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Abstract—Video content is responsible for more than 70% of
the global IP traffic. Consequently, it is important for content
delivery infrastructures to rapidly detect and respond to changes
in content popularity dynamics. For flexible and highly adaptive
solutions, the capability for a quick response should be driven
from early (real-time) and low-complexity content popularity
detection schemes. In this paper, we focus on the early and
low-complexity detection of video content popularity, which we
address as a statistical change point (CP) detection problem.
Our proposed methodology estimates in real-time the existence,
the number, the magnitude and the direction of changes in
the average number of video visits by combining: (i) off-
line and on-line CP schemes; (ii) an improved measurements
window segmentation heuristic for the detection of multiple
CPs; and (iii) a variation of the moving average convergence
divergence (MACD) indicator to detect the direction of changes.
We evaluated the proposed framework using a large database
of real youtube video visits. The proposed algorithm is shown to
accurately identify CPs and the direction of change in the off-
line phase. Finally, a few illustrative examples of two variations
of the on-line algorithm are also included.

Index Terms—video content popularity detection, change point
analysis, time-series segmentation

I. INTRODUCTION

Video content is projected to account for 82% of the global

Internet traffic by 2020, significantly increased from 72% in

2016 [1]. This highlights the importance of early detection

of changes in content popularity which impacts the network

traffic and server utilization. This problem requires a fresh

view, since new networking and cloud paradigms appeared

lately with significant elasticity capabilities, including soft-

ware defined networking, new cloud orchestration proposals

[2] and evolutions in the content distribution networks (CDNs)

[3]. Such approaches offer new means to respond quickly

to the changes in the content popularity dynamics, with the

appropriate adaptations, e.g., efficient capacity and server

resource allocation, load balancing or content caching.

Content popularity prediction is challenging, because many

different factors from both the digital and physical world influ-

ence the Internet surfing behavior of the users [4], including (i)

the quality, type (e.g., commercial or user-provided) and life-

time of content; (ii) its relevance to users and physical events;

(iii) the social interactions between users; and (iv) the content

promotion strategies involved. Furthermore, mid-term and

long-term prediction – and corresponding adaptations in the

network or cloud environment – can prove inaccurate and thus

result in sub-optimal service planning and provisioning, uti-

lization of resources or violation of service level agreements.

In this work, we revisit content popularity prediction in the

context of modern, flexible networking and cloud approaches,

that are highly adaptable and can respond to short-term

dynamics. With accurate, on-line content popularity detection,

discrepancies between predictions and actual changes can be

alleviated. Our proposed approach is be real-time, lightweight,

accurate and accounts for historical information on content

visits.

In our analysis we propose the employment of change

point (CP) detection theory and algorithms; their suitability

is confirmed by analyzing a large number of real youtube

video data. In this contribution, the early content popularity

detection problem is addressed with a novel CP detection

methodology, consisting of a training phase using historical

data and an on-line CP detection phase. In the training

phase, we employ modified off-line CP detection schemes

to configure a set of parameters that we later use in the

sequential (on-line) algorithm. This approach is shown to

greatly improve the accuracy of the on-line detector, as in

essence the algorithm parametrization is not arbitrary but

rather extracted from corresponding historical data. To the

best of our knowledge, it is the first time in the literature that

sequential (on-line) and retrospective (off-line) CP detection

algorithms are combined in a single algorithm.

A second novelty in our approach is that we complement

the off-line scheme with a novel, more accurate segmentation

algorithm used for the detection of multiple CPs. Finally,

we enrich the on-line algorithm with a modified exponential

moving average filter that allows us to detect the direction of

changes and accordingly respond in terms of load balancing.

We give representative examples from two approaches of on-

line algorithms. As shown in section III, the proposed overall

CP detector is based on sufficiently general and convenient

assumptions. Moreover, unlike other approaches, we employ

methods that allow dependence between observations, leading

to more realistic assumptions for the statistical structure of the

content visits.

