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Modulus Zero-Forcing Detection for MIMO

Channels

Sha Hu and Fredrik Rusek

Abstract

We propose a modulus arithmetic based zero-forcing (MZF) detector for multi-input multi-output

(MIMO) channels. Traditionally, a ZF detector completely eliminates interference from other symbol

layers when detecting a particular symbol layer, which results in suboptimal performance due to noise-

enhancement. The only constraint for application of our proposed MZF detector is that the transmitter

must employ a finite cardinality M quadrature-amplitude-modulation (QAM) alphabet. With that, the

modus operandi of the MZF is to allow for integer-valued interference and then remove it by modulus

arithmetic operations.

Index Terms

Multi-input multi-output (MIMO), modulus, zero-forcing (ZF), quadrature-amplitude-modulation

(QAM), pulse-amplitude-modulation (PAM), linear minimum-mean-square-error (LMMSE), sphere-decoding

(SD), lattice-reduction (LR), Lenstra-Lenstra-Lovász (LLL).

I. INTRODUCTION

We consider a standard multi-input multi-output (MIMO) channel model with a received signal

ỹ expressed as

ỹ = H̃x̃+ ñ, (1)

where H̃ , x̃ and ñ are the complex-valued MIMO channel, transmitted symbols and Gaussian

noise, respectively.
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Given received signal model (1), detecting x̃ is referred to as a MIMO detection problem,

which has a history that can be traced back about half a century and a review on it can be found

in e.g., [1]. In general, maximum likelihood (ML) detection [2] yields optimal performance

but with prohibitive complexity when the MIMO dimension and/or the input alphabet has large

cardinality. Effective implementations of ML detection, such as sphere-decoding (SD) [3], [4] can

significantly reduce the complexity, but not overcome an exponential complexity in the number

of symbol layers CITE JALDEN’S PAPER. On the other hand, linear detectors [2] such as zero-

forcing (ZF) and linear minimum-mean-square-error (LMMSE), have low complexities, but also

suboptimal performances. One direction for improving linear detectors is lattice-aided-reduction

(LAR) [5] based approaches, which use lattice-reduction (LR) algorithms, e.g., Lenstra-Lenstra-

Lovász (LLL), to find a short and nearly orthogonal basis for the lattice induced by the MIMO

channel [6].

Other than the existing approaches [1], as the transmitted symbols are drawn from finite alpha-

bets such as quadrature-amplitude-modulation (QAM) and pulse-amplitude-modulation (PAM)

symbols, the modulus can also be used in MIMO detection for improving the detection per-

formance. The modulus operation has been used in Tomlinson-Harashima precoding (THP) [7],

[8] as suboptimal approximation for dirty-paper coding (DPC) [9], and recently it has also be

considered in the designs of integer-forcing (IF) receives for MIMO channles [13], [15], [16].

The IF scheme in [13] requires the transmitter to employ a same lattice code [14] for each

transmitted layer, which does not apply in most of current communication systems. Besides,

when higher-oder modulations such as M -PAM are used, designing lattice code over ZM is

challenging [14]. Simpler IF receivers dealing with linear binary codes such as turbo and LDPC

are proposed in [15], [16], and the designs follow the same as in [13]. One disadvantage of

the IF receivers in [13], [16] is that, each transmit antenna needs a separate encoding/decoding

process, which is not the case in practical LTE systems where one codeword is split among

transmit-antennas. Moreover, the IF design in [15] needs a separate encoding/decoding process

per transmit antenna and per bit-layer in higher-order modulations. Another advantage is that,

the receiver has to detect the linear combinations of codewords for all transmit-antennas first,

followed by a matrix inversion (over a finite-field) process to recover the original codeword on

each layer.

To overcome these disadvantages in previous IF receiver designs, we consider a new approach

to improve linear detection with modulus operation, namely, the proposed modulus ZF (MZF)
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detection. Note that, MZF is conceptually different from previous IF receivers, although they

share quite some similarities. The fundamental difference is that, with MZF, there is no encod-

ing/decoding process needed which are implemented on a finite-filed with IF receivers to recover

the transmit symbols (i.e., the linear combinations of codewords across all transmit-antennas).

Alternatively, we design MZF detector such that the transmit symbols on each transmit-antenna

can be recovered directly by modulating away the interferences from the remaining transmit-

antennas, and the symbol detection on different transmit-antenna is independent and fully in

parallel. Such a principle simplifies the operation and can be well cooperated into practical

systems such as LTE. To achieve such a nice property, with MZF the modulus matrix is carefully

designed and optimized according to the specific modulation-order.

