)

s.t. (8c), (8d), (8f), (9b)

(10)

In (10), all the indicator variables xijs are binary, while
U(x) is a non-linear function with respect to xij . Thus it is a
Mixed Integer Non-Linear Programming problem (MINLP),
which is usually NP-hard.

To solve this problem with low complexity, we propose an
approximation algorithm. First, we construct a subset Bi with
a latency threshold. Then, we relax the original MINLP prob-
lem as a non-linear programming problem (RNLP) and solve
it using standard convex method. Finally, we use rounding to
obtain a feasible solution.

To ensure each task of vehicles can be accomplished
respecting its latency deadline, given f , we construct an
available subset Bi

Bi =M∩ {j|Tij
T ∗ij

6 ρ} (11)

where T ∗ij = minj∈M Tij and ρ is a threshold. Usually only a
limited number of RSU will satisfy the above constraint (11).
For the RSU that cannot meet the threshold, let xij = 0, j /∈
Bi. Thus, the complexity of (10) will be greatly reduced.

Once Bi is determined, we relax the binary variable xij
into a real value in [0, 1]. Then the MINLP problem (10) is
relaxed into an RNLP as follows:

max U(x) =
∑
i∈N

∑
j∈Bi

α log(1 + β − xijTij) (12a)

s.t.
∑
j∈Bi

xij(Λij +
ci
fij

) 6 T ′i , ∀ i ∈ N (12b)

xi0 +
∑
j∈Bi

xij = 1, ∀ i ∈ N (12c)

xij > 0, ∀j ∈ Bi ∪ {0}, ∀i ∈ N (12d)
(8d)

where xij = 0, j /∈ Bi.
Since the sum of xij is already upper bounded by 1 in (12c),

we remove the upper bound 1 of xij and obtain the constraint
(12d). The objective function U(x) is concave. Combining
with the linear convex constraints, problem (12) is a convex
optimization problem and we can solve (10) to obtain an
optimal fractional solution, which is an upper bound of the
original MINLP problem, because it is obtained by expanding
the solution space.

We denote the fractional solution of (12) as x′ = {x′ij |x′ij ∈
[0, 1]}. The solution of RNLP is usually an infeasible solution
to the original MINLP problem as it is fractional. Therefore,
we adopt a rounding method from [16] to obtain a feasible
solution for the MINLP problem. In this rounding method, a
bipartite graph is constructed according to the RNLP solution,
which is constructed as an undirected bipartite graph.

The rounding technique consists of the following two
steps: 1) construct a weighted bipartite graph to establish the
relationship between vehicles and RSUs, 2) find a maximum
matching to obtain the integer solution based on the bipartite
graph.

In step 1, we construct the weighted bipartite graph
G(U ,V, E) to establish the relationship between vehicles and
RSUs. The set U represents the vehicles in the network. The
set V = {vjs : j ∈ Bi, s = 1, ..., Jj}, where Jj = d

∑N
i=1 x

′
ije

implies VEC server on RSU j serves Jj vehicles. The nodes
{vjs:s=1,..,Jj

} correspond to RSU j.
The most important procedure for constructing G is to set

the edges and the edge weight between U and V . The edges
in G are constructed according to the following method.

Construct the edges of bipartite graph G:
If Jj 6 1, there is only one node vj1 corresponding

to RSU j. For each x′ij > 0, add edge (ui, vj1) and set
the weight of this edge as x′ij .

Otherwise,

1) Find the minimum index is such that
∑is

i=1 x
′
ij >

s.
2) For i = is−1 + 1, .., is − 1, and x′ij > 0, add

edge (ui, vjs) with weight x′ij .
3) For i = is, add edge (ui, vjs) with weight

1−
∑is−1

i=1 x′ij . This ensures that the total weight of edges
connecting vjs is at most 1.

4) If
∑js

i=1 x
′
ij > s, add edge (ui, vj(s+1)) with

weight
∑is

i=1 x
′
ij − s.

Based on the above steps, we construct a weighted bipartite
graph G(U ,V, E). In step 2, we use the Hungarian algorithm
[17] to find a maximum profit matching whose total profit is
the maximum among all matchings. Note that, the profit of
each edge is defined to be α log(1 + β − Tij). According
to the matching, we obtain the integer selection decision.
Specifically, if the edge (ui, vjs) is in the matching, set
xij = 1; otherwise, xij = 0. This maximum matching indi-
cates a feasible solution for the MINLP problem. According
to [16], the solution produced by the rounding approximation
algorithm is at most (1 + ρ) times greater than the optimal
solution.

B. Optimization of Computation Resource
The computation resource allocation problem for a given x

is

max U(f) =

N∑
i=1

M∑
j=1

α log(1 + β − xij(
ci
fij

+ Λij))

s.t. (8d), (8e), (9b)

(13)

where
∑N

i=1 α log(1 + β − xi0Ti0) is omitted from (13), as
it is a constant.