The rest of the paper is organized as follows. In Section II



we contrast our approach to related works. In Section III we

discuss our methodological approach and proposed schemes.

Section IV includes a performance analysis of our algorithm

using a database of real youtube video views. In Section V,

we discuss our future plans and conclude the paper.

II. RELATED WORKS

The area of content popularity attracted a lot of interest in

recent years, because of its importance in a number of areas,

such as network dimensioning (e.g., capacity planning or

scaling up of resources), on-line marketing (e.g., advertising,

recommendation systems) or real-world outcome prediction

(e.g., analysis of economical trends) [4]. Most of content

popularity studies relevant to our work consider the aggregate

behavior of a particular content, focus on content popularity

prediction and adopt parametric approaches. They can be

categorized as: (i) cumulative growth studies, estimating the

”amount of attention” from the publication instance to the

prediction moment [5]; (ii) temporal analysis approaches, i.e.,

how content visits evolve over time [6]; and (iii) clustering

methods of content with similar popularity trends [7], [8]. Fi-

nally, statistical characterizations of the distribution of visits,

show that the underlying distributions are either Zipf [9] or

Zipf-Mandelbrot [10] for both commercial or user-generated

content.

In contrast to existing studies, we introduce a novel CP

detection methodology that provides accurate, lightweight,

and early, on-line CP detection of content popularity. We

formulate the detection of a change in content popularity as

a statistical hypothesis test and deploy non-parametric proce-

dures to avoid a particular distribution assumption (such as a

specific copula model). This context ensures low convergence

time, since it avoids estimating a large number of model

parameters and restrictive assumptions that may not match

the time-series structure. Furthermore, we avoid problems

of parametric models that require parameters’ fitting and

selection, which may be inapplicable as new data becomes

available.

Up to now there are only a handful of proposals addressing

the challenges of new flexible networking and cloud architec-

tures accounting for content popularity. Exceptions include

[11] in which a logistic-loss machine-learning approach to

content popularity prediction is applied for a Fog RAN

environment, and, our recent paper [3]. In [3], the algorithm

described here is integrated in an elastic CDN framework

based on lightweight cloud capabilities using Unikernels.

[3] focuses on the platform details rather than on the CP

algorithm; it confirms experimentally the suitability of the

latter for relevant flexible network and cloud architectures.

The first detailed description of the enhanced CP detection

algorithm is presented in the following.

III. EARLY CP DETECTION ALGORITHM

In this section, we present our on-line content popularity

detection algorithm. The basic idea is to detect, in real-time,

changes in the average number of content popularity views.

For this reason, we developed an iterative algorithm that

consists of: (i) a training phase based on off-line CP detection

– during this phase the algorithm parameters are determined;

and (ii) a sequential phase based on on-line CP detection

that identifies in real-time qualitative changes in the content

popularity dynamics. We elaborate on the two parts of the

proposed algorithm below and then provide the corresponding

pseudo-code.

A. Training (off-line) Phase

Here, we discuss the training phase of the algorithm. We

begin by analyzing the foundational aspects of the off-line

scheme that is used to detect a CP in past (historical) visit

measurements. Standard off-line schemes can only detect one

CP. To address the issue of detection of multiple CPs, we

enrich the basic scheme with a novel time-series segmentation

heuristic, that belongs to the family of binary segmentation

algorithms.

1) Basic Off-line Approach: Let {Xn : n ∈ N} be a se-

quence of d- dimensional random vectors (r.v.), representing

the number of video views within a time period for a specific

video, taking values in N
d. We assume that X1, ..., XN can

be written as,

Xn = µn + Yn, 1 6 n 6 N (1)

where {µn : n ∈ N} is the mean value of video visits and

{Yn : n ∈ N} a random component, with zero mean, E [Yn] =
0, and positive definite covariance matrix, E

[
YnY

T
n

]
= Σ.

