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Abstract

In this paper, we consider physical layer security provisioning in multi-cell massive multiple-input multiple-output

(MIMO) systems. Specifically, we consider secure downlink transmission in a multi-cell massive MIMO system with

matched-filter precoding and artificial noise (AN) generation at the base station (BS) in the presence of a passive multi-

antenna eavesdropper. We investigate the resulting achievable ergodic secrecy rate and the secrecy outage probability

for the cases of perfect training and pilot contamination. Thereby, we consider two different AN shaping matrices,

namely, the conventional AN shaping matrix, where the AN is transmitted in the null space of the matrix formed by all

user channels, and a random AN shaping matrix, which avoids the complexity associated with finding the null space

of a large matrix. Our analytical and numerical results reveal that in multi-cell massive MIMO systems employing

matched-filter precoding (1) AN generation is required to achieve a positive ergodic secrecy rate if the user and the

eavesdropper experience the same path-loss, (2) even with AN generation secure transmission may not be possible if the

number of eavesdropper antennas is too large and not enough power is allocated to channel estimation, (3) for a given

fraction of power allocated to AN and a given number of users,in case of pilot contamination, the ergodic secrecy rate

is not a monotonically increasing function of the number of BS antennas, and (4) random AN shaping matrices provide

a favourable performance/complexity tradeoff and are an attractive alternative to conventional AN shaping matrices.

Index Terms

Physical layer security, massive MIMO, multi-cell systems, ergodic secrecy rate, and pilot contamination.

I. INTRODUCTION

Security is a vital issue in wireless networks due to the broadcast nature of the medium. Traditionally,

security has been achieved through cryptographic encryption implemented at the application layer. This

This work was presented in part at IEEE Globecom, Atlanta, December 2013.
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approach is based on certain assumptions regarding computational complexity, and is thereby potentially

vulnerable [1]. As a complement to cryptographic methods, physical layer security has drawn significant

research and industrial interest recently. The pioneeringwork on physical layer security in [2] considered

the classical three-terminal network consisting of a transmitter (Alice), an intended receiver (Bob), and an

eavesdropper (Eve). It was shown in [2] that a source-destination pair can exchange perfectly secure messages

with a positive rate as long as the desired receiver enjoys better channel conditions than the eavesdropper(s).

More recent studies have considered physical layer security provisioning in multi-antenna multiuser networks

[3]- [7]. Although the secrecy capacity region for multiuser networks remains an open problem, it is interesting

to investigate the achievable secrecy rates of such networks for certain practical transmission strategies.

Eavesdroppers are typically passive so as to hide their existence, and thus their channel state information

(CSI) cannot be obtained by Alice [8]. In this case, multipletransmit antennas can be exploited to enhance

secrecy by simultaneously transmitting both the information-bearing signal and artificial noise (AN) [9].

Specifically, precoding is used to make the AN invisible to Bob while degrading the decoding performance

of possibly present Eves [8]- [11]. For the case of imperfectchannel estimation, robust beamforming designs

were reported in [8], [11].

Recently, a new promising design approach for cellular networks, known as massive or large-scale multiple-

input multiple-output (MIMO), has been proposed [12], [13], where base station (BS) antenna arrays are

equipped with an order of magnitude more elements than what is used in current systems, i.e., a hundred

antennas or more. Massive MIMO enjoys all the benefits of conventional multiuser MIMO, such as im-

proved data rate, reliability and reduced interference, but at a much larger scale and with simple linear

precoding/detection schemes. In fact, massive MIMO employing simple matched-filter precoding/combining

enables large gains in bandwidth and/or power efficiency compared to conventional MIMO systems [13],

[14] as the effects of noise and interference vanish completely in the limit of an infinite number of antennas.

Furthermore, in time-division duplex (TDD) systems, channel reciprocity can be exploited to estimate the

downlink channels via uplink training such that the resulting overhead scales linearly with the number of

users but is independent of the number of BS antennas [15]. However, if the pilot sequences employed in

different cells are not orthogonal, so-called pilot contamination impairs the channel estimates and limits the

achievable information rates in massive MIMO systems [13],[16].

Massive MIMO systems offer an abundance of BS antennas, while multiple transmit antennas can be

exploited for secrecy enhancement. Therefore, the combination of both concepts seems natural and promising,

which is the main motivation for the present work. However, several new issues arise for physical layer security
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provisioning in multi-cell massive MIMO systems that are not present for conventional MIMO systems [1]-

[11]. For example, pilot contamination is unique to massiveMIMO systems and we study its effect on

the ergodic secrecy rate and the secrecy outage probability. Furthermore, for the user data, matched-filter

precoding is usually adopted in massive MIMO systems [12], [13], since the matrix inversion needed for

the schemes used in conventional MIMO, such as regularized zero-forcing (ZF) and minimum mean squared

error (MMSE) precoding, is considered to be computationally too expensive for the large matrices typical for

massive MIMO. Similarly, whereas in conventional MIMO systems the AN is transmitted in the null space

of the channel matrix [9], the complexity associated with computing the null space may not be affordable in

case of massive MIMO and simpler AN shaping methods may be needed. Finally, unlike most of the related

work [1]- [11], we consider a multi-cell setting where not only the data signals cause inter-cell interference

but also the AN, which has to be carefully taken into account for system design.

In this paper, we study secure downlink transmission in multi-cell massive MIMO systems in the presence

of a multi-antenna eavesdropper, which attempts to intercept the signal intended for one of the users. To arrive

at an achievable secrecy rate for this user, we assume that the eavesdropper can acquire perfect knowledge of

the channel state information (CSI) of all user data channels and is able to cancel all interfering user signals.

Under this assumption, we derive tight lower bounds for the ergodic secrecy rate and tight upper bounds for

the secrecy outage probability for the cases of perfect training and pilot contamination. The derived bounds are

in closed form and provide significant insight for system design. In particular, the obtained results allow us to

predict under what conditions (i.e., for what number of BS antennas, eavesdropper antennas, users, path-loss,

number of cells, and pilot powers) a positive secrecy rate ispossible. Furthermore, we show that employing

random AN shaping matrices is an attractive low-complexityoption for massive MIMO systems. We also

derive a closed-form expression for the fraction of transmit power that should be optimally allocated to AN

and show that, for a given number of BS antennas, this fraction increases with the number of eavesdropper

antennas and decreases with the number of users in the system.

Notations: SubscriptsT andH stand for the transpose and the conjugate transpose, respectively. IN and

0N denote theN-dimensional identity matrix and the all-zero column vector of length N , respectively.

The expectation operation, variance operation, and Euclidean norm are denoted byE[·], var[·], and ‖ · ‖2,
respectively.Cm×n represents the space of allm × n matrices with complex-valued elements. Furthermore,

X andX denote an upper bound and a lower bound forX, respectively, i.e.,X ≤ X ≤ X. Finally, we use

x ∼ CN(0N ,Σ) to denote a circularly symmetric complex Gaussian vectorx ∈ CN×1 with zero mean and

covariance matrixΣ, andx ∼ χ2
n means that

√
2x is a chi-square random variable withn degrees of freedom.
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Fig. 1. Multi-cell massive MIMO system in the presence of a multi-antenna eavesdropper. The shaded cell is the local cell. The MTs in the

local cell suffer from the inter-cell interference caused by data and AN transmission in the six adjacent cells.

