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Abstract—We consider a cooperation among nodes in a net-
work which aim to reconstruct a common broadcast message.
Distributed estimation algorithms are highly suited for such
a scenario. Nevertheless, communication overhead due to an
exchange of variables among nodes can be problematic con-
cerning energy efficiency and costs. In this paper, we present
a Reduced Overhead Distributed Consensus-based Estimation
(RO-DiCE) algorithm exhibiting a significantly reduced com-
munication overhead in comparison to its unreduced version,
the DiCE algorithm. However, by reducing the overhead a
possible degradation in estimation performance of the algorithm
is introduced. We investigate the RO-DiCE algorithm in terms of
communication overhead, convergence behavior and error rate
performance for different network topologies. We will show that
for a full mesh topology the RO-DiCE algorithm is identical to
the DiCE algorithm.

I. INTRODUCTION

In a cooperative scenario, a network consisting of connected
nodes aims to recover a common message broadcast by a
detached source. One approach for cooperative reconstruction
is a centralized scheme: A central node, also termed Fusion
Center (FC), processes the received information of all nodes
jointly in order to estimate the broadcast message [1], [2].
Obviously, this scheme lacks robustness since an outage of
the FC would corrupt the whole estimation process. A more
robust scheme can be achieved by a distributed reconstruction
of a common message via In-Network-Processing (INP). Here,
no central node is needed since each node calculates an
estimate of the broadcast message by incorporating informa-
tion from neighboring nodes in the network improving the
robustness e.g., against link failures. In [3], we presented
a distributed consensus-based estimation (DiCE) algorithm
derived from a Least Squares (LS) optimization problem. This
algorithm establishes a scheme where nodes in a network
exchange information with each other in order to reach the
centralized solution iteratively. Other distributed consensus-
based algorithms were proposed, e.g., in [4], [5]. Compared
to [4], the DiCE algorithm showed a faster convergence and
higher robustness against link failures while keeping the same
estimation performance.

The application of the DiCE algorithm for future mobile
communication systems is topic of current research. In the EU
FP7 ICT project iJOIN, dense networks consisting of small
cells, termed iJOIN Small Cells (iSCs), are introduced. This

deployment enables cooperation among small cells aiming to
reconstruct the same message e.g., of one user equipment
(UE). In [6], an application of the DiCE algorithm to Multi-
User-Detection (MUD) in such a scenario is investigated.
Further investigations of the DiCE algorithm concerning er-
roneous inter-node links were discussed in [7]. Both [4] and
[7] describe the necessity of exchanging quantities in a unicast
fashion between the nodes. Obviously, this exchange causes
a high communication overhead in the network since each
quantity depends on the transmitting and receiving node. In
contrast, for a broadcast transmission quantities depend on the
transmitting node only.

In this paper, we present a reduced overhead version of
the DiCE algorithm in [3], the RO-DiCE, which avoids the
exchange of quantities in a unicast fashion. We will compare
the RO-DiCE algorithm to the DiCE algorithm in terms of
communication overhead, convergence behavior and error rate
performance.
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Fig. 1. Network consisting of J connected nodes, each receiving a different
observation xj of the original message s. Dotted lines indicate an access link,
solid lines an inter-node link.

II. SYSTEM MODEL

Fig. 1 depicts the basic transmission scenario. A message
s ∈ RN×1 is broadcast by a source and received by J
connected nodes which are set up to a network. The network
is described by means of a graph G := {E ,J } consisting of
a set of nodes J := {1, . . . , J} and a set of undirected edges
E ⊂ J × J assuming that inter-node links are symmetric.
A set of neighbors Nj is assigned to each node j containing



all nodes which are connected to node j. Furthermore, the
graph is assumed to be connected, i.e., each node can be
reached by every other node in the network by one or more
hops. Regarding the transmission, each node j observes a
different quantity xj ∈ RM×1 of the original message s due
to distortions by an individual source-to-node channel matrix
Hj ∈ RM×N and white Gaussian noise nj ∈ RM×1. Hence,
the transmission scenario can be formulated by

xj = Hjs+ nj , ∀j ∈ J . (1)