We further assume that it is m-dependent, implying that for

l, s,m ∈ N, Yl is independent of Ys if |l − s| > m.
The off-line analysis tests the constancy (or not) of the

mean values up to the current time N . Hence, we define the

following null hypothesis of constant means,

H0 : µ1 = · · · = µN

against the alternative,

H1 : µ1 = · · · = µk 6= µk+1 = · · · = µN

indicating that the mean value changed at the unknown (time)

point k ∈ {1, N}.

Considering (1) and the corresponding assumptions for the

stochastic process Xn, we develop a non-parametric CUSUM

test statistic following [12]. The test statistic can be viewed

as a max-type procedure,

M = max
16n6N

CT
n Ω̂

−1
N Cn (2)

where the parameter Cn is the typical CUSUM,

Cn =
1√
N

(
n∑

i=1

Xi −
n

N

N∑

i=1

Xi

)
(3)

and Ω̂N is the estimator of the asymptotic covariance Ω, where

Ω =

∞∑

s=−∞

Cov (XnXn−s). (4)



The estimator should satisfy,

Ω̂N
P−→Ω (5)

where
P−→ denotes convergence in probability.

Several estimators have been proposed in the literature that

satisfy (5), including kernel based [13], bootstrap based [14],

etc. Considering our requirement for real-time detection (low

computational time), a kernel based estimator is more suitable;

we employ the Bartlett estimator,

Ω̂N = Σ̂0 +
L∑

l=1

kBT

(
l

L+ 1

)(
Σ̂l + Σ̂T

l

)
(6)

which satisfies (5). The function kBT (.) corresponds to the

Bartlett weight,

kBT (x) =

{
1− |x|, for |x| 6 1

0, otherwise
, (7)

while Σ̂l denotes the empirical auto-covariance matrix for lag

l (we chose L = log10(N) as in [13]),

Σ̂l =
1

N

N∑

n=l+1

(
Xn − X̄

) (
Xn−l − X̄

)T
. (8)

The asymptotic covariance is involved in the test statistic

to incorporate the dependence structure of the r.v. into the

statistical analysis, through the integration of the second order

properties. This approach is suitable for the targeted context,

since we avoid a restrictive assumption for the dependence

structure of the observations.

Going back to the basic question of rejecting or not H0, we

need to obtain critical values for the test statistic. We approach

this issue by considering the asymptotic distribution of the test

statistic under H0,

M
D−→ sup

06t61

d∑

j=1

B2
j (t) (N → ∞), (9)

where
D−→ denotes convergence in distribution and

(Bj(t) : t ∈ [0, 1]) , 1 6 j 6 d are independent standard

Brownian bridges B(t) = W (t)− tW (1), and W (t) denotes

the standard Brownian motion with mean 0 and variance t.
The critical values for several significance levels α can be

computed using Monte Carlo simulations that approximate the

paths of the Brownian bridge on a fine grid. The last step is

to estimate the unknown CP, under H1, given by:

ĉp =
1

N
argmax
16n6N

M. (10)

2) Extended Off-line Approach: The above hypothesis test

answers the problem of the existence of at most one CP and

does not ensure that the sample remains statistically constant

or stationary in either direction of the detection. In particular,

by construction (see equation (2)), the off-line test statistic
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Fig. 1: Importance of training method in the on-line de-

tection (dashed line): a) Basic off-line approach (inaccurate

detection). b) Extended off-line approach (accurate detection).

Training and excluded samples are denoted with light and dark

gray, respectively.

detects the CP with the highest magnitude. Therefore, we need

to rephrase the hypothesis test regarding H1, as follows:

H1 : µ1 = · · · = µk1
6= µk1+1 = · · · = µk2

6= · · ·
· · · 6= µkτ−1+1 = · · · = µkτ

6= µkτ+1 = · · · = µN .