Lemma 2. Problem (13) is a convex optimization problem.

Proof. See Appendix B.

Since (13) is a convex problem, we use Lagrangian method
to solve this problem. The Lagrangian function is

L(f , θ, ψ, %, ω) =

N∑
i=1

M∑
j=1

α log(1 + β − xij(
ci
fij

+ Λij))−

N∑
i=1

θi(

M∑
j=1

xij(Λij +
ci
fij

)− T ′
i)−

M∑
j=1

ψj(

N∑
i=1

xijfij − Fj)−
N∑
i=1

M∑
j=1

%ij(fij − Fj)

+

M∑
i=1

M∑
j=1

ωijfij

(14)

where θ, ψ, %, and ω are the Lagrangian multipliers. The
Lagrange dual function is then given by:

D(θ, ψ, %, ω) = max L(f , θ, ψ, %, ω) (15)

and the dual problem of (13) is

min D(θ, ψ, %, ω)

s.t. θ � 0, ψ, %, ω � 0
(16)

Since (13) is convex, there exists a strictly feasible point
where Slater’s condition holds, leading to strong duality [15].
This allows us to solve the primal problem (13) via the dual
problem (16). The dual problem (16) can be solved using the
gradient method. As the Lagrange function is differentiable,
the gradients of the Lagrange multipliers can be obtained as

∂L
∂θi

= −(

M∑
j=1

xij (Λij +
ci
fij

)− T ′i)

∂L
∂ψj

= −(

N∑
i=1

xij fij − Fj)

∂L
∂%ij

= −(fij − Fj)

∂L
∂ωij

= fij

(17)

By applying the gradient method, the Lagrange multipliers
are calculated iteratively as follows:

θi(t+ 1) =

[
θi(t) + κ1

∂L
∂θi

]+
ψj(t+ 1) =

[
ψj(t) + κ2

∂L
∂ψj

]+
%ij(t+ 1) =

[
%ij(t) + κ3

∂L
∂%ij

]+
ωij(t+ 1) =

[
ωij(t) + κ4

∂L
∂ωij

]+
(18)

where κ1, κ2, κ3, κ4 > 0 are the gradient steps, t represents
the gradient number, and [·]+ denotes max(0, ·).

Taking the first-order derivative of L with respect to fij
and setting the result to zero, we obtain,

∂L
∂fij

=
αxij ci

f2
ij ln (2)

(
1 + β − xij

(
ci
fij

+ Λij

))
+
θi xij ci
f2
ij

− ψjxij − %ij + ωij = 0

(19)

C. Joint Algorithm for Selection Decision and Computation
Resource

Based on above analysis, we present our joint algorithm for
selection decision and computation resource (JOSC), which is
summarized in Algorithm 1. According to JOSC, (9) can be
solved in a semi-distributed manner. Specifically, based on
given f , each vehicle obtains its selection decision by solving
relaxation problem (12) and using rounding method. Then
under the obtained selection decision and by exchanging com-
putation resources among neighboring vehicles, each vehicle
uses Lagrangian method to obtain f and repeat this process
until convergence.

At each iteration of Algorithm 1, the computational com-
plexity of solving convex problem (12) is only polynomial
in the number of variables and constraints. The complexity
required to solve (12) is thus O((1 + a + b)a2

√
b+ 1),

where a = N ∗ M ′ is the number of decision variables,
b = 3N + M + M ′ is the number of linear constraints
and M ′ = |Bi| (| · | denotes the cardinality of a set).
The complexity of rounding is polynomial in the number
of nodes and edges, that is O(|V||E|). For t iterations, the
complexity of the inner loop of Algorithm 1 is O(t). Thus,
the total complexity of Algorithm 1, for k iterations, is
O(k(t+ (1 + a+ b)a2

√
b+ 1 + |V||E|).

Algorithm 1 Joint Optimization for Selection and Computa-
tion algorithm (JOSC)

1: Initialization:
2: Set selection decision x(0) and computation resource

f (0) to arbitrary values;
3: Set the number of iteration as k = 0;
4: repeat
5: Based on fk−1, each vehicle obtains its selection

decision by solving (12) and using rounding method;
6: repeat
7: Update θ(t+ 1), ψ(t+ 1), %(t+ 1) and ω(t+ 1)

based on (18);
8: Calculate f (k) using (19);
9: until Convergence.

10: k = k+1;
11: until Convergence.

IV. NUMERICAL RESULTS

In this section, we present extensive simulation results to
evaluate the performance of the proposed algorithm.