II. PRELIMINARIES

We start with reviewing the standard ZF detection. Before proceeding, without loss of gener-

ality, the matrix H̃ is always assumed to be a square matrix, obtained by a QR factorization or

padding zero rows to the matrix if necessary. With the following definitions,

y =

 R{ỹ}
I{ỹ}

, x =

 R{x̃}
I{x̃}

, n =

 R{ñ}
I{ñ}

, H =

 R{H̃} −I{H̃}
I{H̃} R{H̃}

, (2)

we can rewrite (1) as a real-valued model

y = Hx+ n (3)

where the K×K channel matrix H is known to the receiver, x= [x1 . . . xK ]T contains PAM

symbols from an alphabet A = {±1, ±3, . . . ,±(
√
M − 1)}, and n is random Gaussian noise

with a covariance matrix (N0/2)I . As the transmit power depends on M , the signal-to-noise

(SNR) is defined as

SNR = 2E[|xk|2]/N0. (4)

The ZF detector is given by

x̂ = QA
(
H+y

)
, (5)

where QA(·) denotes entry-wise quantization to the nearest point in A. This can be slightly

rewritten as

x̂k = QA(rk), 1 ≤ k ≤ K
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with

rk = δkH
+y (6)

and

δk = [0 . . . 0︸ ︷︷ ︸
k−1

1 0 . . . 0︸ ︷︷ ︸
K−k

].

For later use, we note that we may just as well replace the “1” with any arbitrary scalar value

and equivalently work with

rk = τxk + wk, (7)

where wk is zero-mean complex Gaussian noise with variance τ 2(N0/2)‖δkH+‖2. Accordingly,

the post-processing SNR, which is independent of τ , becomes

γk =
SNR

‖δkH+‖2
, (8)

where SNR is defined in (4).

III. DESCRIPTION OF THE PROPOSED MZF DETECTION

A main issue with ZF is that ‖δkH+‖2 in (8) is typically large and results in noise-enhancement.

To combat that, we make use of the underlying idea of THP but apply it to detection, without

any involvement of the transmitter. We propose to replace (6) with

rk = (τδk + qk)H
+y (9)

where qk=[qk1, qk2, . . . qkK ] and qk`∈2Z, i.e., the even integers. With that,

rk = τxk +
K∑
`=1

qk`x` + wk, (10)

and the post processing SNR changes to

γk =
τ 2SNR

‖(τδk + qk)H
+‖2

, (11)

rather than (8).

Note that (10) coincides with the received signal per user in a vector perturbation (VP) system

[10], [11]. Therefore, further processing of (10) follows the same steps as those for VP. Based

on (10), hard-output detection of xk from rk can be obtained based on the following property.
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Property 1. Let

y = z + α
M∑
m=1

pmbm,

where α ≥ 1, |z|<2, and pm, (bm−1)∈2Z. Then,

z =

(y mod 4α)− 2α, if 1
2

M∑
m=1

pm is odd,(
(y + 2α) mod 4α

)
− 2α, otherwise.

(12)

Proof. See Appendix A. �

Let us now consider α = 1 (other values are considered in Section IV-A). In view of Property

1, we see that qk` and x` in (10) qualify as pm and bm. Further, from the condition |z| < 2 in

Property 1, we have that τ must be selected so that

τ max
a∈A
|a| = τ(

√
M − 1) < 2. (13)

To finalize the detector, we let

zk =

(rk mod 4)− 2, if 1
2

K∑̀
=1

qk` is odd,(
(rk + 2) mod 4

)
− 2, otherwise,

(14)

which can be expressed as

zk = τxk + w̃k,

where w̃k has a complicated distribution due to the modulus operation. The detected symbol x̂k

can now be obtained as

x̂k = QτA(zk), (15)

where the quantization is implemented on τA, with the definition τA = {τx : x ∈ A}.

We remark that, the choice τ = 2/(
√
M − 1) is not suitable in (13). This is so since if

τxk+wk=2+ε, for some small ε>0, then zk=−2+ε. However, provided that τ�2/(
√
M−1),

such wrap seldomly happens at high SNR and w̃k = wk with high probability. Observe that

for constellation points xk with small magnitude, then w̃k = wk with much higher probability

than for constellation points xk of large magnitude. To ensure equal error probability for all

constellation points, we design τ such that:

The distance from 2 to the largest constellation point in τA is half the distance between two

points in τA.
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Following this rule results in

τ = 2(1−log2(
√
M)), (16)

where with out loss of generality we assume that log2(
√
M) is an integer in the rest of the

paper. With that, we have that w̃k is “nearly” Gaussian at high SNR; see VP-PAPER for further

details.

