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Abstract—Owing to the expeditious growth in the information 

and communication technologies, smart cities have raised the 

expectations in terms of efficient functioning and management. 

One key aspect of residents’ daily comfort is assured through 

affording reliable traffic management and route planning. 

Comprehensively, the majority of the present trip planning 

applications and service providers are enabling their trip planning 

recommendations relying on shortest paths and/or fastest routes. 

However, such suggestions may discount drivers’ preferences with 

respect to safe and less disturbing trips.  Road anomalies such as 

cracks, potholes, and manholes induce risky driving scenarios and 

can lead to vehicles damages and costly repairs. Accordingly, in 

this paper, we propose a crowdsensing based dynamic route 

planning system. Leveraging both the vehicle motion sensors and 

the inertial sensors within the smart devices, road surface types 

and anomalies have been detected and categorized. In addition, the 

monitored events are geo-referenced utilizing GPS receivers on 

both vehicles and smart devices. Consequently, road segments 

assessments are conducted using fuzzy system models based on 

aspects such as the number of anomalies and their severity levels 

in each road segment. Afterward, another fuzzy model is adopted 

to recommend the best trip routes based on the road segments 

quality in each potential route. Extensive road experiments are 

held to build and show the potential of the proposed system.      

Keywords—Road information services; smart cities; mobile 

sensing; Route planning; crowdsensing; fuzzy systems; 

I. INTRODUCTION  

Smart Cities, by 2024, are predicted to generate $2.3 trillion 
according to CISCO [1]. Meanwhile, there are various smart 
applications and services present in multiple sectors spanning 
environment, health, waste management and transportation [2, 
3]. Nevertheless, further insights, evaluations, and 
improvements are necessary for granting adequate performance 
of smart cities. Mainly, smart transportation and traffic 
management are highly needed as one can say they broadly 
influence almost every aspect of the smart cities operation on 
daily bases [4]. In particular, trip route planning receives great 
interest particularly in big and crowded cities [4, 5]. Principally, 
trip planning applications and service providers afford route 
recommendations based on relatively shorter paths, traffic 
congestion and even with up to date construction works [6].  

    Consequently, some of the route planning key players as 
Google have adopted online dynamic routing driven by live 
traffic network information. For example, Google maps provide 
an online suggestion for vehicle re-routing when roads are 
experiencing instantaneous traffic congestion based on many 
factors such as untraditional mobility behavior or accidents. On 
the other hand, corwdsensed based trip planning application 
Waze [7] relies on lively sensed traffic situations which shared 
with the users’ intervention. APOLO [8] system was introduced 
to overcome the network overload introduced in many of the 
traffic management systems because of information exchange 
between vehicles and servers. This system proposed a 
centralized traffic monitoring system that works on both online 
and offline bases. In the offline stage, mobility patterns are 
conducted by historical data processing while in the online stage 
vehicles are re-routed away from the congested routes. The 
results showed travel time reduction of 17 % along with a speed 
increase of 6% compared to present approaches.    
    In addition, various efforts in the literature provided 
suggestions to enable shorter and faster routing for land vehicles. 
In [9], an adaptive routing approach was introduced and dealt 
with route planning as a probabilistic dynamic problem. In their 
algorithms, they aimed to reduce the predicted en route trip time 
while considering broadcasted traffic information, onboard 
based traffic state measurement, and historical traffic patterns. 
Moreover, in [10] personal behavior based trip planning was 
presented to contribute a solution for traffic congestion problem. 
The authors assumed and discussed that the driving preferences 
changes from a driver to another could be handled in a way to 
create drivers’ profiles which are used in their route planning 
leading to less traffic congestion. Furthermore, in [6] an 
extended version of [10] specified three significant aspects of 
personal based route planning. These significant considerations 
are the road safety regarding the presence of snow or black ice, 
traffic speed and congestion level. The contributions of these 
factors are assessed based on fuzzy inference engine while the 
overall optimum routing was enabled by an optimization 
problem. In [11] a dynamic route planning system was proposed 
to include future traffic hazards in vehicle routing. This system 
contained three components which are real-time data streamed 
from the vehicles plus data collected by automatic traffic loops 
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sensors and the third component used both data sources to 
predict future traffic conditions through Spatio-Temporal 
random field process.  
      In order to assure relaxing trips, in [12] a system was 
introduced to reduce the routes distances along with providing 
suggestions for routes with high-quality sceneries. A memetic 
algorithm was used to provide skyline scenic trip planning while 
maintaining low travel distances. On the other hand, to ensure 
drivers and travelers safety, a system was proposed in [13] to 
enable route planning while discarding routes that encounter 
high crime rate. Based on crime data provided by Chicago and 
Philadelphia a risk model was introduced for the cities urban 
networks.  
    The highlighted literature showed significant efforts in 
enriching efficient route planning regarding suggesting shortest 
paths, fewer traffic routes and considering personal preferences 
as well. However, road quality information is the crucial aspect 
that enables drivers safe and comfort trips was not considered in 
the most of route planning systems [14]. Deteriorated road 
surface conditions can lead to vehicle damage and dangerous 
driving scenarios that result in drivers’ frustration and stress [14, 
15]. Consequently, existing land vehicles are considered mobile 
sensor hubs with various sensing and communications 
capabilities [16]. Vehicle motion sensors in the land vehicles 
along with the inertial sensors embedded in the drivers’ smart 
devices enabled adequate detection for various road surface 
types and anomalies. Thanks to both GPS receivers and inertial 
sensors the detected anomalies are robustly geo-referenced [17, 
18]. 
    In this paper, we present iDriveSense a corwdsensed based 
Road Information Services (RIS) system. In this system, we 
leverage the sensing capabilities of the land vehicles and drivers’ 
smart devices to generate detailed data sets of the road surface 
types and anomalies with different severity levels. Also, these 
datasets are used as an input to a cloud-based Fuzzy Inference 
System (FIS) utilized for road segment assessments. Moreover, 
iDriveSense provides independent route planning or through 
evaluating potential routes suggested by trip planning service 
providers like Google Maps. Route suggestions and evaluations 
are enabled to the drivers through another FIS. 
 

