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Abstract—In this paper, we propose network massive multiple-
input multiple-output (MIMO) systems, where three radio units
(RUs) connected via one digital unit (DU) support multiple
user equipments (UEs) at a cell-boundary through the same
radio resource, i.e., the same frequency/time band. For precoding
designs, zero-forcing (ZF) and matched filter (MF) with vector or
matrix normalization are considered. We also derive the formulae
of the lower and upper bounds of the achievable sum rate for
each precoding. Based on our analytical results, we observe that
vector normalization is better for ZF while matrix normalization
is better for MF. Given antenna configurations, we also derive
the optimal switching point as a function of the number of active
users in a network. Numerical simulations confirm our analytical
results.

Index Terms—Network massive MIMO, cloud BS, cell-
boundary users, capacity bound, precoding, normalization.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) wireless communi-
cation techniques have evolved from single-user to multiple-
user systems [1]. To approach the capacity of the MIMO
broadcast channel, the authors in [2], [3] proposed simple zero-
forcing (ZF) based-linear algorithms, where the transmitter
and the receivers are equipped with multiple antennas. The
optimality of the linear algorithm was intensively investigated
in [4] with an assumption of an infinite number of antennas
at the receiver. The authors in [4] proved that a simple
linear beamforming (coordinated beamforming in the paper)
asymptotically approaches the sum capacity achieved by dirty
paper coding (DPC).

Recently, massive MIMO (a.k.a. large-scale MIMO) has
been proposed to further maximize network capacity and to
conserve energy [5]–[7]. In [5], the authors showed that a
single-cell system with an unlimited number of antennas at
the transmitter is always advantageous. The authors in [6]
investigated the energy and spectral efficiency for massive
MIMO systems for a single-cell environment. It was shown,
however, that the capacity gains obtained by multiuser MIMO
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Ministry of Knowledge Economy under the IT Consilience Creative Program
(NIPA-2012-H0201-12-1001).

processing degrade severely in multi-cell environments. To
further maximize the network capacity, several network MIMO
algorithms with multiple receive antennas have been pro-
posed [8], [9]. These systems assume, however, that the
network supports maximum of three users through a relatively
small number of transmit antennas.1

Massive MIMO systems in multi-cell environments were
also studied in [7], [10]. As investigated in [7], [10], multi-
cell massive MIMO has some critical issues, such as pilot
contamination, that have to be resolved before it can be applied
in practice. In [10], the authors showed theoretically and nu-
merically the impact of pilot contamination, proposing a multi-
cell minimum mean square error (MMSE) based precoding
algorithm to reduce both intra- and inter-cell interference.
In [10], matched filter (MF) precoding was used. Inter-user
interference is eventually eliminated once the transmitter has
large enough number of antennas. The assumption of an
infinite number of antennas at the transmitter, however, is
not, in practice, really feasible. This issue was studied in
[11], [12]. The author in [12] concluded that the proposed
architecture achieves the same spectral efficiency with ten-
times less antennas than previously proposed systems [7]. Note
that the number of antennas is still quite large considering the
current radio frequency (RF) techniques.

In this paper, we consider a network architecture (named
cloud BS) to implement feasible massive MIMO systems. The
network massive MIMO system consists of multiple radio
units (RUs) connected with one another by optical fibers,
and further connected to a centralized digital unit (DU), as
illustrated in Figs. 1 and 2.2 Through the optical fibers,
each RU can share the power, data messages, and channel
state information; thus network massive MIMO with relatively
small number of antennas can be treated as a single-cell mas-
sive MIMO with large-scale antennas. For algorithm designs,
we consider ZF and MF precodings with two normalization
techniques (vector/matrix normalizations). Most prior work on
multiuser MIMO algorithms has paid little attention to this

1Note that more than three users can be supported if there is a common
message, i.e., for a clustered broadcast channel.

2To avoid confusion, we use RU instead of base station hereafter.
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Fig. 1. System model of network massive MIMO with radio units (RUs)
and cell-boundary users.

issue but we will show that performances differ according
to each normalization technique. In this paper, we analyze
i) which precoding normalization method is better as far as
precoding techniques and ii) which precoding method is appro-
priate for cell-boundary users. To the best of our knowledge,
such analysis has yet to be done in massive/multiuser MIMO
systems.