To identify multiple CPs, we developed a heuristic algorithm

that combines two well-known methods from the class of

binary segmentation (BS): i) the standard BS [15] and ii) the

iterative cumulative sum of squares (ICSS) [16] algorithms.

These algorithms are computationally efficient (O(N logN)
and O(N) complexities for BS and ICSS, respectively) and

easy to implement.

The standard BS algorithm, relies on the general concept

of binary segmentation. At first, it searches for a single CP in

the dataset. In case of no change, the procedure stops and H0

is accepted. Otherwise, the detected CP divides the dataset

into two sub-datasets and the search is iterated, until no more

CPs are detected. An issue with the standard BS is that it

overestimates the number of CPs [17].

On the other hand, the ICSS algorithm searches for a single

CP in the whole dataset. If a CP is detected, the algorithm

searches for a CP in the interval below and above this

change, respectively. If H0 is rejected, the procedure searches

for a CP in a new interval with borders the CP (or CPs)

previously detected. The algorithm works iteratively until the

interval becomes sufficiently small. In order to eliminate the

overestimation of CPs, the algorithm searches the potential

CPs in pairs and checks if H0 is still rejected between them,

otherwise it eliminates any CP in between.

We merged the two algorithms. In essence, we augmented

the standard BS algorithm with the CP validation step of the

ICSS. The proposed modified off-line algorithm, including

its segmentation process, applies the previously described

modified BS procedure in the test statistic M , given in (2).

In Fig. 1 we illustrate the need to involve the modified

off-line CP procedure, for an accurate on-line detection. In

Fig. 1(a) the standard off-line detector identified a single CP,

whereas in reality multiple CPs can be seen to exist. In Fig.

1(b) all CPs have been identified with the modified off-line

detector, leading to an accurate detection.



B. On-line Phase

In the following, we describe the on-line scheme that

includes: (i) two alternative CUSUM-type approaches for the

detection of a change in the mean; and (ii) a moving average

convergence divergence (MACD) indicator to estimate the

direction of a change.

1) On-line analysis: We rewrite equation (1) in the form,

Xn =

{
µ+ Yn, n = 1, . . . ,m+ k∗ − 1

µ+ Yn + I, n = m+ k∗, . . .
(11)

where µ, M ∈ R, represent the mean parameters before

and after the unknown time of possible change k∗ ∈ N
∗

respectively. The term m denotes the length of the training

period, i.e., an interval of length m, during which the mean

remains unchanged,

µ1 = · · · = µm. (12)

To satisfy this assumption, the modified off-line CP test

previously presented is run and a suitable m is identified.

With m determined, the on-line procedure can be used to

check whether the assumption (12) holds as new data become

available. The importance of a well defined training sample

is shown in Fig. 1. In the form of a statistical hypothesis test,

the on-line problem is posed as,

H0 : I = 0

H1 : I 6= 0
(13)

The on-line sequential analysis belongs to the category

of stopping time stochastic processes. In general, a chosen

detector TS(m, k) and a given threshold F (m, k) define the

stopping time:

τ(m) =

{
min{k ∈ N : |TS(m, k)|> F (m, k)}
∞, otherwise

(14)

with the properties,

lim
m→∞

P{τm < ∞|H0} = a,

ensuring that the probability of false alarm is asymptotically

bounded by α ∈ (0, 1), and,

lim
m→∞

P{τm < ∞|H1} = 1,

ensuring that under H1 the asymptotic power is unity. The

threshold F (m, k) is given by,

F (m, k) = cagγ(m, k). (15)

The critical value ca is determined from the asymptotic

distribution of the detector under H0 and the asymptotic

behavior achieved by letting m → ∞, while the weight

function,

gγ(m, k) =
√
m

(
1 +

k

m

)(
k

k +m

)γ

(16)

depends on the sensitivity parameter γ ∈ [0, 1/2).