A. Simulation Setup

We consider a unidirectional road, where 5 RSUs are ran-
domly located along a 100-meter road. There are 40 arriving
vehicles on the road, and they are running at a constant speed
of 120 km/hr. The bandwidth of each RSU is 1.25 KHz. The
transmission power of each vehicle is 100 mW and the noise
power is 10−10mW . We set the channel gain hij = d−4ij ,
where dij is the distance between vehicle i and RSU j.

Each RSU is equipped with a VEC server. The computation
resources of the VEC servers from the beginning of the road
to the other end are {5, 10, 15, 20, 25} GHz. Each vehicle
has a computation task. The input data size, required com-
putation resources, and maximum latency constraint of each
computation task are uniformly distributed in the range of
U [100, 300] KB, U [0.5, 1.5] GHz, and U [8, 10] s, respectively.
The computation capability of each vehicle is 1 GHz.

To verify the performance of our proposed JOSC algorithm,
we introduce the following benchmark schemes,
• GS: Given a feasible computation resource, the Greedy

Selection optimization scheme (GS) greedily picks out

0 5 10 15 20 25 30 35 40
Iteration number, t

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pu
ta

tio
n

re
so

ur
ce

, f
 (G

Hz
) N = 30

N = 40
N = 50

(a) Computation resource

0 2 4 6 8 10
Iteration number, t

0

100

200

300

400

500

Sy
st

em
 u

til
ity

N = 30
N = 40
N = 50

(b) System utility

Fig. 2: Convergence of JOSC under different N .

the best VEC server with maximal utility for each
vehicle.

• RA: The Resource Allocation scheme (RA) optimizes
computation resource, as in [4]. In this scheme, all
vehicles offload their tasks to the nearest VEC server.

B. Performance Analysis

Fig. 2 shows the convergence of our proposed JOSC
algorithm. Specifically, Fig. 2(a) plots the convergence of the
inner loop of Algorithm 1, i.e. the loop from step 6 to step
9 in JOSC. We observe that the computation resource can
achieve converge very fast and a smaller value of N results
in more computation resource. From Fig. 2(b), we can see
that the convergence of system utility can achieve converge
within 4 iterations and a larger value of N leads to higher
system utility.

Fig. 3 shows system utility with respect to the number of
arriving vehicles at the starting point under different schemes.
We can draw several observations from Fig. 3. First, the
system utility of the proposed JOSC is obviously higher than

25 30 35 40 45 50
Number of arriving vehicles at the starting point

100

120

140

160

180

200

Sy
st

em
 u

til
ity

JOSC
RA
GS

Fig. 3: Comparison of system utility of the number of arriving
vehicles at the starting point under different schemes.

GS and RA since it jointly optimizes VEC server selection and
computation resource allocation. Second, the system utility of
JOSC and GS increases rapidly as the number of arriving
vehicles increases while the system utility of RA starts
decreasing when the number of arriving vehicles is larger
than 45. The reason is that RA does not consider VEC server
selection which prolongs task processing time and decreases
system utility. On the contrary, JOSC and GS improves system
utility by performing selection decision. Moreover, the system
utility gap between JOSC and GS increases with increasing
the number of vehicles. This is justified since the JOSC adopts
the optimal policies of selection decision and computation
resource but GS only considers selection decision.

Fig. 4 depicts load balancing performance of JOSC, RA
and GS for the same profile (i.e. N = 40,M = 4). We
can see that the performance of JOSC is significantly better
than that of GS and RA and RA does not completely balance
the load among servers. While GS greedily chooses the VEC
server which provides maximal utility, RA offloads all tasks
to the nearest VEC server (i.e. Server 1) which leads to an
unbalanced assignment of resources. On the contrary, JOSC
balances the number of vehicles served by each server and
keeps a higher system utility.

V. CONCLUSIONS

In this paper, we proposed a joint offloading and resource
allocation approach for maximizing system utility in vehicular
edge computing networks. We incorporated the components
due to both communication and computation in the definition
of the task processing delay. We provided a low complexity,
JOSC, by jointly optimizing selection offloading decision
and computation resource. Numerical results demonstrated
that the proposed JOSC not only significantly outperforms
the benchmark policies in terms of system utility, but also
performs better on balancing the load distribution, compared
to the other counterparts.

Server 1 Server 2 Server 3 Server4
0

5

10

15

20

25

30

35

40

Th
e

nu
m

be
r o

f v
eh

icl
es

 o
n

ea
ch

 V
EC

 se
rv

er

GS
JOSC
RA

Fig. 4: Comparison of load balance under different schemes
with N = 40 and M = 4.

APPENDIX A
PROOF OF LEMMA 1

According to constraints (8c) and (8f), the objective
function

∑N
i=1 α log(1 + β −

∑M
j=0 xijTij) is equivalent to∑N

i=1

∑M
j=0 α log(1 + β − xijTij).