This paper is organized as follows. In Section II, we intro-
duce the system model for network massive MIMO systems.
We also explain the problem statement in respect to precoding
normalization methods and beamforming techniques for cell-
boundary users. In Section III, we analyze i) rate lower
and upper bounds, ii) ergodic performance of ZF- and MF-
precoding, and iii) network performance for cell-boundary
users. Numerical results and discussions are presented in
Section IV. Section V presents our conclusions.

II. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we introduce the basic notation used in this
paper and the network massive MIMO system model.3

A. System Model: Network Massive MIMO

Consider a cooperative network massive MIMO system as
shown in Figs. 1 and 2. One DU controls three RUs and
K users. Each RU is connected with one another by optical
fibers. We assume that each RU has Nt transmit antennas
and each user equipment (UE) is equipped with one receive
antenna. We also assume that the channel is flat fading and
the elements of a channel matrix are modeled as independent
complex Gaussian random variables with zero mean and unit
variance. The channel between cloud BS (one DU and three
RUs) and the k-th user is denoted by an 1×M row vector hhhT

k

(k = 1, 2, · · · ,K), where M represents the number of cloud

3Throughout this paper, we use upper and lower case boldfaces to describe
matrix AAA and vector aaa, respectively. We denote the inverse, transpose and the
Hermitian of matrix AAA by AAA−1, AAAT and AAA∗, respectively. ||AAA||F indicates
the Frobenius norm of matrix AAA. The notation of expectation is represented
by E.

Fig. 2. Block diagram of network massive MIMO system. One DU consists
of three RUs connected by optical fibers.

BS antennas 3Nt. A K×M channel matrix HHH between cloud
BS and all UEs consists of channel vectors hhhT

k . Let gggk denote
the column vector of transmit precoding and sk represent the
transmit symbol for the k-th UE. Also, let nk be the additive
white Gaussian noise vector. Then, the received signal at the
k-th UE is expressed by

yk =
√
PhhhT

k gggksk︸ ︷︷ ︸
desired signal

+

K∑
`=1, 6̀=k

√
PhhhT

k ggg`s`︸ ︷︷ ︸
interference

+nk (1)

where P denotes the total network transmit power across three
RUs.

B. Problem Statement: Precoding Normalization Perspective

Eq. (1) contains the desired signal, interference, and noise
terms. To eliminate the interference term, to maximize the
signal-to-noise-ratio (SNR), we use the following precoding.

ZF : FFF =HHH∗(HHHHHH∗)−1 = [fff1 fff2 · · · fffk]

MF : FFF =HHH∗ = [fff1 fff2 · · · fffk]

where FFF is a precoding matrix consisting of each column
vector fffk.

To satisfy the power constraint, we need to normalize the
precoding matrix. In this paper, as mentioned earlier, two
methods, i.e., vector/matrix normalizations, are considered.
The normalized transmit beamforming vectors (columns of a
precoding matrix) with vector/matrix normalizations are given
as gggk = fffk/(

√
K||fffk||) and gggk = fffk/||FFF ||F , respectively.

1) ZF/MF with vector normalization: The received signal
at the k-th UE can be expressed as follows:

yk =
√
PhhhT

k

fffk√
K||fffk||

sk +

K∑
`=1, 6̀=k

√
PhhhT

k

fff `√
K||fff `||

s` + nk.

(2)

2) ZF / MF with matrix normalization: Similarly, we can
rewrite the received signal with matrix normalization as below:

yk =
√
PhhhT

k

fffk

||FFF ||F
sk +

K∑
`=1, 6̀=k

√
PhhhT

k

fff `

||FFF ||F
s` + nk. (3)
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III. ASYMPTOTIC RATE BOUNDS: ZF AND MF CASES

In this section, we derive the capacity bounds and show
which normalization method is suitable for ZF- and MF-type
precoding. Based on our analytical results, we will also show
which precoding technique is desired for cell-boundary users.

A. Capacity Bound

Using Jensen’s Inequality of convex and concave functions,
we can get the capacity’s lower and upper bounds as follows:

log2

(
1 +

1

E
(
I+N
S

)) ≤ E
(
log2

(
1 +

S

I +N

))
≤ log2

(
1 + E

(
S

I +N

))
. (4)

B. Ergodic performance of ZF precoding

1) Vector normalization-lower bound: From (2), we can
derive the lower bound of vector normalization in the ZF case
as follows:

EZF

{
I +N

S

}
= E


P
∑K

`=1, 6̀=k

∣∣∣hhhT
k

fff`√
K||fff`||

∣∣∣2 + 1

P
∣∣∣hhhT

k
fffk√

K||fffk||

∣∣∣2


(a)
= E

{
1

P 1
K||fffk||2

}
= E

{
K||fffk||2

P

}
=

1

P
E
{
K||fffk||2

1

}
(b)
=

1

P

K

M −K + 1
(5)

where (a) follows the property of ZF precoding. By using ZF,
the interference term is perfectly eliminated and hhhT

k fffk is equal
to one in (a). Equality (b) results from the diversity order of
ZF, as shown in [13].