To optimize the receiver, we should solve

qoptk = arg max
qk

γk

= arg min
qk

‖(τδk + qk)H
+‖2 (17)

where elements of qk are even integers. We rewrite (17) as

qoptk = arg min
qk

‖τδkH+ − qk(−H+)‖2

= arg min
qk

‖bk − qkB‖2, (18)

which is an instance of sphere detection over the integers [4], and

bk = τδkH
+, (19)

B=−H+. (20)

Without any further extensions, pseudo-code for implementation of the MZF detector is given

in Algorithm 1. We remind the reader that the inputs H and y to the algorithm are assumed to

be real-valued, while M denotes the cardinality of the complex-valued QAM constellation. We

provide a worked out example of MZF detection in Appendix B to illustrate the process.

A. Some Remarks on the MZF Detection

With the principle of MZF detection introduced, we have a few important remarks as follows.

Remark 1. The MZF is an extension of the ZF, where the latter is the special case of the former

when ∥∥qoptk − δk � q
opt
k

∥∥2 =0, (21)

where � denotes the Hadamard product. Therefore, from the perspective of post-processing SNR

γk, MZF is always superior to ZF.
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Remark 2. Following Remark 1, when (21) holds, the modulus operation degrades performance

and should be removed.

Remark 3. In general the minimum value achieved by qoptk in (18) increases as τ decreases.

That is, for alphabets with large cardinality, the gain of MZF decreases.

To resolve the issue in Remark 3 and to further improve performance, some useful extensions

will be introduced in Sec. IV.

B. Discussion on the Diversity-Multiplexing Trade-off (DMT)

In the designs of IF receivers [13], [15], [16], the target is to directly optimize

poptk = arg min
pk

‖pkH+‖2, (22)

given the constraint that P ∈ZK×K is full-rank1 over R, where P it the matrix comprises all

vectors pk. Comparing to (17), it can be seen that, with MZF we constrain pk in (22) to be

pk = δk +
1

τ
qk, (23)

where qk comprises even integers. With (23) it holds that

P = I +
1

τ
Q, (24)

where τ < 1 and the elements of Q are even integers. Therefore, with MZF, the degrees-of-

freedom (DoFs) in designing P is less than that of an IF receiver2. Nevertheless, we have the

following Property 2 (which is an extension of [13, Theorem 5]) that shows that, the MZF also

achieves the optimal DMT [18] as IF receiver does. Therefore, from an information-theoretic

perspective, the MZF detection does not scarifies much performance compared to an IF receiver,

while the latter one has much higher encoding/decoding complexity.

1The rationale behind is that, in order to have P mod p to be full-rank over Zp (to recover the codewords from their linear

combinations after decoding on Zp), it suffices to check whether P is full-rank over R, given that the magnitudes of the elements

of P are upper-bounded by a constant [17, Th. 11].
2However, with MZF matrix P is not required to be full-rank.
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Property 2. For a complex-valued MIMO channel with K transmit-antennas, N ≥K receive-

antennas, and independent and identically distributed (i.i.d.) Rayleigh fading, the achievable

DMT with the MZF detection3 is

dMZF = N
(

1− r

K

)
, 0 ≤ r ≤ K. (25)

Proof. See Appendix C. �

IV. EXTENSIONS OF THE MZF DETECTION

In this section we introduce some extensions to the basic MZF detector for further improving

its performance. While Extension 1 and 4 are generalizations of the basic algorithm, Extension

2 is to resolve the issue mentioned for large cardinality alphabets and improve the performance

for weak bit-layers, while Extension 3 is a decision feedback version of Extension 2.

A. Extension 1: A scaled modulus

This first extension arises from a slight relaxation of α=1 in the MZF detector. From Property

1, we can replace (14) as

zk =

(rk mod 4α)− 2α, if 1
2

K∑̀
=1

qk` is odd,(
(rk + 2α) mod 4α

)
− 2α, otherwise.

(26)

This requires us to optimize, instead of (17),

(qoptk , αopt) = arg min
|α|≥1, qk

‖(τδk + αqk)H
+‖2. (27)

Solving (27) is harder than solving (17) since it can be regarded as an instance of non-coherent

sphere detection. Instead, we solve (17) first, and then plug the optimal solution into (27) and

solve for the optimal α. That is, qoptk is obtained with (17), and

αopt = arg min
|α|≥1
‖(τδk + αqoptk )H+‖2, (28)

where we sligthly abused notation since the pair (qoptk , αopt) is in general not jointly optimal

in the sense of (27). Although Extension 3 is intuitive, the gain seems marginal according to

numerical results.

3In this case, the size of H corresponding to the real-valued model in (3) is 2N×2K.
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B. Extension2: Bit-wise Modulus Zero-Forcing

An underlying assumption of this extension is that the bit-mapping to the symbols in A is

such that the constellation has an additive structure. By this we mean that a PAM symbol xk

should be of the form

xk =

log2(
√
M)∑

b=1

ukb2
b−1, (29)

where ukb ∈ {±1} correspond to information bits.