The channel matrix Hj can be interpreted in terms of a
Multiple-Input-Multiple-Output (MIMO) channel model with
N antennas at the transmitter side and M antennas at each
receiving node j. Using the set of all observations {xj}Jj=1

in the network, an estimation ŝ of the original message s
is desired. This can be achieved e.g., by a centralized Least
Squares (LS) estimation which incorporates all observations
{xj}Jj=1 and channel matrices {Hj}Jj=1. Using (1), we can
summarize the overall transmission to the network by

x = Hs+ n, (2)

with the stacked channel matrix H = [HT
1 , . . . ,H

T
J ]
T and the

stacked vectors x = [xT1 , . . . ,x
T
J ]
T and n = [nT1 , . . . ,n

T
J ]
T .

Using (2), a centralized LS estimation problem can be formu-
lated by

ŝLS = arg min
s′∈RN

||x−Hs′||2. (3)

In order to solve this estimation problem different approaches
exist which will be described in the following section.

III. DETECTION ALGORITHMS

A. Central LS Solution

A straightforward solution of (3) would be the central LS
solution which is given by the observation vector x multiplied
by the Moore-Penrose pseudoinverse of H [8]:

ŝLS = (HTH)−1HTx. (4)

In order to calculate the estimate ŝLS, knowledge of all indi-
vidual observations {xj}Jj=1 and channel matrices {Hj}Jj=1

is needed. For this purpose, a central node or FC can be used
which collects these quantities and processes them jointly in
order to estimate the message s. As already mentioned, this
scheme lacks robustness since the estimation process depends
on the functionality of a single node. Moreover, calculation
of the pseudoinverse of H with dimensions RJM×N causes
high computational complexity at the central node. A more
robust scheme without any central node can be achieved by
a distributed calculation of the centralized solution in (4).
This is done through information exchange among neighboring
nodes which also distributes the complexity over all nodes in
the network. In [3], we proposed such an iterative distributed
algorithm based on the Augmented Lagrangian method [9].

This distributed algorithm, which will be called DiCE
algorithm, is described in the following subsection.

B. DiCE Algorithm

For a distributed calculation of the central LS solution in
(4), we introduce local estimates sj per node j and reformulate
the LS problem in (3) as a set of local optimization problems
as follows:

{ŝj}Jj=1 = argmin
{sj∈RN |j∈J}

J∑
j=1

||xj −Hjsj ||2 (5a)

s.t. sj = si ∀j ∈ J , i ∈ Nj , (5b)

with the set {ŝj}Jj=1 containing the converged estimates of all
nodes j ∈ J . The consensus constraint (5b) directly couples
estimates of neighboring nodes in order to guarantee that
the estimates of all nodes converge to the same solution,
namely the central LS solution. Due to the direct coupling
among estimates of neighboring nodes a parallel processing of
the optimization problem is not possible. Thus, we introduce
auxiliary variables per node j denoted by zj and decompose
the constraint (5b) equivalently into the constraints

sj = zj , zj = si. (6)

This enables a distributed calculation of the local optimization
problems in (5a). To solve these problems we apply the Aug-
mented Lagrangian method [9] and the Alternating Direction
Method of Multipliers [10], [11] resulting in the following
update equations for each node in the network:

s̃j(k + 1) =

(
HT
j Hj +

|Nj |+ 1

µ
IN

)−1
·

HT
j xj +

∑
i∈Nj∪{j}

(
λji(k) +

z̃i(k)

µ

) ,
(7a)

z̃j(k + 1) =
µ

|Nj |+ 1

∑
i∈Nj∪{j}

(
−λij(k) +

1

µ
s̃i(k + 1)

)
,

(7b)

λij(k + 1) = λij(k)−
1

µ
(s̃i(k + 1)− z̃j(k + 1)). (7c)