We apply here two different types of statistics tests, the

standard CUSUM [18] and the ratio type CUSUM [19]. The

standard CUSUM detector is expressed as:

Γ(m, k) =
1

ω̂m

(
m+k∑

i=m+1

Xi −
k

m

m∑

i=1

Xi

)
(17)

where ω̂m denotes the asymptotic variance, defined in eq. 4,

that captures the serial dependence between observations.

The corresponding threshold is FΓ(m, k) = cΓagγ(m, k)
and the critical value is defined as:

lim
m→∞

P{τm < ∞} = lim
m→∞

P

{
1

ω̂m

sup
16k6∞

|Γ(m, k)|
gγ(m, k)

> cΓa

}

= P

{
sup

t∈[0,1]

W (t)

tγ
> cΓa

}
= a.

(18)

Unlike standard CUSUM tests, ratio type statistics do not

deal with the long run variance estimator. The precise form

of the chosen detector is,

TR(m, k) =

=
k2

m
DT |m+k

m+1


 1

m2

m∑

j=1

j2
(
D|j1DT |j1

)



−1

D|m+k

m+1 ,

(19)

Threshold function is given by FTR(m, k) = cTR
a g2γ(m, k),

then similar to the standard CUSUM, critical value is given

by,

lim
m→∞

P{τm < ∞} = lim
m→∞

P

{
sup

16k6∞

|TR(m, k)|
g2γ(m, k)

> cTR
a

}

= P

{
sup

t∈[0,∞)

∆γ(t) > cTR
a

}
= a,

(20)

where,

D|db =

(
1

d− b+ 1

d∑

i=b

Xi −
1

m

m∑

i=1

Xi

)
, b < d ∈ N,

∆γ(t) =
1

η2γ(t)
BT (1 + t)

(∫ 1

0

B(r)BT (r)dr

)−1

B(1 + t),

η2γ(t) = (1 + t)

(
t

1 + t

)γ

,

and B(t) is a standard Brownian bridge, t ∈ [0,∞) .

2) Trend Indicator: To estimate the direction of change it

is not sufficient to look at the immediate neighborhood of

a detected CP due to the continuous variability of the time

series. We therefore have to estimate the direction of change

by incorporating more elaborate filters. In the proposed on-

line algorithm, we estimate the direction of detected changes

by applying the MACD indicator. MACD is based on an

exponential moving average (EMA) filter, of the form,

EMAp(n) =
2

p+ 1
Xn +

p− 1

p+ 1
EMAp(n− 1), (21)
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Fig. 2: Off-line CP detection with direction identification. a)

Time-series view. b) Equivalent MACD TI view.

with p denoting the lag parameter. The MACD series can

be derived from the subtraction from a short p2 lag EMA

(sensitive filter) of a longer p3 lag EMA (blunt filter), as

described below:

MACD(n) = EMAp2
− EMAp3

. (22)

The trend indicator TI is then obtained by the subtraction of

a short p1 lag EMA filter of a MACD series from the raw

MACD series, as described below

TI(n) = MACD(n)−EMAp1
(MACD(n)), p1 < p2 < p3.

(23)

In the evaluation of TI three exponential filters are in-

volved. In essence, TI is an estimation of the second deriva-

tive of the change, considering that the subtraction of a filtered

variable from the variable generates an estimate of its time

derivative. In contrast to other works [20], we only adopt TI
to characterize the direction from the specific value of TI at

the estimated time of change. We announce an upward change

if TI > 0, otherwise a downward change. Fig. 2 depicts the

operation of TI combined with the CP detector.

Finally, we propose a modification of the trend indicator

TI in (23), converting it from a point estimator to an interval

estimator; instead of calculating TI at the CP ĉpi, we propose

to evaluate TI at a time interval (ĉpi, ĉpi + h), where h is a

threshold parameter:

TI(ĉpi, h) =

ĉp
i
+h∑

k=ĉp
i

[MACD(Xk)−EMAp1
(MACD(Xk))].