Using Algorithm 1, the bits ukb are determined by the output x̂k = QτA(zk), with setting

τ = 2(1−log2(
√
M)). As M increases, τ decreases and so are the gains of MZF detection. To

resolve this for large values of M , we extend the symbol-based MZF detector in Algorithm 1

to a bit-wise version.

Note that we can rewrite (10) as

rk = τ

log2(
√
M)∑

b=1

ukb2
b−1 +

K∑
`=1

qk`x` + wk. (30)

Assuming that we are interested in the n-th bit ukn, we let

x̃k =
n∑
b=1

ukb2
b−1, (31)

which belongs to a 2n-PAM alphabet. Setting τ(n)=21−n in (30) yields

rk = 21−nx̃k +

log2(
√
M)∑

b=n+1

ukb2
b−n +

K∑
`=1

qk`x` + wk. (32)

It can be easily seen that 1
2

∑log2(
√
M)

b=n+1 ukb2
b−n is an odd integer so it qualifies as a valid value

of qk`, and ukn can be detected as

ûkn = sign(zk). (33)

Therefore, for each bit-layer, a different value of τ is used and only a sign operation is needed

for detection. Extension 2 has a complexity increment over Algorithm 1 since an optimization

to find qk is needed for each bit-layer.

Note that, according to Remark 2, when detecting the last bit-layer and if (21) holds, the ZF

estimate shall be used for detection, while for detecting the other layers, modulus operations are

still needed to cancel the transmitted bits corresponding to higher bit-layers. Psuedo-code for

the MZF with this extension is summarized in Algorithm 2.
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C. Extension 3: A decision feedback version of Extension 2

An obstacle with Extension 2 is that τ(n) decreases as n grows, and as previously mentioned,

performance deteriorates. Small values of n correspond to weak bit-layers, and large n correspond

to strong bit-layers. Thus, with Extension 2, predominantly the weak bit-layers can gain by the

MZF, while the gain could be minuscule for strong bit-layers. A gain for weak bit-layers is

important since it is typically these bit-layers that limit ultimate performance. However, we can

also harvest a gain for strong bit-layers via a decision feedback mechanism. To prevent error

propagation in decision feedback equalization, strong bits are typically detected first and then

canceled. That option is not available for MZF, rather we detect the weakest bit-layer first and

then move on to stronger ones.

The method works as follows. First set n = 1 and follow Extension 2 verbatim to obtain

û1 =[û11 . . . ûK1]
T. For notational convenience, define y1 =y. Now construct

y2 =
1

2
(y1 −Hû1) . (34)

Provided that û1 is correct, y2 is described with the same MIMO channel as y1, but with
√
M/2-PAM rather than

√
M -PAM inputs. Next, move on to n=2 and keep τ(2)=1. Since nor

the value of τ(2) neither the channel H has changed, the optimal vector qk for n=2 coincides

with that already found for n=1. We then have that for y2

rk = uk2 +

log2(
√
M)∑

b=3

ukb2
b−2 +

K∑
`=1

qk`
1

2
(x` − ûk1) + wk, (35)

and ûk2 is obtained by taking the sign of zk as in (33). We proceed by

y3 =
1

2
(y2 −Hû2) , (36)

and continue the process until all bit-layers have been detected.

Similarly, according to Remark 2, whenever (21) holds, the ZF estimate shall be used. Pseudo-

code is provided in Algorithm 3.

Extension 3 is similar to Extension 2 in the sense that, the detection for all bit-layers only

needs to take the signs of zk as in (33), but it has less complexity since only one optimization of

(17) is needed which is shared for all bit-layers. A drawback with Extension 3 is that, as for all

decision-feedback based detectors, the processing of the bit-layers cannot be parallelized, which

is however, possible with Extension 2. Another drawback is potential error-propagation at low

SNRs.
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D. Extension 4: Replacing ZF by LMMSE

So far we have introduced modulus arithmetic detection using ZF, however, H+ can also be

replaced by other linear detectors4 such as LMMSE, which sets

H+ = HH
(
HHH +N0I

)−1
. (37)

In vector form, and with the introduction of a matrix T , the received signal after equalization is

TH+y = Tx+ T
(
H+H − I

)
x+ TH+n,

where T = (τI+Q). The target of optimizing qk in this case, is to minimize the interference

plus noise power that equals

q̃k = arg min
qk

‖(τδk + qk)E‖
2 , (38)

where

E =
[
H+H − I, N0H

+
]
. (39)

Note that, when H+ is the pseudo-inverse of H such as with ZF, E degrades to B, which

shows the generalization of the MZF concept. The reason for introducing Extension 4 is that,

the ZF detector is suboptimal to LMMSE at low SNRs, in which case the modulus operation

based on LMMSE can improve performance. Therefore, it is beneficial to use LMMSE instead

of ZF. Since only H+ is replaced by LMMSE equalization in Extension 4, all Algorithms 1-3

still apply verbatim.