II. SYSTEM MODEL

In this section, we introduce the channel model, the channelestimation scheme, the transmission format, and

two AN shaping matrix designs for the considered secure multi-cell massive MIMO system. For convenience,

the most important variables used in this paper are defined inTable I.

A. System and Channel Models

In this paper, we consider a flat-fading multi-cell system consisting ofM cells, as depicted in Fig. 1.

Each cell comprises anNt-antenna BS andK single-antenna mobile terminals (MTs)1. The nth cell, n ∈
{1, . . . ,M}, is the local cell (the shaded area in Fig. 1). An eavesdropper equipped withNe antennas

(equivalent toNe cooperative single-antenna eavesdroppers) is located in the local cell of the considered

multi-cell region. The eavesdropper is passive and seeks torecover the information transmitted to thekth MT

in the local cell. Lethmk ∈ C1×Nt andHeve
m ∈ CNe×Nt denote the channel between themth BS,m = 1, . . . ,M ,

and thekth MT in the local cell and the channel between themth BS and the eavesdropper, respectively.

hmk =
√
lmkh̃mk comprises the path-loss,lmk, and the small-scale fading vector,h̃mk ∼ CN(0T

Nt
, INt

).

1We note that the results derived in this paper can be easily extended to multi-antenna MTs if the BS transmits one independent data stream

per MT receive antenna and receive combining is not performed at the MTs. In this case, each MT receive antenna can be treated as one (virtual)

MT and the results derived in this paper are applicable. For example, the secrecy rate of a multi-antenna MT can be obtained by summing up

the secrecy rates of its receive antennas.
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TABLE I

SUMMARY OF MOST IMPORTANT VARIABLES USED IN THIS PAPER.

Symbols Description

M Number of cells

Nt Number of BS antennas

Ne Number of eavesdropper antennas

α Ratio of the number of eavesdropper antennas and the number of BS antennas

K Number of MTs in each cell

β Ratio of the number of MTs in each cell and the number of BS antennas

lmk Path-loss between themth BS and thekth MT in the local cell

levem Path-loss between themth BS and the eavesdropper

ρ Inter-cell interference factor

P Total transmit power

φ Power allocation factor between signal transmission and ANgeneration

pτ Power of pilot symbol

τ Pilot sequence length

a Parameter (a = (M − 1)ρ+ 1)

b Parameter (b = (M − 1)ρ+ 1/P )

c Parameter (c = (M − 1)ρ2 + 1)

ζ Parameter (ζ = aβ/α− βc/[a(1− β)])

λ Measure for quality of channel estimates (λ = pττ/(1 + pττa))

αsec A positive secrecy rate is possible only ifα < αsec

h̃mk Small-scale fading vector between themth BS and thekth MT in the local cell

hmk Channel vector between themth BS and thekth MT in the local cell

ĥmk Estimate of the channel vector between themth BS and thekth MT in the local cell

H̃
eve

m Small-scale fading matrix between themth BS and the eavesdropper

H
eve

m Channel matrix between themth BS and the eavesdropper

γnk Received SINR at thekth MT in the local cell

γeve Received SINR at the eavesdropper

Rnk Achievable ergodic rate of thekth MT in the local cell

Ceve

nk Ergodic capacity of the eavesdropper seeking to decode the signal of thekth MT in the local cell

Rsec

nk Ergodic secrecy rate of thekth MT in the local cell

εout Secrecy outage probability of thekth MT in the local cell

Similarly, we model the eavesdropper channel asHeve
m =

√
levem H̃eve

m , where levem and H̃eve
m denote the path-

loss and small-scale fading components, respectively. Theelements ofH̃eve
m are modeled as independent and

identically distributed (i.i.d.) Gaussian random variables (r.v.s) with zero mean and unit variance.
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B. Uplink Training and Channel Estimation

In this paper, we assume that the BSs are perfectly synchronized and operate in the TDD mode with

universal frequency reuse. Furthermore, we assume that thepath-losses between all users in the system and

the local BS,lmk, m = 1, . . . ,M , k = 1, . . .K, are known at the local BS, whereas the small-scale fading

vectorsh̃mk, m = 1, . . . ,M , k = 1, . . .K, are not known and the local BS estimates only the small-scale

fading vectors of the MTs within the local cell. These assumptions are motivated by the fact that the path-

losses change on a much slower time scale than the small-scale fading vectors, and thus, their estimation

creates a comparatively low overhead.

The local BS estimates the downlink CSI of all MTs,h̃nk, k = 1, . . . , K, by exploiting reverse training

and channel reciprocity [12]- [16]. We consider two scenarios: Perfect training and imperfect training which

results in pilot contamination [16]. In the former case, allMK MTs in the system emit orthogonal pilot

sequences in the training phase having a sufficiently large pilot powerpτ such that̂hnk = h̃nk, k = 1, . . . , Nt,

can be assumed, wherêhnk denotes the estimated channel in the local cell. In the latter case, theK pilot

sequences used in a cell are still orthogonal but all cells use the same pilot sequences. Let
√
τωk ∈ Cτ×1

denote the pilot sequence of lengthτ transmitted by thekth MT in each cell in the training phase, where

ω
H
k ωk = 1 andω

H
k ωj = 0, ∀, j, k = 1, . . . , K, k 6= j. Assuming perfect synchronization, the training signal

received at the local BS,Ypilot
n ∈ C

τ×Nt, can be expressed as

Ypilot
n =

M∑

m=1

K∑

k=1

√

pττlmkωkh̃mk +Nn, (1)

whereNn ∈ C
τ×Nt is a Gaussian noise matrix having zero mean, unit variance elements. Assuming MMSE

channel estimation [16], [19], the estimate ofh̃nk givenYpilot
n is obtained as

ĥnk =
√

pττlnkω
H
k

(

Iτ + ωk

(

pττ
M∑

m=1

lmk

)

ω
H
k

)−1

Ypilot
n =

√
pττlnk

1 + pττ
∑M

m=1 lmk

ω
H
k Y

pilot
n

=

√
pττlnk

1 + pττ
∑M

m=1 lmk

M∑

m=1

√
pττ h̃mk +

√
pττlnk

1 + pττ
∑M

m=1 lmk

ω
H
k Nn. (2)

For MMSE estimation, we can express the channel ash̃nk = ĥnk + enk, where the estimatêhnk and the

estimation errorenk ∈ C
1×Nt are mutually independent. Hence, considering (2) we can statistically characterize

ĥnk andenk as ĥnk ∼ CN

(

0T
Nt
, pτ τlnk

1+pτ τ
∑M

m=1
lmk

INt

)

andenk ∼ CN

(

0T
Nt
,
1+pτ τ

∑
m6=n lmk

1+pτ τ
∑M

m=1
lmk

INt

)

, respectively.