(24)

The proposed modification of the TI estimator improves its

accuracy; the calculation of the sum of a multitude of first

observations, after a CP, can smooth out a potential false one-

point estimation, especially for very small output values (close

to zero) of the point estimator.

3) Overall Algorithm: Below we describe the pseudo-code

of the overall proposed algorithm, comprising 5 steps. We

show the algorithm for the content popularity detection and

the interaction between the training phase and the on-line

phase. In the proposed load balancing approach we assume

that: (i) a new content cache is being deployed, whenever there

is an increase in the content popularity; and (ii) an existing

content cache is being removed, in the case of a decrease. We

outline the integrated algorithm below:

• Step 1: From a starting time instance ms, define a finite

monitoring window k > 0,

• Step 2: Apply the extended off-line algorithm for the

whole historical period h = {1,ms},

– if no changes are detected, the training sample of

the sequential procedure becomes m = h,
– else the training sample becomes m = {cplast,ms},

where cplast is the last detected off-line CP.

• Step 3: Apply the on-line procedure TS(m, k) on the

interval {ms,ms + k}
– if an on-line CP, ĉp∗, is detected the on-line proce-

dure stops,

– else if no change has occurred set ĉp∗ = 0 and the

monitoring terminates, i.e., proceed to Step 5.

• Step 4: If ĉp∗ 6= 0, define kcp = ĉp∗ as a CP and apply

the trend indicator at the time of change TI(kcp),

– if TI(kcp) > 0 then deploy a new content cache

(i.e., upward change),

– else, remove a content cache (i.e., downward

change).

• Step 5: Set a new starting point for the monitoring

period,

– if kcp > 0, set ms = kcp + d, where d is a constant

value defining a period assuming no change,

– else, set ms = mh.

IV. RESULTS AND PERFORMANCE EVALUATION

In this section, we validate the proposed methods using a

dataset of real daily measurements (i.e., 880 youtube video

views for 1000 days) extracted from youtube using the tool

[21]. In subsection IV-A we conduct extensive experiments,

applying the extended off-line algorithm presented in section

III-A, to analyze the dataset behavior in terms of content pop-

ularity changes and evaluate the off-line algorithm’s efficiency

to reveal the direction of changes. Studying the detected CP

characteristics also serves to adjust the arbitrary parameters

of the main algorithm, since the off-line analysis acts as a

training phase for the on-line scheme. Finally, we evaluate

the proposed on-line method in subsection IV-B.

A. Evaluation of the Extended Off-line Algorithm

We test the hypothesis of no change in the mean structure

on our dataset. This results in a high rejection rate, approx-

imately 70%, for a significance level of a = 0.05. We also

provide the number of content popularity changes, by applying

the extended off-line algorithm. The corresponding results are

illustrated in Fig. 3 and indicate a sufficiently high number

of content popularity anomalies (i.e., mean changes). Hence,
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Fig. 3: Estimated a) frequency and b) cumulative frequency

of the number of CPs per time-series.

TABLE I: Percentage of Successful TI Identification

h 0 3 5 7 10

Video Set 1 0.69 0.91 0.95 0.97 0.98

Video Set 2 0.90 0.99 0.99 0.99 0.99

a CP analysis is indeed a suitable tool for content popularity

detection.

To evaluate the performance of the proposed TI , we need

a baseline independent assessment of direction of change. In

the following we assume that: i) a real increase in content

visit exists if mean([X(ĉpi−1), X(ĉpi)]) < mean(X(ĉpi) :
X(ĉpi+1)), or that ii) a real decrease in the number of

visits exists if mean(X(ĉpi−1) : X(ĉpi)) > mean(X(ĉpi) :
X(ĉpi+1)). We test the modified TI on two sets of videos.

The first set comprises the whole dataset, while the second set

comprises only the videos with a considerable average number

of visits (< 10), i.e., mean(X(1) : X(1000)) > 10.