There are also many other possible variations of the MZF, but which we will not pursue any

further. Next we put an interest on comparing the MZF to a traditional LAR detector. The reason

is that, solving (17) involves significant complexity, and we put forth an approximated solution

based on LR with less computational efforts.

V. A SOLUTION BASED ON, AND A COMPARISON TO, LATTICE REDUCTION

Except for approximately solving (17) with LR, another reason for comparing MZF with LR

detection is that, the obtained MZF allows for a direct comparison to LAR detectors. In LAR

as well as the MZF, the most burdening task is to execute the LLL algorithm (or other similar

algorithms), thus the complexities of LAR and MZF become virtually identical. As we will

demonstrate, the detection-performance of MZF is superior in some cases.

4This is also known as regularized perturbation in VP [10].
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A. A quick review of LAR

Given (3), LAR starts by performing the LLL algorithm on H , so that we obtain H̄ = HT

where T is unimodular and H̄ is nearly orthogonal. With z = T−1x we have

y = H̄z + n. (40)

Performing ZF based on H̄ and quantizing to the nearest integers gives

ẑ = QZ(H̄
−1
y) (41)

from which one can obtain

x̂ = QA(T ẑ).

Clearly, once H̄ has been established, the remaining steps are of miniscule complexity.

At this point, a reasonable question is, what the relation between LAR and MZF is, and

whether they are equivalent? The answers to these questions are that, they are closely related,

but not equivalent. Prior to quantization in (41), we can write

r = H̄
−1
y

= T−1x+w. (42)

Since T is unimodular, so is T−1.

On the other hand, written in vector form, (9) equals

r = (τI +Q)H−1y

= (τI +Q)x+w. (43)

Comparing (42) and (43) with τ = 1, we see that in both cases r equals an integer-valued

matrix multiplied with the data symbols, plus noise. However, the matrix T−1 in (42) has no

particular structure (besides being unimodular) so the modulus operation in (14) is not available.

This makes LAR, i.e., (42) and MZF, i.e., (43) fundamentally different, as the structure of (42)

requires further processing in the form of (41) while (43) allows for further processing via (14).

B. An approximate solution to (17) based on LLL

In (17) we have the following problem to solve

qopt = arg min
q
‖b− qB‖2, (44)
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where we removed the subscript k, and the vectors are row-vectors. Perform the LLL algorithm

to BT so that we have

B̄ = BTT .

Since B = −H+ the LLL algorithm needs, similar to LAR, to be executed only once per

coherence interval. We can now proceed as in the LAR case,

ẑ = QZ(B̄
−1
bT)

followed by

qopt = [Q2Z(T ẑ)]T . (45)

Note that, the optimization (44) itself is also a MIMO detection problem (but only needs

to run once per coherence-interval), therefore, there are also other low-complexity suboptimal

algorithms to solve (44), such as using ZF or partial marginalization [12]. In the simulations,

we will focus on the optimal SD and the suboptimal LLL solutions for (44), respectively.

VI. NUMERICAL RESULTS

In this section, we show some numerical results of the proposed MZF detector, as well as

its extensions. In all tests, we test with K×K real-valued MIMO channels (each element is an

independent and identically distributed Gaussian variable with a zero-mean and unit-variance)

with
√
M -PAM modulated symbols that are transfered from K/2×K/2 complex-valued MIMO

channels and M -QAM modulated symbols. We simulate 50,000 channel realizations for each of

the tests.

A. SINR improvements

In Fig. 1 we show the post-processing SNR improvements with the MZF detector using

Algorithm 1, and compare to a traditional ZF detector with different PAM modulations (i.e., τ

values). As can be seen, the SNRs are greatly improved, especially for low-order modulations (or

the weak bit-layers of high-order modulations with Extension 2). When τ decreases, the gains

become smaller. We also test the MZF with Extension 1, where we can observe only marginal

gains (not shown in Fig. 1). Therefore, in the remaining tests we set α=1.
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Fig. 1. SNR gains under real-valued 12×12 MIMO with 2-PAM, 4-PAM and 8-PAM modulations, respectively.
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Fig. 2. Uncoded BER under real-valued 6×6 MIMO with 4-PAM modulation.

B. Uncoded bit-error-rate (BER)

Next we show uncoded BER performance. In Fig. 2 we compare MZF with ZF and ML

under 6×6 MIMO with 4-PAM modulation. The MZF uses SD to find the optimal qk. As can be

seen, the MZF without extensions outperforms the ZF with more than 2 dB at 0.1% BER. With

Extension 2, the BER of the first bit-layer (weaker layer) is greatly improved by more than 4 dB

at 0.1% BER and outperforms the second bit-layer, which justifies the application of Extension
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Fig. 3. Uncoded BER under real-valued 4×4 MIMO with 8-PAM modulation.
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Fig. 4. Uncoded BER under real-valued 8×8 MIMO with 2-PAM modulation.