We note that in order to be able to find the required numbers of orthogonal pilot sequences, pilot sequence

lengths ofτ ≥ MK and τ ≥ K are required for the cases of perfect training and pilot contamination,
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respectively. Furthermore, we note that the eavesdropper could emit his own pilot symbols to impair the

channel estimates obtained at the BS to improve his ability to decode the MTs’ signals during downlink

transmission [17]. However, this would also increase the chance that the presence of the eavesdropper is

detected by the BS [18]. Therefore, in this paper, we assume the eavesdropper is purely passive and leave

the study of active eavesdroppers in massive MIMO systems for future work.

C. Downlink Data Transmission

In the local cell, the BS intends to transmit a confidential signalsnk to thekth MT. The signal vector for the

K MTs is denoted bysn =
[
sn1, . . . , snK

]T ∈ CK×1 with E[sns
H
n ] = IK . Each signal vectorsn is multiplied

by a transmit beamforming matrix,Wn = [wn1, . . . ,wnk, . . . ,wnK ] ∈ CNt×K , before transmission. As typical

for massive MIMO systems, we adopt simple matched-filter precoding, i.e.,wnk = ĥH
nk/‖ĥnk‖ [13], [16],

since the matrix inversion required for ZF and MMSE precoding is computationally too expensive for the

large number of users and antenna elements that are typical for massive MIMO systems. Furthermore, we

assume that the eavesdropper’s CSI is not available at the local BS. Hence, assuming that there areK < Nt

MTs, the BS may use the remainingNt − K degrees of freedom offered by theNt transmit antennas for

emission of AN to degrade the eavesdropper’s ability to decode the data intended for the MTs [8], [9], [11].

The AN vector,zn = [zn1, . . . , zn(Nt−K)]
T ∼ CN(0Nt−K , INt−K), is multiplied by an AN shaping matrix

Vn = [vn1, . . . ,vni, . . . ,vn(Nt−K)] ∈ CNt×(Nt−K) with ‖vni‖ = 1, i = 1, . . . , Nt−K. The considered choices

for the AN shaping matrix will be discussed in the next subsection. The signal vector transmitted by the local

BS is given by

xn =
√
pWnsn +

√
qVnzn =

K∑

k=1

√
pwnksnk +

Nt−K∑

i=1

√
qvnizni, (3)

wherep and q denote the transmit power allocated to each MT and each AN signal, respectively, i.e., for

simplicity, we assume uniform power allocation across users and AN signals, respectively. Let the total transmit

power be denoted byP . Then,p andq can be represented asp = φP

K
andq = (1−φ)P

Nt−K
, respectively, where the

power allocation factorφ, 0 < φ ≤ 1, strikes a power balance between the information-bearing signal and

the AN.

TheM − 1 cells adjacent to the local cell transmit their own signals and AN. In this work, in order to be

able to gain some fundamental insights, we assume that all cells employ identical values forp andq as well

asφ. Accordingly, the received signals at thekth MT in the local cell,ynk, and at the eavesdropper,yeve, are
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given by

ynk =
√
phnkwnksnk +

∑

{m,l}6={n,k}

√
phmkwmlsml +

M∑

m=1

√
qhmkVmzm + nnk (4)

yeve =
√
p

M∑

m=1

Heve
m Wmsm +

√
q

M∑

m=1

Heve
m Vmzm + neve, (5)

wherennk ∼ CN(0, σ2
nk) and neve ∼ CN(0Ne

, σ2
eveINe

) are the Gaussian noises at thekth MT and at the

eavesdropper, respectively. The first term on the right handside of (4) is the signal intended for thekth MT

in the local cell with effective channel gain
√
phnkwnk, which is assumed to be perfectly known at thekth

MT in the local cell. The second and the third terms on the right hand side of (4) represent intra-cell/inter-

cell interference and AN leakage, respectively. On the other hand, the eavesdropper observes anMNt ×Ne

MIMO channel comprisingK local user signals,(M − 1)K out-of-cell user signals,Nt −K local cell AN

signals, and(Nt − K)(M − 1) out-of-cell AN signals. In order to obtain a lower bound on the achievable

secrecy rate, we assume that the eavesdropper can acquire perfect knowledge of the effective channels of all

MTs, i.e.,Heve
m wmk, ∀m, k. We note however that this is a quite pessimistic assumptionbecause the uplink

training performed in massive MIMO [16] makes it difficult for the eavesdropper to perform accurate channel

estimation.

D. Design of AN Shaping Matrix Vn

In this paper, we consider two different designs for the AN shaping matrixVn.

Null-space method: For conventional (non-massive) MIMO,Vn is usually chosen to lie in the null space

of the estimated channel,ĥnk, i.e., ĥnkVn = 0T
Nt−K , k = 1, . . . , K, which is possible as long asNt > K holds

[9]. We refer to this method asN in the following. If perfect CSI is available, i.e.,̂hnk = h̃nk, theN -method

prevents impairment of the users in the local cell by AN generated by the local BS. However, in case of

pilot contamination, AN leakage to the users in the local cell is unavoidable. More importantly, for the large

values ofNt andK typical for massive MIMO systems, computation of the null space ofĥnk, k = 1, . . . , K,

is computationally expensive. This motivates the introduction of a simpler method for generation of the AN

shaping matrix.

Random method: In this case, the columns ofVn are mutually independent random vectors. We refer to

this method asR in the following. Here, we construct the columns ofVn as vni = ṽni/‖ṽni‖, where the

ṽni, i = 1, . . . , Nt − K, are mutually independent Gaussian random vectors. Note that theR-method does

not even attempt to avoid AN leakage to the users in the local cell. However, it may still improve the ergodic
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secrecy rate as the precoding vector for the desired user signal,wnk, is correlated with the user channel,h̃nk,

whereas the columns of the AN shaping matrix are not correlated with the user channel.

Our results in Sections IV-VI reveal that although theN -method always achieves a better performance than

the R-method, if pilot contamination and inter-cell interference are significant, the performance differences

between both schemes are small. This makes theR-method an attractive alternative for massive MIMO

systems due to its simplicity.

III. A CHIEVABLE ERGODIC SECRECY RATE ANALYSIS

In this section, we first show that the achievable ergodic secrecy rate of thekth MT in the local cell can

be expressed as the difference between the achievable ergodic rate of the MT and the ergodic capacity of the

eavesdropper. Subsequently, we provide a simple lower bound on the achievable ergodic rate of the MT, a

closed-form expression for the ergodic capacity of the eavesdropper, and a simple and tight upper bound for

the ergodic capacity of the eavesdropper. The results derived in this section are valid for both perfect training

and pilot contamination as well as for both AN shaping matrixdesigns. For convenience, we define the ratio

of the number of eavesdropper antennas and the number of BS antennas asα = Ne/Nt, and the ratio of the

number of users and the number of BS antennas asβ = K/Nt. In the following, we are interested in the

asymptotic regime whereNt → ∞ but α andβ are constant.

A. Achievable Ergodic Secrecy Rate

The ergodic secrecy rate is an appropriate performance measure if delays can be afforded and coding over

many independent channel realizations (i.e., over many coherence intervals) is possible [10]. Considering the

kth MT in the local cell, the considered channel is an instance ofa multiple-input, single-output, multiple

eavesdropper (MISOME) wiretap channel [3]. In the following lemma, we provide an expression for an

achievable ergodic secrecy rate of thekth MT in the local cell.