II. SYSTEM STRUCTURE 

    In this section, we present the system configuration used to 
build iDriveSense. As mentioned earlier, in this system land 
vehicles are considered as mobile crowdsensing nodes. As 
shown in fig. 1, detailed and descriptive datasets of road surface 
conditions are sent to a cloud RIS. Accordingly, road segments 
assessment and route recommendations are provided through 
cascaded FIS.  

A. FIS 

    Basically, fuzzy logic is intended to deal with real-world 

applications through framework able to deal with ambiguity and 

inaccuracy [19]. In fuzzy logic, quantified rules or statements 

are adopted to avoid firm true or false decisions. Accordingly, 

fuzzy logic sets grant objects values that range from 0 to 1 

through graded memberships. Therefore, FIS maps sets of given 

inputs to outputs with the aid of fuzzy logic.                    

 
 
Fig. 1 iDriveSense system architecture  

   

 

Fig. 2 FIS system Structure.   

  In addition, FIS dynamic performance is modeled by sets of 
linguistic descriptive rules that are set according to the system 
designer prior knowledge [19].  For example, the fuzzy rules of 
a multiple-input-single-output (MISO) fuzzy system are given 
by  

R1: if (a) is X1 and (b) is Y1, then (c) is Z1; 

               R2: if (a) is X2 and (b) is Y2, then (c) is Z2;          (1) 

………. 

 Rn: if (a) is Xn and (b) is Yn, then (c) is Zn; 

    As a, b and c are linguistic variables representing two inputs 
process state variables and one output variable. While, Xi and Yi 
are linguistic values of the linguistic a, b in the universe of 
discourse U and V with i = 1, 2, … , n. The linguistics values Zi 
of the linguistic variable c in the universe of discourse W in case 
of Mamdani FIS [20].  
    Fundamentally, as shown in fig. 2, four components together 
represent the FIS. The fuzzy rules which can be called “IF-
THEN” are built according to the prior knowledge of the 
required system. Also, the input domain crisp values U are 
outlined with fuzzy sets defined in the same universe of 
disclosure by the aid the fuzzification stage. On the other hand, 
an inverted operation is carried by the defuzzification stage to 
map the crisp values of the output domain V with the predefined 
fuzzy sets. Further details on FIS structure and derivations can 
be found in [21].  