3. With Extension 3, where the feedbacks of the first bit-layer are used, the BER of the second

bit-layer is also improved by more than 3 dB at 0.1% BER compared to MZF with Extension

2. The gaps between ZF and ML are significantly reduced by the MZF, and the slopes of BER

with MZF are also much steeper than the ZF, and close to those with the ML. However, as

also can be observed, the MZF has only marginal gains at low SNRs, and the decision-feedback

approach performs even worse due to inaccurate feedbacks. This obstacle can be relieved by
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using LMMSE based approaches, i.e., Extension 4.

In Fig. 3 we repeat the tests in Fig. 2 under 4×4 MIMO with 8-PAM modulation, that is,

three bit-layers are considered. The MZF with Extension 2 using SD is compared to ZF and

ML. As already shown in Fig. 1, setting τ = 1/4 for detecting the third-layer (strongest layer)

only has small gains, and the BER performance is also close to ZF and therefore are not shown

in Fig. 3. Nevertheless, the BER of the first and second bit-layers are significantly boosted by

MZF. As can be seen, the MZF performs around 3 dB better than the ZF at 0.1% BER for the

second bit-layer, and 7 dB better for the first bit-layer. Since the weakest bit-layer usually has a

stronger impact on the decoding performance, the gains for the first bit-layer is of importance.

C. Comparison with LAR

In Fig. 4 we compare the MZF with the LAR under 8×8 MIMO with 2-PAM modulation.

The MZF uses both SD and the approximate LLL method to find the optimal qk. As can be

seen, MZF outperforms LAR with more than 1.5 dB at 0.1% BER, with a similar complexity

for running LLL algorithm for LR.

Moreover, with Extension 4 (the LMMSE based detection), the BERs at low SNRs are

also improved with the MZF which is inferior to the original ZF based MZF at high SNRs.

Nevertheless, with Extension 4, the MZF is 4 dB better than a normal ZF, and more than 2dB

better than a normal LMMSE detector at 0.1% BER. Another observation is that, the SD based

MZF is more than 2 dB better than the LLL based MZF, which shows that optimal selection of

qk is important.

VII. SUMMARY

We have proposed a novel modulus arithmetic based zero-forcing (MZF) detector for multi-

input multi-output (MIMO) channels, with a number of possible extensions of the basic algorithm.

The MZF detector shows significant gains in terms of post-processing signal-to-noise-ratio (SNR)

and bit-error-rate (BER) compared to traditional linear detectors, at medium and high SNR

scenarios and in particular for weak bit-layers. At low SNRs and with large cardinalities of the

input alphabet, we have provided several possible extensions to improve the performance of the

MZF. Finding the optimal modulus matrix itself is a burdening MIMO detection problem, but

it needs to be done only once per a coherence-interval of the MIMO channel using sphere-

decoding (SD) or other suboptimal algorithms. In particular, with a similar complexity, MZF
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with lattice-reduction (LR) based approaches outperforms the traditional lattice-aided-reduction

(LAR) detector, which justifies its potential in MIMO detection.

APPENDIX A: PROOF OF PROPERTY 1

Since pm, (bm−1)∈2Z, we let pm=2p̃m and bm=2b̃m+1, where p̃m, b̃m∈Z. Then,

y = z + α

M∑
m=1

pmbm

= z + 4α
M∑
m=1

p̃mb̃m + 2α
M∑
m=1

p̃m. (46)

Since |z|<2 and α>1, it holds that z+2α>0. If 1
2

M∑
m=1

pm=
M∑
m=1

p̃m is odd, we have

y mod 4α = z + 2α; (47)

Otherwise, if
M∑
m=1

p̃m is even, it also holds that

(y + 2α) mod 4α = z + 2α. (48)

Combing (47) and (48), z can be obtained as in (12).

APPENDIX B: A 4×4 EXAMPLE FOR APPLYING THE MZF DETECTION

Below we give a 4×4 real-valued MIMO example with 4-PAM modulation to illustrate the

process of MZF detection, with assuming the channel, transmitted symbol vector and received

signal vector as

H=


−6 0 −1 5

−3 −2 −1 1

1 −5 −6 0

1 −1 −3 −2

, x=


1

−1

−1

1

, y=


3

1

15

11

,
respectively. Then it can be shown that

H+ =
1

185


−5 −55 30 −40

35 −59 −25 58

−30 40 −5 −55

25 −58 35 −59

,
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and the ZF estimate of x equals

x̃ZF = H+y =
1

185


−60

309

−730

−107

,
where only the third symbol is correctly detected.