Substituting (3)-(6) into (8b), with xi0 = 1−
∑M

j=1 xij , we
have

M∑
j=1

xij(Tij − Ti0) 6 Tmax
i − Ti0

M∑
j=1

xij(

j−1∑
k=1

Lk

v
+ T com

ij +
ci
fij
− ci
fi

) 6 Tmax
i − Ti0

M∑
j=1

xij(Λij +
ci
fij

) 6 T ′i

(20)

where Λij =
∑j−1

k=1

Lk

v
+ T com

ij − ci
fi

and T ′i = Tmax
i − Ti0.

Thus, we obtain constraint (9b).

APPENDIX B
PROOF OF LEMMA 2

The second-order derivative of U(f) with respect to fij is

∂2U(f)

∂f2ij
=− 2αxij ci

f3ij ln (2)

(
1 + β − xijci

fij
− xijΛij

)−1
− αxij

2ci
2

f4ij ln (2)

(
1 + β − xijci

fij
− xijΛij

)−2 (21)

As α > 0, xijci > 0, and
(

1 + β − xijci
fij
− xijΛij

)
> 0,

we have
∂2U(f)

∂f2ij
6 0. Thus the objective function U(f) is

concave. Combining with the linear convex constraints, (13)
is a convex optimization problem.

REFERENCES

[1] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A
survey on mobile edge networks: Convergence of computing, caching
and communications,” IEEE Access, 2017.

[2] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architec-
ture and computation offloading,” IEEE Commun. Surveys Tuts., vol. 19,
no. 3, pp. 1628–1656, 2017.

[3] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Trans. Wire-
less Commun., vol. 16, no. 3, pp. 1397–1411, 2017.

[4] Y. Yu, J. Zhang, and K. B. Letaief, “Joint subcarrier and cpu time
allocation for mobile edge computing,” in Proc. IEEE Global Commun.
Conf. (GLOBECOM), 2016.

[5] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and computing
optimization in wireless powered mobile-edge computing systems,”
IEEE Trans. Wireless Commun., 2017.

[6] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE J.
Sel. Areas Commun., vol. 34, no. 12, pp. 3590–3605, 2016.

[7] K. Zhang, Y. Mao, S. Leng, Y. He, and Y. Zhang, “Mobile-edge
computing for vehicular networks: A promising network paradigm with
predictive off-loading,” IEEE Veh. Technol. Mag., vol. 12, no. 2, pp.
36–44, 2017.

[8] K. Zhang, Y. Mao, S. Leng, S. Maharjan, and Y. Zhang, “Optimal delay
constrained offloading for vehicular edge computing networks,” in Proc.
IEEE Int. Conf. Commun. (ICC), 2017.

[9] K. Zhang, Y. Mao, S. Leng, A. Vinel, and Y. Zhang, “Delay constrained
offloading for mobile edge computing in cloud-enabled vehicular net-
works,” in Proc. 8th Int. Workshop Resilient Netw. Design Modeling
(RNDM), 2016.

[10] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, 2016.

[11] C. Wang, F. R. Yu, C. Liang, Q. Chen, and L. Tang, “Joint computation
offloading and interference management in wireless cellular networks
with mobile edge computing,” IEEE Trans. Veh. Technol., vol. 66, no. 8,
pp. 7432–7445, 2017.

[12] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan,
S. Maharjan, and Y. Zhang, “Energy-efficient offloading for mobile
edge computing in 5g heterogeneous networks,” IEEE Access, vol. 4,
pp. 5896–5907, 2016.

[13] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients
in cloud computing.” in Proc. 2nd USENIX Conf. Hot Topics Cloud
Computing, vol. 10, 2010.

[14] F. Kelly, “Charging and rate control for elastic traffic,” Eur. Trans.
Emerging Telecommun., vol. 8, no. 1, pp. 33–37, 1997.

[15] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[16] D. B. Shmoys and É. Tardos, “An approximation algorithm for the
generalized assignment problem,” Math. Program., vol. 62, no. 1-3, pp.
461–474, 1993.

[17] H. W. Kuhn, “The hungarian method for the assignment problem,”
Naval Res. Logist. (NRL), vol. 2, no. 1-2, pp. 83–97, 1955.

	I Introduction
	II System Model
	II-A Offloading to VEC Server
	II-B Local Processing
	II-C System Utility Function

	III Problem Formulation and Solution
	III-A Selective Decision
	III-B Optimization of Computation Resource
	III-C Joint Algorithm for Selection Decision and Computation Resource

	IV Numerical Results
	IV-A Simulation Setup
	IV-B Performance Analysis

	V Conclusions
	Appendix A: Proof of Lemma 1
	Appendix B: Proof of Lemma 2
	References