2) Matrix normalization-upper bound: From (2), the upper
bound of matrix normalization in the ZF case can be expressed
as

EZF

{
S

I +N

}
= E


P
∣∣∣hhhT

k
fffk

||FFF ||F

∣∣∣2
P
∑K

`=1, 6̀=k

∣∣∣hhhT
k

fff`

||FFF ||F

∣∣∣2 + 1


= E

{
P

∣∣∣∣ 1

||FFF ||F

∣∣∣∣2
}

(c)
≈ P

1
K

M−K

=
P (M −K)

K
(6)

where (c) can be obtained by

E{||FFF ||2F } = E
{

tr(HHH∗(HHHHHH∗)−1(HHHHHH∗)−1HHH)
}

= E
{

tr(HHHHHH∗(HHHHHH∗)−1(HHHHHH∗)−1)
}

= E
{

tr((HHHHHH∗)−1)
}

=
K

M −K

using the property of Wishart matrix of random matrix theory
[14].

3) Performance comparison of ZF: To find which normal-
ization technique is better in ZF, we compare the lower rate
bound of vector normalization (RL

ZFvec
) with the upper rate

bound of matrix normalization (RU
ZFmat

) in ZF; thus the gap is
given by

RL
ZFvec
−RU

ZFmat

= log2

(
1 +

P (M −K + 1)

K

)
− log2

(
1 +

P (M −K)

K

)
= log2

(
K + P (M −K) + P )

K + P (M −K)

)
= log2

(
1 +

P

K + P (M −K)

)
≥ 0. (7)

From (7), we could conclude that, in the ZF case, vector
normalization is always better than matrix normalization.

C. Ergodic performance of MF precoding

1) Matrix normalization-lower bound: From (3), the lower
rate bound of matrix normalization is given as follows:

EMF

{
I +N

S

}
= E


P
∑K

`=1, 6̀=k

∣∣∣hhhT
k

fff`

||FFF ||F

∣∣∣2 + 1

P
∣∣∣hhhT

k
fffk

||FFF ||F

∣∣∣2


(d)
≈ E

{
P (K − 1) M

MK + 1

P M2+M
MK

}
=

P (K−1)
K + 1
P (M+1)

K

=
P (K − 1) +K

P (M + 1)
. (8)

Note that MF precoding asymptotically eliminates the interfer-
ence term in (1) when the cloud BS has reasonably large scale
transmit antennas. Applying the properties of random vectors
and the law of large numbers to (d), |hhhT

k fff `|2 is M , |hhhT
k fffk|2

is M2 +M , and ||FFF ||2F can be expressed as MK.
2) Vector normalization-upper bound: In a similar way,

we can get the upper rate bound of vector normalization as
follows:

EMF

{
S

I +N

}
= E


P
∣∣∣hhhT

k
fffk√

K||fffk||

∣∣∣2
P
∑K

`=1, 6̀=k

∣∣∣hhhT
k

fff`√
K||fff`||

∣∣∣2 + 1


≈ E

{
P (M+1)

K

P K−1
K + 1

}
=

P (M + 1)

P (K − 1) +K
.

(9)

3) Performance comparison of MF: We also compare the
rate bounds, and the gap is given by

RL
MFmat

−RU
MFvec

= log2

(
1 +

P (M + 1)

P (K − 1) +K

)
− log2

(
1 +

P (M + 1)

P (K − 1) +K

)
= 0 (11)

where RL
MFmat

and RU
MFvec

denote the lower rate bound of
matrix normalization and the upper rate bound of vector
normalization, respectively. From (11), we confirm that, for
MF precoding, matrix normalization is always better than
vector normalization.
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Fig. 3. The difference of the gradient between ZF and MF at Kcross when
P is very small (almost zero) and M is much larger than P . The difference
is always positive (> 0).

D. Low SNR Analysis

In Section III, we investigated which normalization is
appropriate for ZF and MF precoding techniques. In this
section, we will analyze which precoding technique is better
for cell-boundary users, i.e., low signal-to-interference-plus-
noise (SINR) users.