These equations describe the DiCE algorithm which is derived
in detail in [3]. The parameter µ determines the step size of
the algorithm whereas λij ∈ RN×1 are Lagrange multipliers
stemming from the optimization method. The multipliers are
specific to one edge from node i to node j. s̃j(k) represents the
instantaneous local estimate of message s at node j at iteration
k. By using the Alternating Direction Method of Multipliers it
is guaranteed that all estimates s̃j(k) converge to the central
solution (4) so that after convergence all nodes will have the
same estimate fulfilling the consensus constraint in (5b). In
order to update the current estimates, auxiliary variables z̃i(k)
from neighboring nodes and Lagrange multipliers λji(k) are
required. The multipliers λji(k) can be calculated locally at
each node if the variables z̃i(k) are received from neighboring
nodes i ∈ Nj . This avoids a transmission of these Lagrange
multipliers in the network. Similarly, for the calculation of
z̃j(k + 1) the updated estimates s̃i(k + 1) as well as the



Lagrange multipliers λij(k) of neighboring nodes need to
be known. Consequently, each node j transmits its local
quantities s̃j , z̃j and λji to its neighboring nodes and receives
the quantities s̃i, z̃i and λij from its neighboring nodes
after they have been updated. Earlier investigations for error-
prone inter-node links showed, that the multipliers λji can
be calculated locally while the multipliers λij need to be
exchanged among the nodes [7]. It is important to note, that
both the instantaneous estimates s̃j and the auxiliary variables
z̃j are only specific to their originating node j and thus can be
transmitted in a broadcast fashion. In contrast, the Lagrange
multipliers λij are specific to one edge and one direction from
node i to node j. Hence, these variables need to be transmitted
in a unicast fashion and therefore cause a significantly higher
communication overhead. Since a higher data exchange is
related to higher costs and higher energy consumption, a
reduction of the overall communication effort in the network
is desirable leading to the following considerations.

C. RO-DiCE Algorithm

For a reduction in communication effort of the DiCE algo-
rithm, we propose the use of local Lagrange multipliers λjj
only instead of the multipliers λij and λji, respectively. The
multipliers λjj are locally available at each node j since they
consist of local variables sj and zj only. Thus, these quantities
need not to be exchanged among nodes. In contrast, the
multipliers λij and λji require variables s̃i and z̃i, respectively,
from neighboring nodes. By substituting both λij and λji by
λjj , we approximate the exchangeable multipliers by local
multipliers. Hence, for equations (7a)-(7c) we achieve

s̃j(k + 1) =

(
HT
j Hj +

|Nj |+ 1

µ
IN

)−1
·

[
HT
j xj

+ (|Nj |+ 1) ·λjj(k) +
∑

i∈Nj∪{j}

z̃i(k)

µ

]
, (8a)

z̃j(k + 1) = −µλjj(k) +
1

|Nj |+ 1

∑
i∈Nj∪{j}

s̃i(k + 1),

(8b)

λjj(k + 1) = λjj(k)−
1

µ
(s̃j(k + 1)− z̃j(k + 1)). (8c)

In this way, an exchange of multipliers is not necessary
anymore because every node simply uses its local multiplier
only. The communication overhead is reduced significantly
since an exchange of multipliers would have to be done in
a unicast fashion. Now, only local estimates s̃j and auxiliary
variables z̃j need to be exchanged among neighboring nodes.

Since the multipliers indicate how well the constraints are
fulfilled, constraints between local quantities and quantities
from neighboring nodes are not taken into account if only
local multipliers are used for each node. This means that each
node approximates the constraints to each neighbor by its local
constraint. A consensus among all nodes can still be achieved
since quantities from neighboring nodes are incorporated into
the calculation of s̃j and z̃j . However, it is expected that

a strict convergence to the central LS solution is not given
anymore.

IV. PERFORMANCE EVALUATION

A. Communication Overhead

In the following, the communication overhead1 of the DiCE
and the RO-DiCE algorithm will be investigated. The commu-
nication overhead can be quantified by means of the number
of edges |E| and the number of nodes J in the network. For the
DiCE algorithm, where each node j needs to transmit s̃j , z̃j
and λji to its neighbors, the total communication overhead in
the network per iteration is equal to 2|E|+2J . The multipliers
λji are edge specific and belong to one direction from node
j to node i causing 2 transmissions per edge while s̃j and
z̃j are only node specific adding 2J more transmissions.
In comparison, for the RO-DiCE without an exchange of
multipliers the communication overhead per iteration is always
equal to 2J since for each node the two quantities s̃j and z̃j
need to be exchanged only.