Lemma 1: An achievable ergodic secrecy rate of thekth MT in the local cell is given by

Rsec
nk = [Rnk − Ceve

nk ]
+, (6)

where [x]+ = max{0, x}, Rnk is an achievable ergodic rate of thekth MT in the local cell, andCeve
nk is the

ergodic capacity between the local BS and the eavesdropper seeking to decode the information of thekth

MT in the local cell. Thereby, it is assumed that the eavesdropper is able to cancel the received signals of all
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in-cell and out-of-cell MTs except the signal intended for the MT of interest, i.e.,

Ceve
nk = E

[

log2
(
1 + pwH

nkH
eveH
n X−1Heve

n wnk

)
]

, (7)

whereX = q
∑M

m=1 V
H
mH

eveH
m Heve

m Vm denotes the noise correlation matrix at the eavesdropper under the

worst-case assumption that the receiver noise is negligible, i.e.,σ2
eve → 0.

Proof: Please refer to Appendix A.

Eq. (6) reveals that the achievable ergodic secrecy rate of the kth MT in the local cell has the subtractive

form typical for many wiretap channels [1]- [11], i.e., it isthe difference of an achievable ergodic rate of

the user of interest and the capacity of the eavesdropper. Before we analyze (6) for perfect training and pilot

contamination in Sections IV and V, respectively, we derivegeneral expressions forRnk and Ceve
nk , which

apply to both cases.

B. Lower Bound on the Achievable User Rate

Based on (4) an achievable ergodic rate of thekth MT in the local cell is given by

Rnk = E

[

log2

(

1 +
|√phnkwnk|2

∑M
m=1

∑Nt−K
i=1 |√qhmkvmi|2 +

∑

{m,l}6={n,k} |
√
phmkwml|2 + σ2

nk

)]

. (8)

Unfortunately, evaluating the expected value in (8) analytically is cumbersome. Therefore, we derive a lower

bound on the achievable ergodic rate of thekth MT in the local cell by following the same approach as in

[16]. In particular, we rewrite the received signal at thekth MT in the local cell as

ynk = E[
√
phnkwnk]snk + n′

nk, (9)

wheren′
nk represents an effective noise, which is given by

n′
nk = (

√
phnkwnk − E[

√
phnkwnk]) snk +

M∑

m=1

hmk

√
qVmzm +

∑

{m,l}6={n,k}

√
phmkwmlsml + nnk. (10)

Eq. (9) can be interpreted as an equivalent single-input single-output channel with constant gainE[
√
phnkwnk]

and AWGNn′
nk. Hence, we can applyTheorem 1 in [16] to obtain a computable lower bound for the achievable

rate of thekth MT in the local cell asRnk = log2(1 + γnk) ≤ Rnk, whereγnk denotes the received signal-to-

interference-plus-noise ratio (SINR)

γnk =

desired signal
︷ ︸︸ ︷

|E[√phnkwnk]|2

var[
√
phnkwnk]

︸ ︷︷ ︸

signal leakage

+
M∑

m=1

Nt−K∑

i=1

E[|√qhmkvmi|2]
︸ ︷︷ ︸

AN leakage

+
∑

{m,l}6={n,k}
E[|√phmkwml|2]

︸ ︷︷ ︸

intra- and inter-cell interference

+ σ2
nk

(11)
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with var[
√
phnkwnk] = E[|√phnkwnk − E[

√
phnkwnk]|2]. We note that the derived lower bound on the

achievable rate is applicable to both AN shaping matrix designs and the cases of perfect training and pilot

contamination, respectively, cf. Sections IV and V. The tightness of the lower bound will be confirmed by

our results in Section VI.

C. Ergodic Capacity of the Eavesdropper

In this section, we provide a closed-form expression for theergodic capacity of the eavesdropper valid for

both perfect training and pilot contamination. To gain moreinsight, we adopt a simplified path-loss model for

the eavesdropper, i.e., the path-losses between the BSs andthe eavesdropper are given bylevem = 1 if n = m

and levem = ρ if n 6= m, i.e., the path-loss between the local BS and the eavesdropper is 1 and the path-loss

between the BSs of the other cells and the eavesdropper isρ ∈ [0, 1].2 A similar simplified path-loss model

was used in [19] for the user channels. The resulting ergodicsecrecy capacity is summarized in the following

theorem.

Theorem 1: For Nt → ∞ and both theN and theR AN shaping matrix designs, the ergodic capacity of

the eavesdropper in (7) can be written as

Ceve
nk =

1

ln 2

Ne−1∑

i=0

λi ×
1

µ0

2∑

j=1

bj∑

l=2

ωjlI(1/µj, l), (12)

whereλi =
(
M(Nt−K)

i

)
, µ0 =

∏2
j=1 µ

bj
j ,

(µj, bj) =







(η,Nt −K), j = 1

(ρη, (M − 1)(Nt −K)), j = 2,
(13)

η = q/p,

ωjl =
1

(bj − l)!

dbj−l

dxbj−l

(

xi

∏

s 6=j(x+ 1
µs
)bs

) ∣
∣
∣
∣
x=− 1

µj

, (14)

andI(a, n) =
∫∞
0

1
(x+1)(x+a)n

dx, a, n > 0. A closed-form expression forI(·, ·) is given in [20,Lemma 3].

Proof: Please refer to Appendix B.

A lower bound on the achievable ergodic secrecy rate of thekth MT in the local cell for theN /R methods is

obtained by combining (6), (11), and (12). However, the expression for the ergodic capacity of the eavesdropper

2We note that the simplified path-loss model is only adopted toreduce the number of parameters. The ergodic capacity and the ergodic secrecy

rate can also be derived for the original path-loss model in closed form. However, the resulting equations are more cumbersome and less insightful

compared to those for the simplified model.
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in (12) is somewhat cumbersome and offers little insight into the impact of the various system parameters.

Hence, in the next subsection, we derive a simple and tight upper bound forCeve
nk .

D. Tight Upper Bound on the Ergodic Capacity of the Eavesdropper

In the following theorem, we provide a tight upper bound for the ergodic capacity of the eavesdropper.

Theorem 2: For Nt → ∞ and both theN and theR AN shaping matrix generation methods, the ergodic

capacity of the eavesdropper in (7) is upper bounded by3

Ceve
nk < C

eve

nk ≈ log2

(

1 +
α

ηa(1− β)− cηα/a

)

= log2

(
(1− ζ)φ+ ζ

−ζφ+ ζ

)

, (15)

if β < 1−cα/a2, where we introduce the definitionsa = 1+ρ(M−1), c = 1+ρ2(M−1), andζ = aβ

α
− βc

a(1−β)
.

Proof: Please refer to Appendix C.