Next we use the basic MZF detection with Algorithm 1. Setting τ = 1 and run SD for

optimization (17) yields an optimal Q as

Q=


−2 0 0 0

0 0 2 0

0 0 −2 0

2 0 0 −2

.
We first see that, the MZF shall reuse the ZF estimates for the first and third layers based on (21).

Then, we see that with Q, the post-processing SNR (assuming the noise power equals 1) for the

second bit-layer (which is identical to the fourth bit-layer) is increased from 1/‖δ2H+‖=185/47

to 1/‖(δ2 + q2)H
+‖2 = 185/27. Next we compute estimates with the MZF for the these two

layers.

For the second layer, according to (14) we have

r2 = (δ2 + q2)x̃ZF =
1

185
[0 1 2 0]


−60

309

−730

−107

=
−1151

185
,

and

z2 = (r2 mod 4)− 2 =
−7

38
.

Similarly, for the fourth layer we have

r4 = (δ4 + q4)x̃ZF =
1

185
[2 0 0 − 1]


−60

309

−730

−107

=
−13

185
,
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and

z4 = (r4 mod 4)− 2 =
357

185
.

As can be seen, the MZF corrects both detections for the second and the fourth layers where

the ZF fails.

APPENDIX C: PROOF OF PROPERTY 2

In the case where each transmit antenna encodes an independent data stream, the optimal

DMT [18] is

dML(r) = N
(

1− r

K

)
, 0 ≤ r ≤ K, (49)

which can be achieved by joint maximum likelihood (ML) decoding, while the ZF (and also the

LMMSE) receiver attains a DMT

dZF(r) = (N −K + 1)
(

1− r

K

)
, 0 ≤ r ≤ K. (50)

Since H̃ has i.i.d. Rayleigh entries, H̃ is full column rank with probability 1, and so is

H ∈ Z2N×2K which is the real-valued representation H̃ . To prove that the MZF detection can

achieve the optimal DMT, we follows a similar proof in [13] for IF receiver, which builds on a

result in [23] that showed that, uncoded signaling coupled with LR can achieve the full diversity

and with a multiplexing gain of zero.

We define a lattices Λ and its dual Λ∗ generated by 2N×2K matrix H and 2K×2N matrix

H+ as [19]

Λ =
{
Hp, p ∈ Z2K

}
, (51)

Λ∗ =
{

(HT)+p, p ∈ Z2K
}
, (52)

respectively. From [19]–[21], the i-th successive minimum εi(Λ) of a lattice Λ is defined as the

smallest length r (with respect to the Euclidean norm) such that, there are i vectors in Λ of

length at most r that are linearly independent (with respect to R). By this definition, it holds

that [13]

ε21(Λ) = min
p∈Z2K

‖pHT‖2, (53)

ε22K(Λ∗) = min
P∈Z2K×2K

rank(P )=2K

max
1≤k≤2K

‖pkH+‖2. (54)
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Then, we state the following Lemma 1, which follows the proof in [13, Appendix C].

Lemma 1. Let Λ be the lattice generated by H lattice generated by H according to (51). Then,

for a sufficiently large s>0, the successive minimum ε2K(Λ) of Λ satisfies

P(ε22K(Λ∗) > s) ≤ P
(
K2(2K + 3)

ε21(Λ)
> s

)
(55)

= P
(
ε21(Λ) < s̃

)
(56)

≤ −γs̃2N(ln s̃)1+N , (57)

where ε21(Λ) is the first successive minimum for Λ, and

s̃ = K

√
2K + 3

s
. (58)

The inequality (55) follows from [13, Lemma 4], and the equality (56) holds by switching

ε21(Λ) to the other side, and the inequality (57) is a result of [13, Lemma 5] when s̃>0 and is

sufficiently small.

With the post-processing SNR γk in MZF detection in (11), we can show that for a given

target rate r ln SNR, the outage probability equals

P (R < r ln SNR) =P

(
max

Q∈2Z2K×2K

2K∑
k=1

1

2
ln(1 + γk) < r ln SNR

)

≤P

 max
Q∈2Z2K×2K

rank(Q)=2K

2K∑
k=1

1

2
ln(1 + γk) < r ln SNR


≤P

 max
Q∈2Z2K×2K

rank(Q)=2K

min
1≤k≤2K

γk < SNRr/K


=P

 max
Q∈2Z2K×2K

rank(Q)=2K

min
1≤k≤2K

τ 2SNR
‖(τδk + qk)H

+‖2
< SNRr/K


=P

 min
Q∈2Z2K×2K

rank(Q)=2K

max
1≤k≤2K

‖(τδk + qk)H
+‖2 > τ 2SNR1−r/K

. (59)