Table I summarizes the overall communication overhead
per iteration for different topologies. It can be seen that the
overhead can be halved for a ring topology if the RO-DiCE
algorithm is used. For a full mesh network the reduction is
even higher, e.g., for J = 6 nodes 42 transmissions/iteration
with the DiCE algorithm and only 12 transmissions/iteration
with the RO-DiCE algorithm would be required. Regarding the
instantaneous local estimates of the nodes, it is expected that
these, in general, will not converge to the central LS solution.
This is due to the fact that the Lagrange multipliers, which
indicate how well the consensus constraint is matched, are
approximated by local variables s̃j and z̃j only. Thus, devi-
ations among instantaneous estimates and auxiliary variables
of neighboring nodes are not taken into account. Nevertheless,
for a full mesh network we will see that the RO-DiCE and the
DiCE algorithm show an identical behavior.

TABLE I
COMMUNICATION OVERHEAD PER ITERATION FOR DIFFERENT

TOPOLOGIES.

Topology No. of Transmissions Transmissions
Edges |E| DiCE RO-DiCE

Line J − 1 4J − 1 2J

Ring J 4J 2J

Full mesh J(J − 1)/2 J(J + 1) 2J

B. Estimation Performance

For a comparison between the DiCE and the RO-DiCE al-
gorithm regarding their estimation performance, we investigate
the overall square error (OSE) per iteration k

OSE(k) =
J∑
j=1

||s− s̃j(k)||2 (9)

1By communication overhead, we mean the total number of exchanged
vectors with a dimension of N .
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Fig. 2. Random topology with J = 6 nodes. Nodes are connected via an
edge if they lie within a radius of r < 0.3 to each other.

between the instantaneous local estimates of all nodes and the
true value. We choose the dimensions of s and xj to be N = 2
and M = 5, respectively, and the step size to be µ = 1. The
channel matrices Hj contain real valued, i.i.d. and zero mean
normal distributed coefficients. The same is true for the entries
of the noise vectors nj and the message vector s while the
variance of the noise is set according to a channel SNR of
10 dB. Regarding the network topologies we consider a line,
a full mesh and a random topology each with J = 6 nodes
placed on a unit square. For a random topology, nodes are
sharing a connection if they lie within a radius of r < 0.3 to
each other. The resulting topology which has been used for
simulations in a random network is depicted in Fig. 2.

Fig. 3 to 5 show the OSE averaged over 100 random realiza-
tions of the message s, the channels Hj and the noise nj over
the iteration k for the considered networks. For all networks it
can be observed that the DiCE algorithm is converging to the
central LS solution while the RO-DiCE algorithm is showing
performance degradation depending on the network topology.
In a line topology the RO-DiCE algorithm is not converging to
the central LS solution anymore but approaches a higher OSE
value (Fig. 3). This confirms the aforementioned expectation
that for the RO-DiCE algorithm a convergence to the central
solution is not guaranteed anymore.

In the random topology the difference in the OSE between
both algorithms is significantly lower in comparison to the case
of a line topology. Both algorithms show a similar convergence
behavior while the RO-DiCE algorithm is approaching an OSE
value which is slightly higher than the OSE of the central LS
solution (Fig. 4). For a full mesh topology it is remarkable
that both algorithms even perform identically (Fig. 5). This
improved performance of the RO-DiCE algorithm is due to the
high connectivity in both topologies. In the random network of
Fig. 2 most of the nodes have at least three neighbors. There
is only one node which has two neighbors. In a full mesh
network each node is connected with every other node in the
network establishing an even higher connectivity. Obviously,
the RO-DiCE algorithm performs worse in a line topology
caused by the low connectivity since each node has maximum
two neighbors. Thus, only a limited amount of information
from neighboring nodes is available at each node making it

difficult for a compensation of the error introduced by the
approximation of the edge specific Lagrange multipliers λij
and λji. In fact, if we compare equations (7a) and (7b) of
the DiCE algorithm to the equations (8a) and (8b) of the RO-
DiCE algorithm, the following conditions have to be fulfilled
for an equivalence between both algorithms:

s̃j(k) =
1

|Nj |+ 1

∑
i∈Nj∪{j}

s̃i(k), (10a)

z̃j(k) =
1

|Nj |+ 1

∑
i∈Nj∪{j}

z̃i(k). (10b)