Remark 1: We note that a finite eavesdropper capacity results only if matrix X in (7) is invertible. Since

Heve
m , m = 1, . . . ,M , are independent matrices with i.i.d. entries,X is invertible if M(Nt − K) ≤ Ne or

equivalentlyβ ≤ 1− α/M . Regardless of the values ofM andρ, we have

1− α/[1 + ρ2(M − 1)] ≤ 1− cα/a2 ≤ 1− α/M. (16)

For M = 1 or ρ = 1, equality holds in (16). ForM > 1 andρ < 1, the condition forβ in Theorem 2 is in

general stricter than the invertibility condition forX. Nevertheless, the typical operating region for a massive

MIMO system isβ ≪ 1 [12], [13], where the upper bound in Theorem 2 is applicable.

Eq. (15) reveals thatC
eve

nk is monotonically increasing inα, i.e., as expected, the eavesdropper can enhance

his eavesdropping capability by deploying more antennas. Furthermore, in the relevant parameter range,

0 < β < 1 − cα/a2, C
eve

nk is not monotonic inβ but a decreasing function forβ ∈ (0, 1 − √
cα/a) and

an increasing function forβ ∈ (1 − √
cα/a, 1 − cα/a2). Hence,C

eve

nk has a minimum atβ = 1 − √
cα/a.

AssumingNt andNe are fixed, this behaviour can be explained as follows. For small K (corresponding to

small β), the capacity of the eavesdropper is large because the amount of power allocated to the intercepted

MT, φP/K, is large. AsK increases, the power allocated to the MT decreases which leads to a decrease

in the capacity. However, ifK is increased beyond a certain point,X becomes increasingly ill-conditioned

which leads to an increase in the eavesdropper capacity.

3We note that, strictly speaking, we have not proved that (15)is a bound since we used an approximation for its derivation,see Appendix C.

However, this approximation is known to be very accurate [26] and comparisons of (15) with simulation results for various system parameters

suggest that (15) is indeed an upper bound.
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Combining now (6), (11), and (15) gives a tight lower bound onthe ergodic secrecy rate of thekth MT in

the local cell for both theN and theR methods. To gain more insight, in the next two sections, we specialize

the tight lower bound on the ergodic secrecy rate to the casesof perfect training and pilot contamination,

respectively. This will allow us to further simplify the SINR expression of thekth MT in the local cell and

the resulting ergodic secrecy rate expression.

IV. PERFORMANCE ANALYSIS FOR PERFECT TRAINING

In this section, we analyze the secrecy performance of the considered downlink multi-cell massive MIMO

system under the assumption of perfect CSI, i.e.,ĥnk = h̃nk, k = 1, . . . , K. To this end, for both considered

AN generation methods, we first simplify the lower bound on the achievable ergodic rate expression derived

in Section III-B by taking into account the perfect CSI assumption. Subsequently, exploiting this result, we

derive simple and insightful lower bounds on the achievableergodic secrecy rate. Finally, we obtain an upper

bound on the secrecy outage probability.

A. Lower Bound on the Achievable Ergodic Rate

We first characterize some of the terms in (11) for the case of perfect training in the following lemma.

Lemma 2: The received signal and interference powers at thekth MT in the local cell can be expressed as

E[h̃nkwnk]
2 = E

2[x] and E[|h̃nkwmk|2] = E[|h̃nkvmi|2] = E[y2], ∀n 6= m (17)

respectively, wherex2 =
∑Nt

l=1 |ul|2 ∼ χ2
2Nt

, y2 = |ul|2 ∼ χ2
2, ul are i.i.d. complex Gaussian r.v.s with zero

mean and unit variance, andE[y2] = 1.

Proof: Since each element of̃hnk follows a Gaussian distribution with zero mean and unit variance and

wnk =
hH
nk

‖hnk‖ =
h̃H
nk

‖h̃nk‖
, |h̃nkwnk|2 is a (scaled) chi-square r.v. with2Nt degrees of freedom and statistically

equivalent tox2. On the other hand, sincewml, ∀{m, l} 6= {n, k}, and vmi are unit-norm vectors and

independent of the small-scale fading vectorh̃nk, the normalized interference terms,|h̃nkwmk|2 and|h̃nkvmi|2,
are (scaled) chi-square r.v.s with2 degrees of freedom and statistically equivalent toy2.

Introducingx andy in (11) and dividing both numerator and denominator byp, we obtain the SINRs for

theN andR AN shaping matrices as

γN
nk =

lnkE
2[x]

lnkvar[x] + η
∑M

m6=n lmk

∑Nt−K
i=1 E[y2] +

∑

{m,l}6={n,k} lmkE[y2] +
K
φP

(18)
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and

γR
nk =

lnkE
2[x]

lnkvar[x] + η
∑M

m=1 lmk

∑Nt−K

i=1 E[y2] +
∑

{m,l}6={n,k} lmkE[y2] +
K
φP

, (19)

respectively. The right hand sides of (18) and (19) differ only in the second term of the denominator, where

γR
nk contains an additional termηlnk

∑Nt−K

i=1 E[y2], which is due to the AN leakage caused in the local cell.

This term is absent inγN
nk as, for perfect CSI, theN -method avoids AN leakage in the local cell. Hence,

γN
nk > γR

nk always holds. Since for largeNt we have [16]

lim
Nt→∞

E2[x]

Nt

= 1 and lim
Nt→∞

var[x]

Nt

= 0, (20)

we obtain from (18) and (19)

lim
Nt→∞

γN
nk =

lnkNt

η
∑M

m6=n lmk(Nt −K) +
∑

{m,l}6={n,k} lmk +
K
φP

(21)

and

lim
Nt→∞

γR
nk =

lnkNt

η
∑M

m=1 lmk(Nt −K) +
∑

{m,l}6={n,k} lmk +
K
φP

, (22)

respectively. In order to obtain simple yet insightful results, we adopt in the following a simplified path-loss

model [19], similar to the simplified model introduced for the eavesdropper in Section III-C. In particular,

we model the path-losses aslmk = 1 if n = m and lmk = ρ if n 6= m, i.e., the path-loss between the local

BS and the MTs in the local cell is1 and the path-loss between the BSs of the other cells and the MTs in

the local cell isρ. Hence, (21) and (22) simplify to

lim
Nt→∞

γN
nk =

1

(M − 1)ρ(1− β)η + (M − 1)βρ+ β + β

φP

(23)

and

lim
Nt→∞

γR
nk =

1

((M − 1)ρ+ 1)(1− β)η + (M − 1)βρ+ β + β

φP

, (24)

respectively. The ergodic rate for the two considered AN shaping matrix generation methods is lower bounded

by RΨ
nk = log2(1 + γΨ

nk), whereΨ ∈ {N ,R}. We note that for systems with few users, i.e.,β → 0, and

Nt → ∞, the lower bounds on the ergodic rate reduce to

RN
nk ≈ log2

(

1 +
1

η(M − 1)ρ

)

and RR
nk ≈ log2

(

1 +
1

η((M − 1)ρ+ 1)

)

, (25)

i.e., performance is limited by AN leakage. This is in contrast to massive MIMO systems without AN

generation, whose performance in the considered regime (β → 0) is only limited by pilot contamination [12],

[13], which is not considered in this section but will be addressed in Section V. Moreover, (25) suggests that
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the performance difference between theN -method and theR-method diminishes if the AN leakage from

adjacent cells, which is proportional toη(M − 1)ρ for both methods, dominates the AN leakage for the

R-method in the local cell, which is proportional toη.

