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Abstract—The huge increase of population living in cities calls
for a sustainable urban development. Mobile crowdsensing (MCS)
leverages participation of active citizens to improve performance
of existing sensing infrastructures. In typical MCS systems,
sensing tasks are allocated and reported on individual-basis. In
this paper, we investigate on collaboration among users for data
delivery as it brings a number of benefits for both users and
sensing campaign organizers and leads to better coordination
and use of resources. By taking advantage from proximity, users
can employ device-to-device (D2D) communications like Wi-Fi
Direct that are more energy efficient than 3G/4G technology. In
such scenario, once a group is set, one of its member is elected
to be the owner and perform data forwarding to the collector.
The efficiency of forming groups and electing suitable owners
defines the efficiency of the whole collaborative-based system.
This paper proposes three policies optimized for MCS that are
compliant with current Android implementation of Wi-Fi Direct.
The evaluation results, obtained using CrowdSenSim simulator,
demonstrate that collaborative-based approaches outperform
significantly individual-based approaches.

I. INTRODUCTION

Smart cities aim to improve citizens’ quality of life through
an efficient use of ICT resources. Global population living
in urban environments has significantly increased in the
last century, reaching the 50% of the worldwide population
and it is projected to grow further [1]. Urbanization calls
for a rational development, which requires environmental
monitoring and optimized use of resources. The Internet of
Things (IoT) becomes a key for building effective sensing
infrastructures [2]. Involving citizens1 in the sensing loop
through mobile crowdsensing (MCS) is a win-win strategy [3].

With MCS, users contribute data generated by the rich set of
sensors embedded in their mobile devices, such as smartphones,
tablets and smart watches. Such data is delivered to a collector
in the cloud for analytics. Intelligence and mobility of citizens
provide a better context awareness and spatial coverage in
respect to traditional sensor networks. Sensing is commonly
employed in applications such as noise monitoring, health care
and traffic management [4]. To illustrate with a few examples,
HazeWatch [5] relies on citizen participation to monitor air
pollution. Creekwatch [6] is an application for smartphones
developed by the IBM Almaden research center for monitoring
the conditions of watershed through crowdsensed data.

1In the remainder of the paper, we use the terms citizen, participant and
user interchangeably.

In typical MCS systems, the allocation of sensing and
reporting tasks is performed on individual-basis [7], [8].
However, collaboration among users could lead to a number
of benefits for both users and sensing campaign organizers.
For instance, users can take advantage from the proximity and
use device-to-device (D2D) communications like Wi-Fi Direct
that are more energy efficient than 3G/4G technology, which
in turn will foster user participation [9], [10].

In this paper, we investigate how to make effective group-
based data delivery in MCS systems. MCS users are assumed
to communicate using Wi-Fi Direct inside groups. Each group
elects a group owner (GO) who is in charge to proxy and
aggregate information from the group members delivering it
to central collector. The election of the most suitable GOs
defines the efficiency of the whole data delivery process. For
example, a GO leaving the group too soon would preclude
all members from reporting the collected data. We propose
and compare performance of three different policies for group
forming and subsequent GO election. In the first one, the
sensing area is divided into a regular grid and users within a
cell belong to a unique group. The second approach considers
Point of Interests (PoIs), spatial locations where there is an
interest to perform sensing and all users in the proximity of
the PoI are associated to a group. Finally, the third policy
simultaneously takes into account users’ positions and mobility
patterns and groups people that preferentially remain close to
maximize group stability. The policies have been implemented
in CrowdSenSim [11], which is the simulator employed for
performance evaluation in realistic urban environments and
has already been used for different smart city applications,
such as smart lighting [12]. Collaborative-based data delivery
improves significantly the energy costs the users would sustain
performing individual-based reporting for group members that
do not forward information to the collector.

II. BACKGROUND

Collaborative sensing bases its roots in forming groups
among users in proximity. For example, in MCS all participants
located within spatial and temporal proximity can be entitled
to perform a task [13]. In ad-hoc networks, for data forwarding,
routing techniques rely on position-based techniques to select
the next-hop [14]. Peer-based communication technologies
such as D2D are an excellent solution. D2D enables direct