Using the inequality

‖(τδk + qk)H
+‖2 ≤ ‖qkH+‖2 + τ 2‖δkH+‖2, (60)
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and inserting (60) back into (59) yields

P (R < r ln SNR)≤P

 min
Q∈2Z2K×2K

rank(Q)=2K

max
1≤k≤2K

‖qkH+‖2 > τ 2
(

SNR1−r/K − ‖δkH+‖2
)

=P

 min
P∈Z2K×2K

rank(P )=2K

max
1≤k≤2K

‖pkH+‖2 > τ 2

4

(
SNR1−r/K − ‖δkH+‖2

)
=P

(
ε22K(Λ∗) >

τ 2

4

(
SNR1−r/K − ‖δkH+‖2

))
, (61)

where the successive minimum ε22K(Λ∗) is defined in (54). Comparing (61) to [13, Eq. (43)], it

can be seen that the outage probability with MZF detection could be inferior to that with the IF

receiver. However, the slope of the outage probability in high SNR regimes remains the same.

Using Lemma 1, it holds that

dMZF(r) = lim
SNR→∞

− lnP (R < r ln SNR)

ln SNR

= lim
SNR→∞

− lnP
(
ε22K(Λ∗) > τ2

4

(
SNR1−r/K − ‖δkH+‖2

))
ln SNR

≥ lim
SNR→∞

− ln
(
−γŝ2N(ln ŝ)1+N

)
ln SNR

, (62)

where

ŝ=
2K

τ

√
2K + 3

SNR1−r/K − ‖δkH+‖2

≥ 2K

τ

√
2K + 3

SNR1−r/K . (63)

Inserting (63) into (62), it holds that

dMZF(r) ≥ N
(

1− r

K

)
. (64)

But as the MZF detection is inferior to the ML detection, so is the DMT. Therefor, the equality

in (64) holds.
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Algorithm 1 Modulus Zero-Forcing (MZF) Algorithm

H is K ×K real-valued

y is K × 1 real-valued

M is cardinality of QAM constellation
1: function x̂ =MODULARZF(H ,y,M )

2: τ = 2(1−log2(
√
M))

3: B = −H+

Preprocessing for each coherence interval

4: for k = 1 to K

5: bk = τδkH
+

6: Solve : qoptk = arg min
qk

‖bk − qkB‖2

7: end for

Executed for every channel observation

8: for k = 1 to K

9: rk = (τδk + qoptk )H+y

10: if
∥∥qoptk −δk � q

opt
k

∥∥2 =0 then

11: zk = bky

12: else

13: if 1
2

∑K
`=1 q

opt
k` is odd then

14: zk = (rk mod 4)− 2

15: else

16: zk = ((rk + 2) mod 4)− 2

17: end if

18: end if

19: x̂k = QτA(zk)

20: end for

21: end function
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Algorithm 2 MZF Algorithm with Extension 2

H is K ×K real-valued

y is K × 1 real-valued

M is cardinality of QAM constellation
1: function x̂ =MODULARZFEXT2(H ,y,M )

2: N = log 2(
√
M)

3: B = −H+

4: for n = 1 to N

5: τ(n) = 21−n

6: end for

Preprocessing for each coherence interval

7: for k = 1 to K

8: bk = δkH
+

9: for n = 1 to N

10: bkn = τ(n)bk

11: Solve : qoptk,n = arg min
qk

‖bkn − qkB‖2

12: end for

13: end for

Executed for every channel observation

14: for k = 1 to K

15: for n = 1 to N

16: if n=N and
∥∥qoptk −δk � q

opt
k

∥∥2 =0, then

17: zk = bky

18: else

19: rk = (τ(n)δk + qoptk )H+y

20: zk = (rk mod 4)− 2

21: end if

22: ûkn = sign(zk)

23: end for

24: end for

25: end function
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Algorithm 3 MZF Algorithm with Extension 3

H is K ×K real-valued

y is K × 1 real-valued

M is cardinality of QAM constellation
1: function x̂ =MODULARZFEXT3(H ,y,M )

2: τ = 1

3: N = log2(
√
M)

4: B = −H+

Preprocessing for each coherence interval

5: for k = 1 to K

6: bk = τδkH
+

7: Solve : qoptk = arg min
qk

‖bk − qkB‖2

8: end for

Executed for every channel observation

9: ŷ = y

10: for n = 1 to N

11: ûn = 0

12: for k = 1 to K

13: if
∥∥qoptk −δk � q

opt
k

∥∥2 =0, then

14: zk = τδkH
+ŷ

15: else

16: rk = (τδk + qoptk )H+ŷ

17: zk = (rk mod 4)− 2

18: end if

19: ûkn = sign(zk)

20: end for

21: ûn=[û1n û2n . . . ûKn]T

22: ŷ = (ŷ −Hûn)/2

23: end for

24: end function
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