Closed-form expressions for the lower bound on the achievable ergodic secrecy rate of thekth MT in the

local cell for theN /R methods are obtained by combining (6), (12), and (23)/(24).The tightness of the

proposed lower bounds will be confirmed in Section VI via simulations.

B. Impact of System Parameters on Ergodic Secrecy Rate

In this subsection, we provide insight into the influence of the various system parameters on the ergodic

secrecy rate. Combining (6), (23)/(24), and the upper boundon the ergodic secrecy capacity in (15), simple

lower bounds for the ergodic secrecy rate valid forNt → ∞ are obtained as

Rsec,N
nk =

[

log2

(
bβζ + (β + 1− bβ)ζφ− (β + 1)ζφ2

bβζ + [β(1− ζ) + bβζ ]φ+ β(1− ζ)φ2

)]+

, (26)

Rsec,R
nk =

[

log2

(
(b+ 1)βζ + [1− (b+ 1)β]ζφ− ζφ2

(b+ 1)βζ + (b+ 1)β(1− ζ)φ

)]+

, (27)

whereb = (M−1)ρ+1/P andη = q/p = β(1/φ−1)/(1−β) was used. In the following, we first investigate

for what values ofα a non-zero ergodic secrecy rate can be achieved.

Impact of α: Let us denote the upper limit forα such that a positive secrecy rate can be achieved asαsec.

For theN -method and theR-method, we obtain from (26) and (27), respectively, positive secrecy rates if

α < αΨ
sec, Ψ ∈ {N ,R}, with

αN
sec =

a2(1− β)

ab(1 − β) + c

β→0
=

a

b+ c/a
=

1 + ρ(M − 1)

1/P + ρ(M − 1) + c/a
(28)

and

αR
sec =

a2(1− β)

a(b+ 1)(1− β) + c

β→0
=

a

b+ 1 + c/a
=

1

1 + 1/[P (ρ(M − 1) + 1)] + c/a2
. (29)

In both cases,αΨ
sec is obtained forφ → 0, i.e., almost the entire transmit power is allocated to AN generation.

For both methods,αsec is monotonically decreasing inβ. Furthermore, we always haveαR
sec < αN

sec, i.e., the

N -method can tolerate a larger number of eavesdropper antennas than theR-method at the expense of a

higher complexity in calculating the AN shaping matrix. Therobustness of both AN shaping matrix designs

can be improved by increasing the transmit powerP . However, based on (28) and (29) it can be shown

that even forP → ∞, the maximum values ofα that yield a non-zero ergodic secrecy rate are limited as

αN
sec ≤ 4/3 andαR

sec ≤ 1 regardless of the choice ofM and ρ. We note that for a single-cell system with
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a single user, it was shown in [3] that theN -method can achieve non-zero secrecy rate forα < 2. The

smaller number of tolerable eavesdropper antennas in the considered massive MIMO system are caused by

the suboptimal matched-filter precoding at the base station, which was chosen for complexity reasons.

Impact of φ: Eqs. (26) and (27) reveal that zero secrecy rate results forφ = φ0 = 0 and for a second value

φ = φΨ
1 , 0 < φΨ

1 < 1, whereΨ ∈ {N ,R}. Specifically,φΨ
1 is given by

φN
1 = 1− αa(1− β)(b+ 1)

a2(1− β)(1 + α/a)− cα
(30)

φR
1 = 1− αa(1− β)(b+ 1)

a2(1− β)− cα
(31)

whereφΨ
1 < 1 follows from the conditionβ < 1 − cα/a2 which is required for the validity of the upper

bound on the ergodic secrecy capacity in (15). Forφ = 0, all power is allocated to AN generation and no

power is left for information transmission. On the other hand, for φ = φΨ
1 , the amount of AN generated is not

sufficient to prevent the eavesdropper from decoding the transmitted signal. This suggests that forα < αΨ
sec,

Ψ ∈ {N ,R}, there exists an optimalφ, 0 < φ < φΨ
1 , which maximizes the achievable ergodic secrecy rate.

The values of the optimalφ can be obtained from (26) and (27) as

φ∗
N =

−(bβ + bζ) +
√

b(b+ 1)(ζ − bβ + βζ + bβζ)

1 + b+ β − bζ
, (32)

φ∗
R =

−ζ +
√
ζ − β − bβ + ζβ + bβζ

1− ζ
. (33)

Impact of β: It can be shown from (32) and (33) that for both theN andR methods the optimalφ is a

monotonically increasing function ofβ ∈ (0, 1 − cα/a2). Thus, as the number of MTs in the cell increase,

the amount of power allocated to AN generation decreases. This can be explained by the fact that asβ

increases, the transmit power per MT used for information transmission,φP/K, decreases. To compensate

for this effect, a largerφ is necessary. On the other hand, the ergodic secrecy rates for both theN andR
methods are decreasing functions ofβ ∈ (0, 1− cα/a2), cf. (26), (27), i.e., as expected, for a given number

of users the ergodic secrecy rates increase with increasingnumber of BS antennas. Surprisingly, this property

does not necessarily hold in case of pilot contamination, cf. Section V.

C. Secrecy Outage Probability Analysis

In delay limited scenarios, where one codeword spans only one channel realization, outages are unavoidable

since Alice does not have the CSI of the eavesdropper channeland the secrecy outage probability has to be
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used to characterize the performance of the system instead of the ergodic rate. For the considered multi-

cell massive MIMO system, the rate of the desired user,Rnk, becomes deterministic asNt → ∞, but the

instantaneous capacity of the eavesdropper channel remains a random variable. A secrecy outage occurs

whenever the target secrecy rateR0 exceeds the actual instantaneous secrecy rate. Thus, the secrecy outage

probability of thekth MT in the local cell is given by

εout = Pr{Rnk − log2(1 + γeve) ≤ R0} = Pr{γeve ≥ 2Rnk−R0 − 1} = 1− Fγeve(2
Rnk−R0 − 1), (34)

whereγeve = pwH
nkH

eveH
n X−1Heve

n wnk andFγeve(x) is given in Appendix B. A closed-form upper bound on

the secrecy outage probability is obtained by replacingRnk with RΨ
nk = log2(1 + γΨ

nk) with γΨ
nk given in

(23)/(24).

V. PERFORMANCE ANALYSIS FOR PILOT CONTAMINATION

In this section, we analyze the performance of the considered multi-cell massive MIMO system for the case

of pilot contamination. To this end, we simplify the lower bound on the achievable ergodic rate expression

derived in Section III-B for the case of pilot contamination, derive insightful and tight lower bounds on the

ergodic secrecy rate, and provide a closed-form expressionfor the secrecy outage probability.

A. Lower Bound on the Achievable Ergodic Rate

The lower bound on the achievable ergodic rate of the users derived in Section III-B is also applicable in

case of pilot contamination. Thus, in a first step, we characterize the four expectations/variances in the SINR

expression in (11).