These conditions are always fulfilled for a full mesh network
since here the set Nj ∪{j} is always equal to the set of nodes
J . Thus, the right-hand side of above equations is always
equal to the same value independent of the node j explain-
ing why both algorithms show the same behavior in a full
mesh network. This is remarkable, since the communication
overhead in a full mesh network can be more than halved
while keeping the performance of the algorithm. Furthermore,
equations (10a) and (10b) state that with a higher connectivity
the RO-DiCE algorithm is approaching the DiCE algorithm.

Interestingly, Fig. 5 shows that for some iterations the OSE
of the DiCE algorithm can be even lower than the OSE of the
central LS solution before it is approaching it. This is possible
since the update equation of the local instantaneous estimate
s̃j(k + 1) contains a regularized pseudoinverse term. E.g. for
the first iteration equation (7a) will be

s̃j(k + 1) =

(
HT
j Hj +

|Nj |+ 1

µ
IN

)−1
HT
j xj , (11)

which is a modified expression of the central LS solution in (3)
containing a pseudoinverse regularized by the term |Nj |+1

µ . It
is known that the MMSE solution also contains a regularized
pseudoinverse and outperforms the LS solution in the presence
of noise. Therefore, the DiCE algorithm can temporarily have
a lower OSE than the central LS solution.

C. Bit Error Rate Performance

With regard to the bit error rate (BER) performance of
the algorithms we consider uncoded BPSK transmissions
where the message s contains symbols out of the alphabet
A = {−1, 1}. Both algorithms are stopped after k = 10 itera-
tions followed by a hard decision on the estimates s̃j(k = 10)
of all nodes in the network. Bit errors are then counted and
averaged over all nodes in the network. Fig. 6 depicts the BER
for a line topology. Here, an SNR loss of roughly 2 dB can
be observed for the RO-DiCE algorithm corresponding to the
OSE performance in Fig. 3. Furthermore, it can be seen that
the curve of the DiCE algorithm achieves the performance of
the central solution indicating a satisfying convergence after
only 10 iterations. Fig. 7 and 8 show the BER performance
for a random and a full mesh topology, respectively. Due to
a higher connectivity in the random topology the RO-DiCE
algorithm performs better than in a line topology. Thus, there is
only a minimal degradation in the BER performance compared
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Fig. 3. Line topology with J = 6 nodes: Mean OSE of the DiCE and the
RO-DiCE algorithm.
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Fig. 4. Random topology with J = 6 nodes: Mean OSE of the DiCE and
the RO-DiCE algorithm.
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Fig. 5. Full mesh topology with J = 6 nodes: Mean OSE of the DiCE and
the RO-DiCE algorithm.
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Fig. 6. Line topology with J = 6 nodes: BER of the DiCE and the RO-DiCE
algorithm after k = 10 iterations.
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Fig. 7. Random topology with J = 6 nodes: BER of the DiCE and the
RO-DiCE algorithm after k = 10 iterations.

to the DiCE algorithm. As already described, the performance
of both algorithms in a full mesh topology is identical leading
to the same BER performance, as can be seen in Fig. 8. These
results correspond to the OSE behavior of both algorithms in
Fig. 3 to 5.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented the RO-DiCE algorithm which
exhibits a significantly reduced communication overhead in
comparison to the unreduced DiCE algorithm. In order to
reduce the overhead of the DiCE algorithm, we proposed
the use of local Lagrange multipliers only in order to save a
unicast exchange of multipliers among nodes. We investigated
the RO-DiCE algorithm regarding its convergence behavior
and its BER performance for different network topologies. We
showed that it is equivalent to the DiCE algorithm in a full
mesh topology. In future work, the RO-DiCE algorithm should
be investigated in detail for error-prone inter-node links such
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Fig. 8. Full mesh topology with J = 6 nodes: BER of the DiCE and the
RO-DiCE algorithm after k = 10 iterations.

as noisy links and link failures. A mathematical convergence
analysis of the RO-DiCE algorithm is also of interest.
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