B. Road Segment Assesment FIS 

    For road segment assessments, inputs from the road surface 

types and conditions data sets are used to compute three inputs 

for the FIS. The first input is the related to the total number of 

road anomalies in a given road segment 𝑆. For each segment, a 

normalized percentage of road anomalies 𝑅𝐴 is computed 

simple through dividing the total number of anomalies over  𝑆 

to reflect the density of the anomalies in particular segment. 

Thus this input is mapped to three membership functions which 

are defined as low, moderate and high. As shown in fig.3 we 

adopted sigmoidal membership function for both low and high 

functions. A sigmoidal function is a mapping on input vector 𝑎, 
and can be represented by: 

                      

                      𝑓(𝑎, 𝑚, 𝑛) =  
1

1+exp(−𝑚(𝑎−𝑛))
                  (2) 

 

    Where the sigmoidal membership functions innately open to 

the right or left according to the sign of the parameter 𝑚 and 𝑛 

is a control parameter.   The product of two sigmoidal functions 

is used in the moderate function and is given by: 

 

                              𝑓𝑘(𝑎) =   
1

1+exp(−𝑚𝑘(𝑎−𝑛𝑘))
                       (3) 
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(b) 

 

 
(c) 

Fig.3 Membership functions utilized in road segments assessment: a) 

percentage of anomalies (low, moderate, and high), b) average level 

of severity (low and high) and c) lanes (narrow and wide) 

    Given that 𝑘 = 1,2 and the parameters 𝑚1 and 𝑚2 command 

the left and right curves slopes and these two parameters have 

to be positive and negative, respectively. While 𝑛1 and 𝑛2 

control the left and right curves points of inflection.   
    The second input is representing the effect of the anomalies 

severity level on the assessment of a road segment. As the road 

segments with equal lengths and have the same density of 

anomalies should not receive the same assessment decision if 

they experience different types of anomalies with different 

levels of severity. Accordingly, the average percentage of 

anomalies severity level in each segment is calculated and 

normalized concerning the segment length and presented by 

mild and severe sigmoid membership functions. Lastly, the 

third input is to distinguish road segments of single and double 

lanes.  This input was chosen to represent the significance of the 

road segment wideness on its quality assessment. The road 

segments with multi-lanes allow the driver to maneuver before 

the anomalies easily while this is difficult to occur in single road 

segments and it can lead to dangerous scenarios within the two 

ways road segments. The third input is also mapped through two 

sigmoid wide and narrow membership functions. In this FIS, the 

fuzzification of the inputs is mapped by 11 Mamdani fuzzy 

rules. The road assessment FIS is then defuzzified to enable 

three output levels of road segment quality. They are classified 

into Good, Moderate and poor segments.   
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Fig.4 Membership functions utilized in route suggestion: a) average 

segments quality (poor, moderate, and good), b) route time (slow and 

fast) and c) route length (long and short)  



C. Route Suggestion FIS  

    Regarding the route suggestions, a cascaded FIS is utilized as 

shown in fig. 1 to provide route recommendation and 

evaluation. In this FIS, as shown in fig. 4, there are three inputs 

adopted to decide the route recommendation. The first input is 

the average quality of the segments in a potential route. This 

input is controlled by three membership functions namely poor, 

moderate and good which reflects one aspect of the route 

evaluation. We adopted two sigmoid functions for the poor and 

good membership functions while we used the product of two 

sigmoidal functions for the moderate one.  It is worth 

mentioning that the primary concern in iDrivesense route 

planning is in providing high road quality routes. However, high 

traffic routes and long paths should be avoided as well 

whenever is possible. Therefore, the second and the third inputs 

are described by the route travel time and route distance, 

respectively. The second one is divided by two sigmoid 

membership functions named slower and faster. On the other 

hand, the third input is also described by two sigmoid 

membership functions called longer and shorter. In the route 

recommendation FIS, the fuzzification of the three inputs is 

controlled by 12 fuzzy rules. While the defuzzification of this 

cascaded FIS provides three output levels of route 

recommendations. They are divided into (not suggested, 

marginally suggested and suggested).  

 

III. RESULTS AND DISCUSSION 

    In order to assess the performance of the proposed system, 

we conducted extensive experiments in Kingston, ON, Canada. 