Expressing the small-scale fading vector ash̃nk = ĥnk + enk, cf. Section II, the denominator of (11) can

be rewritten as (we omit the path-loss for the moment)

E[h̃nkwnk] = E

[

‖ĥnk‖+ enk
ĥnk

‖ĥnk‖

]

= E[‖ĥnk‖] =
√

pττlnk

1 + pττ
∑M

m=1 lmk

E[x], (35)

wherex2 ∼ χ2
2Nt

, cf. Lemma 2. Furthermore, we observe from (2) that, at the local BS, the channel estimate

for the kth MT in the local cell involves the sum of all channel vectors between the local BS and thekth

MTs in all cells weighted with scaling factors
√
pτ τlmk

1+pτ τ
∑M

i=1
lik

. Thus, the transmit beamforming vector for the

kth MT in the local cell is also affected by the channel vectors between the local BS and thekth MTs in all

other cells. This is the fundamental problem introduced by pilot contamination. Using this observation, the
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interference caused by thekth MT in the mth cell to the local cell (i.e., the component of the third term of

the denominator in (11) withl = k) is given by

E[|h̃mkwmk|2] = E
[
‖ĥmk‖2

]
+ E

[
ĥH
mk

‖ĥmk‖
eHmkemk

ĥmk

‖ĥmk‖

]

=
pττlmk

1 + pττ
∑M

p=1 lpk
E[x2] +

1 + pττ
∑

p 6=m lpk

1 + pττ
∑M

m=1 lmk

E[y2], (36)

where y2 ∼ χ2
2, cf. Lemma1. Exploiting now (35) and (36) and the definition of variance,i.e., var[x] =

E[x2]− E2[x], we obtain for the signal leakage term in (11)

var[h̃nkwnk] =
pττlnk

1 + pττ
∑M

m=1 lmk

var[x] +
1 + pττ

∑

m6=n lmk

1 + pττ
∑M

m=1 lmk

E[y2]. (37)

Furthermore, the interference from thelth MT, wherel 6= k, in the adjacent (i.e., non-local) cells is given by

E[|h̃mkwml|2] = E[y2], (38)

as eachwml, ∀l 6= k, has unit norm and is independent ofhmk. The inter-cell AN leakage is obtained as

E[|h̃mkvmi|2] = E[y2], ∀m, i, asvmi has unit norm and is independent ofh̃mk. While the inter-cell AN leakage

and the terms calculated in (35)-(38) are identical for theN andR methods, the intra-cell AN leakage within

the local cell depends on the AN shaping matrix design. In particular, for theN -method, the AN is designed

to lie in the null space of the estimated channels of allK MTs in the local cell. Thus, the intra-cell AN

leakage is obtained as

E[|h̃nkvni|2] = E[vH
nie

H
nkenkvni] =

1 + pττ
∑

m6=n lmk

1 + pτ τ
∑M

m=1 lmk

E[y2], (39)

due to the independence ofvni, ∀i, and enk. On the other hand, for theR-method, the AN is generated

randomly, such thatE[|h̃nkvni|2] = E[y2], since thevni, ∀i, have unit norm and are independent ofh̃nk.

Plugging all intermediate results derived in this section so far into (11), we obtain

γN
nk =

λnkE
2[x]

λnkvar[x] +
∑M

m=1

(

µmk + η
∑Nt−K

i=1 µ̂mk +
∑

l 6=k lmk

)

E[y2] +
∑

m6=n λmkE[x2] + K
φP

(40)

and

γR
nk =

λnkE
2[x]

λnkvar[x] +
∑M

m=1

(

µmk + η
∑Nt−K

i=1 lmk +
∑

l 6=k lmk

)

E[y2] +
∑

m6=n λmkE[x2] + K
φP

, (41)
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whereλmk =
pτ τl

2

mk

1+pτ τ
∑M

p=1
lpk

, µmk = lmk
1+pττ

∑
p 6=m lpk

1+pτ τ
∑M

m=1
lmk

, and µ̂mk =







µmk, m = n,

lmk, otherwise
. Adopting now the

same simplified interference model as in Section IV, (40) and(41) can be further simplified, and for large

Nt, the corresponding lower bound on the achievable ergodic rates are given by

RN
nk = log2

(

1 +
λ

(a− λ)(1− β)η + bβ + (M − 1)ρ2λ+ β

φP

)

(42)

and

RR
nk = log2

(

1 +
λ

a(1− β)η + bβ + (M − 1)ρ2λ+ β

φP

)

, (43)

where λ = pττ

1+pτ τa
. From (42) and (43) we observe thatRN

nk > RR
nk always holds but the performance

difference diminishes ifa ≫ λ. We note that for both AN shaping matrix designs the powers ofthe AN

leakage originating from other cells and the inter-cell interference are proportional toa − 1 = (M − 1)ρ.

Furthermore, for theN -method and theR-method, the AN leakage originating in the local cell is proportional

to (1 − λ)η and η, respectively. Therefore,a ≫ λ implies that the AN leakage originating from other cells

and the inter-cell interference are much stronger than the AN leakage in the local cell and/or the pilot power

pτ is not sufficiently large to prevent AN leakage for theN -method in the local cell. Furthermore, forβ → 0,

we obtainRN
nk = log2(1 + λ/[(a − λ)η + (M − 1)ρ2λ]) and RR

nk = log2(1 + λ/[aη + (M − 1)ρ2λ]), i.e.,

in the asymptotic regime where the number of users is constant but the number of BS antennas increases

without bound, the performance for both AN shaping matrix designs is limited by both AN leakage and pilot

contamination.

Since the ergodic capacity of the eavesdropper is not affected by the imperfect CSI at the local BS, a lower

bound on the ergodic secrecy rate for pilot contamination can be calculated from (6), (7), and (42)/(43).

B. Impact of System Parameters on Ergodic Secrecy Rate

To gain more insight, we employ again the upper bound on the ergodic capacity of the eavesdropper

provided in Theorem 2. Combining (6), (15), (42), and (43), we obtain simple lower bounds for the ergodic

secrecy rate for theN andR methods asRsec,N
nk =

[

log2

(
(b+ 1− λ)βζ + [(β + c)λ− (b+ 1− λ)β]ζφ− ζ(β + c)λφ2

(b+ 1− λ)βζ + [(β + c− 1)λζ + (b+ 1− λ)(1− ζ)]φ+ (1− ζ)(β + c− 1)λφ2

)]+

, (44)

and

Rsec,R
nk =

[

log2

(
(b+ 1)βζ + [cλ− (b+ 1)β]ζφ− ζcλφ2

(b+ 1)βζ + [(c− 1)λζ + (b+ 1)(1− ζ)]φ+ (1− ζ)(c− 1)λφ2

)]+

, (45)
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respectively.

In the following, we investigate the impact of the system parameters on the ergodic secrecy rate in detail.