communication among mobile devices, thus allowing to better
exploit radio resources. Specifically, D2D reduces interference,
makes a better use of power allocation for transmission
and thus limiting devices energy consumption [15]. Several
technologies can be employed to enable D2D communications.
LTE Direct and Wi-Fi Direct respectively foster D2D proximity
discovery [16] and enables opportunistic networks [17] for
local data dissemination. LTE Direct requires line-of-sight
between devices as pre-requisite, while Wi-Fi Direct does not.
In addition, the LTE interface is more power consuming than
Wi-Fi [18]. Hence in this work we adopt the latter technology.
The employed policy for group forming and GO election is
crucial in collaborative MCS systems. User-performance can be
boosted through protocols that manage the group size and the
transmission power of each smartphone [19]. Optimizing the
GO selection improves the overall network throughput [20]. In
the context of MCS, mis-estimation of connectivity availability
is detrimental for profit as users can lose rewards for not having
successfully reported data. Exploiting collaboration among
users in proximity and performing GO election efficiently
alleviate this issue [21]. Unlike previous works, our aim is to
propose energy-efficient collaborative solutions to form groups
and to elect the GO, who coordinates sensing and reporting
through D2D communications. Wi-Fi Direct supports multi-
group communications as well. In [22], the authors present
an Android application for unrooted devices able to form
connected groups based on a generic metric for the election of
the GO, overcoming the limitation of the legacy GO election.
In our work, we consider a scenario in which all the devices
belong to some groups, but multi-group communications are
not exploited.

III. GROUP-BASED COLLABORATIVE SENSING

The collaboration among users is beneficial to MCS systems
in the following ways. First, it promotes a better energy
management. Only a limited set of users, i.e., the GOs, are
entitled to perform data delivery to the collector. The other
users deliver the collected data to the GOs that are in their
vicinity, hence limiting the energy consumption. Second, group-
based tasks allocation entitles MCS campaign organizer to fully
benefit from the advantages of coordinated recruitment and to
better control the spatio-temporal collection process, budget
usage and quality of collected data.

In this paper, we consider Wi-Fi Direct technology. A Wi-Fi
Direct Group is composed of a GO and zero or more group
members (GM). A device can dynamically assume the role of
GM or GO. According to [23], Wi-Fi Direct allows to form
groups in standard, autonomous and persistent modes. In our
paper, we exploit the autonomous group formation for different
reasons. First, it does not require a negotiation phase as the
standard mode, being faster and simpler with a device that
announces itself as GO and starts a Wi-Fi Direct group sending
beacons. Second, Wi-Fi Direct does not permit the standard and
persistent group formation procedures among more than two
devices. In our model, for each group the elected GO delivers
data to the central collector through LTE interfaces. Only the
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Fig. 1. Flow diagram representing the per-user procedure for GO election
and group formation

participants that have previously subscribed the MCS campaign
can be part of a Wi-Fi Direct group. During the campaign
initialization, each device receives information about task
allocation and policy for data delivery (see Sec. IV). By default,
Android requires the users to manually authenticate before
joining any Wi-Fi Direct group, which can be impractical for
crowdsensing purposes. Hence, to overcome this limitation, the
proposed solutions resort to the methodology proposed in [24]
that allows devices to connect to each other automatically
without any user intervention. Unlike other implementations,
this methodology does not require to “root” the device.

The GO election is performed in distributed fashion by
relying on the mechanisms introduced in [25] and parametrized
to fit MCS purposes. Specifically, the rules for GO election,
explained in detail in Sec. IV, incorporate additional parameters
than the typical Wi-Fi Direct procedure that each policy exploits
differently. Fig. 1 describes all the steps for group formation
and GO election that are explained in detail in the following
Section.

IV. THE PROPOSED POLICIES FOR GROUP FORMATION AND
GO ELECTION

A MCS user u is characterized by IDu, Pu, αu, Vu, Bu,
RSSIu, GRu, GIu,Mu, Ou. IDu is the user identifier. Pu

is the position of the device (latitude and longitude). αu is
the azimuth of the user walking direction, given by the line
connecting the position at the current timeslot P t

u and the
previous one P t−1

u . Vu is the current user speed, Bu is the
remaining level of device battery and RSSIu is the received
signal strength indicator. The parameters that also depend on
the policy are the ID of the group GRu and the GO availability
index GIu, which defines the “fitness” of each user to become
a GO. The intuition for the GO election is as follows. A user
with higher battery level, RSSI and long-lasting remaining
permanence in the group is a better GO candidate than another
one with low battery, RSSI and about to leave the group. Mu

and Ou are two flags that indicate if the device is a GM and a
GO, respectively. During the phase of update and broadcast (see
Fig. 1), these parameters advertise new users whether to join an
active group or to start a GO election. The diagram describes
the procedure when users join the group, while departures can
occur in any stage.