The percentage of the successful TI identifications are tab-

ulated in Table I for five h thresholds, namely h = 0, 3, 5, 7
and 10. Commenting on the results for Video Set 1, the

proposed modified TI works well, except for h = 0, providing

at least 90% correct direction identifications. As expected, as

the time space increases the procedure works better. More

specific, an h ≥ 5 parameter choice yields a success rate of

95%, while if a more agile estimation is needed then an h ≥ 3
still maintains a 91% accuracy. Considering the interim time

between consecutive changes, analyzed below, we deduce that

an h < 8 despite the delayed detection remains applicable.

Regarding Video Set 2, we see that the results are highly

improved, indicating that the procedure works even better for

the most popular video. In practice, this represents the more

interesting scenario as it will have the greater impact in terms

of the applied load balancing mechanism.

Furthermore, in Fig. 4, the time instances of upward and

downward changes are shown in the form of a boxplot. It is

intuitive that upward changes occurs earlier in time than the

downward changes. Moreover, Fig. 4 demonstrates that the

multitude of upward changes is greater than the respective of

downward changes, indicating that decreases in popularity are

sharper than increases. In particular, we estimated that out of

the total number of changes, 67% are upward.
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Fig. 4: Frequency values of the number of upward and

downward CP, per time series.
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Fig. 5: a) Boxplot including the interval (5%− 95%) (dashed

line) and (10% − 90%) interval (dotted line), b) Cumulative

frequency for the interim time of consecutive CPs.

Finally, we analyze the interim time between consecutive

CPs. Fig. 5 illustrates the existence of a sufficiently large gap

between consecutive potential changes. 90% of the intervals

corresponding to consecutive CPs exceed 70 time instances,

ensuring that a sufficiently large training window can be ap-

plied. The results depicted in Fig. 5 allow to adjust parameters

of the on-line phase, in particular the minimum time interval

between consecutive changes, denoted by the parameter h.

B. Evaluation of the On-line Algorithm

We illustrate the on-line algorithm on different time series.

We set the beginning of the monitoring period at ms = 200,

the on-line parameter g = 0.25 and the significance level

a = 0.95. The corresponding results are depicted in Figs. 6,

7, showing the estimated changes by applying the standard

CUSUM procedure and the ratio type CUSUM process,

respectively. In both cases, the estimated changes correspond

to the real mean changes. In fact, in some cases, the ratio

type test seem to overestimate the number of changes (e.g.,

Fig. 7d). A more exhaustive comparison is needed between

the two schemes, for a more comprehensive evaluation.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we developed a novel algorithm for the real-

time detection of content popularity changes. Approaching the

problem statistically, we efficiently combined off-line and on-

line non-parametric CUSUM procedures to avoid restrictive

assumptions for content popularity behavior and to reduce
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Fig. 6: On-line standard CUSUM algorithm. Solid and dashed

lines depict an upward and a downward change, respectively.
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Fig. 7: On-line ratio CUSUM algorithm. Solid and dashed

lines depict an upward and a downward change, respectively.

the overall computational cost. We divided the algorithm

in two phases. The first phase is an extended retrospective

(off-line) procedure with an improved BS algorithm and is

used to adjust on-line parameters, based on historical data of

the particular video. The second phase integrates a modified

trend indicator to the sequential (on-line) procedure, to reveal

the direction of a detected change. We provided extensive

simulations, using real data, that demonstrate the performance

of the first phase of our algorithm. We also provided proof-

of-concept results that highlight the efficiency of the overall

algorithm. In future work, we will improve the proposed

scheme by incorporating multiple dimensions in the existing

methodology that could represent other parameters related

to user’s surfing habits (e.g., likes, comments, etc.), or real-

time resource utilization of servers. We will also investigate

the scalability behavior of our solution, theoretically and

experimentally, i.e., estimate the number of videos it can

analyze in parallel. Our goal is a distributed architecture with

multiple content popularity analyzer entities, investigating

clusters of videos with minimum overall processing cost.
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