Both RL
ZFvec

and RL
MFmat

are concave functions. Also, unlike
RL

ZFvec
, RL

MFmat
is a monotonic increasing function; thus, two

cross points exist: one is when the number of users K is one,
the other is when the number of users K has the following
value with a large M approximation:4

Kcross =
P (M + 1)

1 + P
(12)

where, Kcross denotes the crossing point as functions of the
number of cloud BS antennas (M) and the total transmit power
(P ). In (12), intuitively, Kcross should be greater than zero
and integer. Therefore, at the low SNR regime, (12) goes to
zero, thus the limit becomes one with a Kcross constraint. This
means that as SNR decreases the cross point shifts to the left.
At Kcross, we check the difference of the gradient between ZF
and MF. If the gradient of ZF is larger than that of MF, the
rate of ZF with vector normalization is larger than that of MF
when K ≥ Kcross. In the other case, the rate of MF with matrix
normalization is larger than that of ZF when K ≥ Kcross. The
difference of the gradient between ZF and MF is expressed
as (10) on the bottom, where GLMFmat

denotes the gradient of
the RL

MFmat
curve at Kcross. Similarly, GLZFvec

is the gradient
of the RL

ZFvec
curve at Kcross. In general, cell-boundary users

4We derive this by using two rate bounds equations and omit the derivations
here.

Fig. 4. Achievable rate vs. the number of cell-boundary users, where M =
24, K = [1, 24], and total SNR = 0 dB.

have relatively low SINR and, as we assumed, the cloud BS
has large-scale antennas, meaning M is much larger than
P . Therefore, if Kcross exists, (10) is always positive. We
also confirm this through numerical comparisons as shown
in Fig. 3. From this observation, we realize that MF precoding
is suitable for cell-boundary users if the number of active users
is larger than Kcross.

IV. DISCUSSION

For numerical comparisons, we assume that each RU has
eight transmit antennas; thus the cloud BS has a total of
24 antennas. Note that any number of antennas can be used
and this constraint is not really related to our system. This
assumption is based on a 3GPP LTE-advanced’s parameter;
Release 10 supports eight Node B antennas [15]. Instead of
increasing the number of antennas at each transmitter, we
propose using the more feasible cloud concept. Indeed, having
more than eight transmit antennas would be difficult due
to pilot overhead and other system constraints. We are not
arguing here that we have to have only eight antennas, rather
we show the gain of massive MIMO that can be achieved
through a simple cooperation with relatively small number of
antennas at each RU.

In Fig. 4, we compare the achievable sum rates of ZF
precoding with MF precoding when the total transmit SNR
is 0 dB. As was shown in Section III, ZF with vector normal-
ization is better. In contrast, MF with matrix normalization is
better at getting an improved sum rate performance. Fig. 5

GLMFmat
− GLZFvec

=
4(M + 1)P −M2P 2 + (MP + P − 1)

√
MP (MP − 4)− 4P

(M + 1)(2MP + P + 1)

=
−((MP − 2)2 − 4(P + 1)) + (MP + P − 1)

√
(MP − 2)2 − 4(P + 1)

(M + 1)(2MP + P + 1)
(10)
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Fig. 5. Achievable rate vs. the number of cell-boundary users, where M =
24, K = [1, 24], and total SNR = -5 dB.

illustrates the achievable sum rates of ZF- and MF-precoding
with -5 dB transmit SNR. The result is similar to that of Fig.
4. As we mentioned in Section III-D, in the low SNR regime
(meaning that users are located at cell-boundary), using MF
precoding is generally better when the number of active users
is larger than Kcross. Also, we realize through Figs. 4 and 5
that as SNR decreases Kcross shifts to the left. The derived
Kcross expression is also verified through numerical results.
We summarize our conclusions in Tables I and II.

V. CONCLUSION

In this paper, we proposed network massive MIMO systems
supporting multiple cell-boundary UEs. For precoding designs,
we first derived the achievable rate bounds of zero-forcing (ZF)
and matched filter (MF) with vector or matrix normalization.
Through analytical and numerical results, we confirmed that
vector normalization is better for ZF while matrix normaliza-
tion is better for MF. We also investigated the optimal mode
switching point as functions of the number of active users in
a network and the total transmit power. In future work, we
will consider limited cooperation among RUs and cooperation
delay.
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