We propose three policies for group formation and GO
election. The first policy, Static Grouping (SG), is based on a
regular grid that covers the whole area of interest and in each
cell it exists at least one group (see Fig. 2(a)). The second
one is the Point of interest Grouping (PG). This policy groups
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Algorithm 1 Static Grouping (SG) for user u
1: procedure GROUPINITIALIZATION
2: Input: Bu, Ru, P t

u, P t−1
u , Vu . Battery, RSSI, Position at

t, Position at t− 1, Speed
3: Output: GIu
4: qu = findQuadrant(P t

u) . u’s quadrant
5: αt

u ← bearing(P t
u, P t−1

u ) . Angle of direction from P t−1
u

to P t
u

6: Pexit ← exitPoint(P t
u, qu, αt

u). Exit point from the current
quadrant assuming the same walking direction

7: Du = d(P t
u, Pexit) . Linear distance from P t

u to Pexit

8: TR
u = Du/Vu . Expected remaining time to exit from qu

9: GIu = wT · TR
u + wB ·Bu + wR ·Ru

10: end procedure

11: procedure BROADCAST&NEIGHBORDISCOVERY
12: Input: Nu, qu
13: Output: GListu . List of u’s neighbors inside qu
14: GListu = ∅
15: for m ∈ Nu do . For each neighbor m of u
16: qm = findQuadrant(m) . m’s quadrant
17: if qm = qu then. Check if u and m are in the same qu.
18: GListu ← GListu ∪ {m}. Update list of neighbors
19: end if
20: end for
21: end procedure

member on the basis of their distance from a given location,
the PoI (see Fig. 2(b)). The last one is the Dynamic Grouping
(DG), which forms groups remaining close for a certain time
window (see Fig. 2(c)).

Static grouping (SG). The SG policy splits the region of
interest into a regular grid. A group GRu is composed of all the
users within the same cell. The approach is particularly useful
for applications where full coverage of an area is required like
in environment monitoring. Algorithm 1 presents the details
of the Wi-Fi Direct SG-enabled procedure.

During the group initialization phase (see Fig. 1), each device
determines its cell position. During broadcast and neighbor
discovery, a mobile device exchanges with nearby devices
in the same cell the list of parameters. GIu is computed as
follows:

GIu = wT · TR
u + wB ·Bu + wR ·RSSIu, (1)

where TR
u is the expected remaining time of the user u in

the current cell, computed as TR
u = Du/Vu, where Du is the

distance between the current position of the user and the closed
cell boundary location. To calculate Du, it is assumed that the

user will continue walking along the same direction given by
αu. Finally, wT , wB and wR are the weights that define the
impact of corresponding components and are set by the MCS
organizers to fulfill specific objectives of the campaign. When
a new user enters a cell and a group is already formed, the
device generates a new Glist and connects to the pre-existing
group without electing a new GO. When the current GO leaves
the cell, the current group is destroyed and the entire procedure
of group formation and GO election starts over.
Point of interest grouping (PG). People tend to cluster in
certain areas like railway stations, restaurants, or shopping
centers, which can be defined as Points of Interest (PoI) and
are often associated to category information in Location-Based
Social Networks (LBSNs) [26]. Time plays an important role
in PoIs because users tend to visit and remain in different
places at different moments in a day (e.g., visiting a restaurant
at lunchtime, or a pub at night) [27]. To model user behavior, a
popular technique consists of analyzing check-in data obtained
from LBSNs [28]. Hence, the PG policy builds on the
sociability property and achieves longer group stability than SG
at the price of lower area coverage. A group GRu is composed
of users located at a distance lower than a certain radius RP

from the location of a PoI. During the initialization phase, the
devices set the parameters and receive all information needed
for the campaign, such as the coordinates of PoIs. Once a
device locates itself in an area corresponding to a PoI, it starts
the broadcast and neighbor discovery phase to create the GList
and form a group. GIu is now computed as follows:

GIu = wT · TS
u + wB ·Bu + wR ·RSSIu, (2)

where TS
u is the expected dwell time within the PoI area, and

wT , wB and wR are the component weights. Differently from
the SG policy, where a user stays for a certain time inside a
cell depending on the movement, PG policy takes into account
users stopping for a certain amount of time in a PoI to benefit
from a service. Consequently, TS

u follows a distribution that
depends on the typology of a PoI. When a new user arrives
in a PoI and a group is already formed, the device creates a
GList and connects to the pre-existing group without electing
a new GO. A new GO is elected when the previous one leaves
the PoI.
Dynamic grouping (DG). Users tend to group naturally while
walking in streets [29]. DG takes advantage of this feature by
creating Wi-Fi Direct groups among users that walk in similar



direction. As in DG there is no notion of cell nor PoI that
define the conditions for group destruction, the groups formed
with DG are expected to last longer. Specifically, the DG policy
creates a group when the users remain close one with each other
for at least (KT) time period. The keeping time (KT) is defined
as the expected time duration of two devices remaining under
a certain radius 300 and is calculated based on the distance
between users, their current velocity and walking azimuth.
After the group initialization phase, during the broadcast and
neighbor discovery phase each user creates a GList, computing
for each GM the KT. If the value of KT is lower than the one
associated to the threshold δ, the corresponding node inside
the GList is deleted. The value of δ varies according to the
stability required from the MCS campaign. To elect the GO,
each device computes its sociability Su, which is defined as
the number of neighbor devices satisfying KT. S is the number
of nodes inside the GList. GI is now computed as follows:

GIu = wS · Su + wB ·Bu + wr ·RSSIu, (3)
where wS , wB and wR are the component weights. During the
update phase, a device performs the broadcast and neighbor
discovery phase and there are three possibilities after the
creation of a GList. First, the GList contains a GO and the
device joins the existing group. Second, when GList contains
other devices that are neither GMs nor GO and there are no
existing group, the device starts from the beginning group
formation and GO election. Finally, if there are GMs but no
GO, it means that GMs belong to a group in which the GO is
unreachable. In this case the device deletes these GMs from the
GList and performs a new group formation and owner election
including only devices that do not belong to any group. When
a GM loses contact with its GO, it starts again the group
formation procedure. A group is destroyed only when no GMs
are longer connected with a GO.

V. PERFORMANCE EVALUATION
A. Simulation set-up

For performance evaluation of the collaborative data-delivery
policies, we use CrowdSenSim [11] to simulate the pedestrian
movements in realistic urban environments. The users’ trajecto-
ries are generated before the runtime simulation, as described
in our former work [30]. For the experiments, we select
Luxembourg city center, which covers an area of 51.47 km2

with a population of 116 328 as of the end of 2017. Unless
otherwise stated, we simulate a number of participants equal
to 50 000. The walking period TW

u and the average speed
Vu of each participant are uniformly distributed in the range
[20, 40] minutes and [1, 1.5] m/s respectively. Each user has
only one device contributing data, with a battery level set to
be uniformly distributed between 80-90% at the beginning of
simulation. Users can exploit different models of smartphones
and this choice defines the total battery capacity. The values
are taken from a list of popular devices on market, including
Huawei P8 Lite (2200 mAh), LG G5 (2800 mAh) and Samsung
Galaxy J7 (3300 mAh).

Table I shows the simulation parameters exploited for
sensing and communication equipment. Data contribution is

implemented exploiting heterogeneous set of sensors typically
embedded in popular smart devices, such as the MPU-6500 3-
axis linear accelerometer from InvenSense, the TMD4903 prox-
imity sensor from AMS and the SKG13BL GPS module from
SKYLAB. Table I(a) shows the sensing equipment exploited for
the simulations and their corresponding parameters. To compute
the power consumption of communication equipment, we refer
to [31]. We consider the Wi-Fi Direct power consumption
for uplink and downlink communications for local group data
exchange. In addition, GO members report aggregated data to
the cloud collector with LTE, hence only uplink LTE power
consumption model is considered. Assuming uplink throughput
is Tu and downlink throughput is Td, the instant Wi-Fi Direct
power level for uplink is PW

u = αW
u · TW

u + βW and for
downlink PW

d = αW
d · TW

d + βW . The LTE power level for
uplink is PL

u = αL
u · TL

u + βL. The best fitting parameters are
listed in Table I(b), while throughput T depend on curves that
are taken from [31] for LTE communications and from [32]
for Wi-Fi Direct.

The proposed policies are implemented as follows (see
Table I(c) for a summary of the parameter details). The size of
the groups changes over time according to the mobility and the
proposed policies. The distance between members of the same
group is at maximum the one allowed by Wi-Fi Direct standard.
The area of each cell A for the SG policy is of 500 m2, which
is approximately the size of a microcell according to AT&T
standard. The PG policy exploits as PoIs the coordinates of
37 bus stops of the city center of Luxembourg, with a radius
RP of 50 meters around the bus stop. The dwell time at a
bus stop is uniformly distributed between [1, 15] minutes. DG
exploits a distance RD of 50 meters around the GO and the
threshold δ for the keeping time is set to 60 seconds. For all
the policies, the weights are set equal to 1/3. The maximum
number of users Nmax per each group is set to 10.

B. Simulation results

For performance evaluation, we first compare energy con-
sumption of individual and collaborative approaches. Then, we
focus on specific characteristics of each policy, such as group
duration, average number of members and role of users.