These experiments were held adopting multiple vehicles and 

included various motion sensors and smart devices. These road 

experiments involved numerous roads in heavy traffic 

downtown core, urban and neighborhoods residential areas to 

assure the variety of road segments quality and routing 

approaches.   Accordingly, to show the performance of the 

iDriveSense system in route recommendation considering the 

road quality information. We consider a real trip request as 

shown in fig. 5. In this trip, the driver requires route planning to 

travel from point A to point B while requesting a stable and safe 

drive as the highest priority. According to Google maps, as 

shown in fig. 6, there are two recommended routes. The first 

one reaches point B in 5 minutes, and it is 1.3 Km regarding 

route distance. On the other hand, the second recommended 

route travel time is 7 minutes with a distance of 1.4 Km. Thus 

according to Google maps suggestions which are mainly 

provided based on less trip time and shortest route distances, 

Route 1 is recommended as shown figure.6. 

    Consequently, as requested by the driver, the safe and high 

road quality has the highest priority in the trip satisfaction. For 

this regard, iDriveSense examined the quality of the road 

segments in the potential routes as listed Table 1 and shown in 

fig. 7. With the aid of the first FIS system described in Sec. II., 

the road segments quality of Route 1 and Route 2 were assessed. 

The first route (suggested by Google Maps) has nine road 

segments.  

 
 

  Fig.5 Route planning request from point A to point B (Top view). 

 

 
 

Fig 6. Route suggestions provided by Google Maps. 

 
 

Table I. Road Segment Assessment for Route 1 and Route 2  
 

 

 

 

 

 

 

 

 

 

 

 

 

ROAD  

SEGMENTS 

ROUTE 1 ROUTE 2 

1 Poor Moderate 

2 Poor Moderate 

3 Poor Good 

4 Poor Good 

5 Poor Good 

6 Poor Good 

7 Poor Good 

8 Moderate Moderate 

9 Poor Moderate 

10 NA Poor 



    In this route, there are eight segments assessed as poor quality 

ones, and there is only one segment assessed as a moderate one. 

On the other hand, the second recommended route (Route 2) 

consists of 10 segments. Utilizing the first FIS, 5 of the road 

segments within this route are evaluated as good ones, and there 

were other four assessed as moderate while only one is 

considered a poor road segment.  As per fig. 7, the assessed road 

segments of Route 1 and Route 2 are highlighted with different 

colors to indicate different levels of quality.    

    Afterward, the route suggestion FIS was adopted to 

recommend the route with high road segments quality. In this 

cascaded FIS, the output of the first FIS along with the trip time 

and route distance in each route is used to set the routes 

recommendation levels. Given the predefined fuzzy rules, the 

three inputs and the required priority to the route with high road 

segments quality, iDrivesense contrary to Google Maps has 

recommended Route 2 as shown in fig. 8 

 
 

 
 

 

Fig 7. Road segments assessment by iDriveSense for the routes 

suggested by Google Maps.  
 

 

 
 
 

Fig8. Route suggestion provided by iDriveSense.  

 

    Comprehensively, the presented results show the significance 

of considering road information quality in dynamic route 

planning. As the requests for safety and comfort trips have 

introduced new metrics in route suggestions. Thus iDrivesense 

showed high capabilities in providing dynamic, safe and 

comfortable trips. However, roads quality are subject to change 

due to the effects of traffic and harsh weather. To sustain 

reliable dynamic route planning, continuous road segments 

assessments are enabled by iDrivesense.    

IV. CONCLUSION 

     Future smart cities are required to consider numerous aspects 

to meet the expectations of their residents. Smooth and safe 

vehicle routing come on the top of the resident's demands due 

to their implications for their comfort and productivity on a 

daily bases. However, the popular route planning systems and 

service providers are not considering the road quality 

information while providing their trip planning services. In this 

paper, we presented “iDriveSense” a crowdsensing based 

system to enable such challenging demand. Our system benefits 

from the sensing capabilities of the vehicle motion sensors and 

the inertial sensors and GPS receivers to monitor road surface 

conditions. Accordingly, provides a cloud-based dynamic route 

planning services. The system was successfully able to operate 

independently or cooperatively with route planning service 

providers as Google Maps. The system can adequately asses the 

quality of road segments considering various aspects that affect 

the drivers’ comfort and safety enabling efficient dynamic route 

planning while maintaining reasonable trip times and route 

distances.          

.   
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