Fig. 3 shows the distribution of energy consumption with
Individual reporting (Ind) and collaborative (SG, PG and DG)
data delivery. Note that collaborative-based data forwarding
policies outperform individual reporting as 75% of the users
achieve lower power utilization. Such users, as better described
in next results, are GMs. GO, instead, produces an extra-effort
which leads to an increase of energy consumption with respect
to Ind. Among the policies, PG is the one limiting the most
the energy-consumption of GOs and achieves comparatively
better performance than SG and DG. In PG, the number of
users in the system that is not walking in close proximity of a
PoI limits the chances for successful group creation.

Fig. 4 details the roles that users can assume, i.e., GO, GM
or no-group. The latter category indicates users that are not in a
group and do not contribute data. The reason for this category
is twofold. First, users trying to join an already full group



TABLE I
PARAMETERS OF SENSOR AND COMMUNICATION EQUIPMENT USED FOR PERFORMANCE EVALUATION

SENSOR PARAMETER VALUE UNIT

Accelerometer Sample rate 4 kHz
Sample size 6 bytes
Current 450 µA

Proximity Sample rate 8 MHz
Sample size 2 bytes
Current 150 µA

GPS Update period 10 s
Sample size 24 bytes
Current 23 mA

(a) Sensor Equipment

SYMBOL VALUE UNIT

LT
E αL

u 438.39 mW/Mbps

βL 1288.04 mW

W
i-

Fi
D

ir
ec

t

αW
u 283.17 mW/Mbps

αW
d 137.01 mW/Mbps

βW 132.86 mW

(b) Communication Equipment

SYMBOL VALUE UNIT

TW
u [20 : 40] min
Vu [1 : 1.5] m/s
wT , wS , wB , wR 1/3
RP , RD 50 m
A 500 m2

δ 60 s

TS
u [1 : 15] min
Nmax 10

(c) Other parameters
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Fig. 3. CDF of energy consumption comparing all approaches

(i.e., with already a maximum Nmax of users) need to either
wait and join another group, or wait that some of the existing
members leave. Second, for PG and DG policies, users may
be outside the range of PoI or of existing groups. The bars in
the plot are computed as average over 100 simulation runs and
the confidence interval is not graphically reported as too low.
PG achieves the highest number of no-group users. Conversely,
SG and DG form groups more consistently along time. In SG,
the percentage of no-group users is higher than GO because in
each grid is easy to reach the maximum number of participants.
On the contrary, DG aims at maintaining groups as much as
possible, hence the percentage of no-group users is lower. For
all the policies, as expected, the number of GO users is lower
than the number of GM users.

Fig. 5(a) shows the CDF of group duration. On one side,
DG has the longest duration because groups remain active for
longer periods (up to 30 min). In SG, the group duration is less
than 2 minutes for 90% of the cases because the GOs move
and change often, causing group destruction and subsequent
new GO election. The PG policy achieves results in between
the former two, because the change of GO is less frequent
than in SG, but more frequent than in DG. Fig. 5(b) shows
the distribution of the variability of number of users in each
group. The distribution is computed taking into account the
number of group members in each group over a fixed time
horizon. First, we observe that for all the policies the vast
majority of groups are small, i.e., in 50% of the cases SG-PG
and DG exhibit groups of size smaller than 4 and 3 members
respectively. Second, DG by design maintain groups longer and
with higher number of members as follows people movements.
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Fig. 4. Percentage of role of users for each grouping approach

Fig. 6 analyzes the energy consumption according to each
user category. The per-minute energy consumption of GM users
is the highest employing the SG policy, while the DG allows
users to save energy as they remain within the same group
longer. When users assume the role of GO, the distribution of
energy consumption is similar for SG and DG. Comparing PG
with the other policies, the median varies with difference up to
0.3 J/min. The reason is that, in PG, the GO role changes more
rapidly than with other policies. As expected, for no-group
users the distribution of energy consumption remains identical
for all the policies.

VI. CONCLUSION

This paper presents an energy efficient group-based data
delivery to accomplish tasks in MCS campaigns. To form
groups and elect group owners, we propose three different
policies suitable to different contexts and applications of a
MCS campaign. The first policy constructs regular grid, where
each cell represents a group, the second policy groups users
around PoIs, while the third policy forms groups between
pedestrians walking in the same direction along the streets. To
conduct performance evaluation in a realistic urban scenario,
Luxembourg City center, we resort to CrowdSenSim simulator.
The results show that exploiting a collaborative data delivery
approach brings significant energy savings for members of the
group not responsible for data delivery to the collector. For
future work, we plan to elaborate more on the proposed policies
by implementing them and test in realistic urban settings.
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