Impact of α: Similar to the perfect training case we investigate in the following the upper limit forα such

that a positive secrecy rate can be achieved. We observe from(44) and (45) that a non-zero secrecy rate can

be achieved as long asα < αΨ
sec holds where

αN
sec =

a2(1− β)λ

a(1− β)(1 + b− λ) + cλ

β→0
=

a2λ

a(1 + b− λ) + cλ
, (46)

αR
sec =

a2(1− β)λ

a(1− β)(1 + b) + cλ

β→0
=

a2λ

a(1 + b) + cλ
. (47)

Eqs. (46) and (47) reveal that the robustness of the considered multi-cell MIMO system to eavesdropping is

monotonically decreasing with increasing number of MTs in the system. On the other hand, allocating more

resources to training, i.e., increasingλ by increasing the pilot power,pτ , or the pilot sequence duration,τ , leads

to a higher robustness against eavesdropping, i.e., a larger number of eavesdropper antennas can be tolerated.

Furthermore, as expected,αN
sec > αR

sec, i.e., the more complexN -method is more robust to eavesdropping

than the simpleR method. However,αR
sec approachesαN

sec if λ is small, i.e., both methods have a similar

robustness to eavesdropping in case of strong pilot contamination since, in this case, theN -method can no

longer avoid AN leakage within the local cell. We also note that, as expected, sinceλ ≤ 1/b ≤ 1 always

holds, for a given AN shaping matrix design, the maximum tolerable number of eavesdropper antennas in

case of pilot contamination is always smaller than that in case of perfect training, cf. (29), (28), and (46),

(47).

Impact of φ: Similar to the case of perfect training, the ergodic secrecyrate for both AN shaping matrix

designs becomes zero forφ = φ0 = 0 also for the case of pilot contamination, cf. (44) and (45), since zero

power is allocated to information transmission in this case. A second zero of the ergodic secrecy rate occurs

for φ = φΨ
1 , 0 < φΨ

1 < 1, whereΨ ∈ {N ,R}. φΨ
1 is obtained from (44) and (45) as

φN
1 = 1− αa(β − 1)((b+ 1)β + λ(c− 1))

λ(a(a+ α)β2 + (−a2 + α(c− 2)a+ cα)β − aα(c− 1))
(48)

φR
1 = 1− αa(β − 1)((b+ 1)β + λ(c− 1))

λ(a2β2 + (−a2 + aα(c− 1) + cα)β − aα(c− 1))
. (49)

Furthermore, assumingα < αΨ
sec and taking the derivatives of (44) and (45) with respect toφ and setting
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them to zero, we obtain the optimal power allocation factorsfor theN andR methods as

φ∗
N =

−
√

(b+ 1− λ)((−1 + c)λ+ (b+ 1)β)β((β + cζ)λ+ (−1 + ζ)β(b+ 1))λ

(−λβ2 + ((2− 2c− ζ)λ+ (−1 + ζ)(b+ 1))β − cλ(−1 + c))λ

+
(−λ2 + (b+ 1)λ)β2 + ((−c− ζ + 1)λ2 + ((ζ − 1 + c)b+ ζ − 1 + c)λ)β

(−λβ2 + ((2− 2c− ζ)λ+ (−1 + ζ)(b+ 1))β − cλ(−1 + c))λ
(50)

and

φ∗
R =

−
√

λ((−1 + c)λ+ (b+ 1)β)(b+ 1)(cζλ+ (−1 + ζ)β(b+ 1))β + ((ζ − 1 + c)b+ ζ − 1 + c)λβ

λ((−1 + ζ)β(b+ 1)− cλ(−1 + c))
.

(51)

Impact of β: Based on (50) and (51) it can be shown that, similar to the casefor perfect training, for

pilot contamination, the optimalφ∗
N andφ∗

R are monotonically increasing inβ. Furthermore, in Section IV,

we found that, for perfect training, the ergodic secrecy rate is monotonically increasing for decreasingβ.

However, for a givenφ, it can be shown based on (44) and (45) that this is no longer true in case of pilot

contamination. In other words, ifφ and the number of usersK are fixed, in case of pilot contamination, the

ergodic secrecy rate is not maximized by making the number ofBS antennas,Nt, exceedingly large (i.e.,

Nt ≫ K such thatβ → 0). Instead, there is an optimal finite number of BS antennas. We will investigate

this issue numerically in Section VI.

Impact of λ: Pilot contamination impacts the ergodic secrecy rate viaλ, where smaller values ofλ imply

that the MTs expend less resources for uplink training (i.e., they employ a smaller pilot powerpτ and/or

a shorter pilot sequence length,τ ). First, we observe from (44) and (45) that bothRsec,N
nk and Rsec,R

nk are

increasing functions ofλ, i.e., as expected, if the MTs employ a higher pilot power and/or a longer pilot

sequence for channel estimation, the ergodic secrecy rate improves. Furthermore,αsec is an increasing function

of λ, i.e., a higher uplink training power and/or longer pilot sequence lengths increase the operating region

of the system where a non-zero secrecy rate can be achieved.

On the other hand, for a given coherence intervalT , fixed transmit powerP , and fixed pilot powerpτ , the

fraction of time allocated for trainingτ/T (and as a consequenceλ) can be optimized for maximization of

the net ergodic secrecy rate given by(1−τ/T )Rsec,Ψ
nk , Ψ ∈ {N ,R}. We assume that the channels are constant

within one coherence interval but change from one coherenceinterval to the next. We also emphasize that

by using the (net) ergodic secrecy rate as a performance measure, we implicitly assume coding over many

coherence intervals. For smallτ , the factor(1 − τ/T ) is large but the ergodic secrecy rate,Rsec,Ψ
nk , is small

because of the unreliable channel estimation. On the other hand, for largeτ , the factor(1 − τ/T ) is small

but the ergodic secrecy rate,Rsec,Ψ
nk , is large because of the more accurate channel estimation. Hence,τ can
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be optimized for optimal performance [21]. The optimization of τ will be studied numerically in Fig. 9 in

Section VI.

C. Secrecy Outage Probability Analysis

Plugging (42) and (43) into the secrecy outage probability expression derived in (34), we obtain an upper

bound for the secrecy outage probability for the case of pilot contamination as

εΨout = 1− Fγeve(2
RΨ

nk−R0 − 1), (52)

whereΨ ∈ {N ,R}.

VI. NUMERICAL EXAMPLES

In this section, we evaluate the secrecy performance of the considered multi-cell massive MIMO systems

based on the analytical expressions derived in Sections III-V and via Monte-Carlo simulation. We consider

a system withM = 7 hexagonal cells and adopt the simplified path-loss model, i.e., the severeness of the

inter-cell interference is characterized by parameterρ only. The Monte-Carlo simulation results for the ergodic

secrecy rate of thekth MT in the local cell are based on (6) where the achievable ergodic rateRnk is obtained

from (8) and the ergodic secrecy capacity of the eavesdropper is obtained from (7). Thereby, the expected

values in (8) and (7) were evaluated by averaging over3000 random channel realizations. The Monte-Carlo

simulation results for the outage probability are obtainedfrom εout = Pr{Rnk − log2(1 + γeve) ≤ R0}, which

was evaluated again based on3000 random channel realizations. The values of all relevant system parameters

are provided in the captions of the figures.

A. Ergodic Secrecy Rate and Secrecy Outage Probability

For the results shown in this section, we adopt a fixed power allocation factor ofφ = 0.75. The optimization

of φ will be addressed in the next subsection.

In Fig. 2, we verify the derived analytical expressions for the ergodic capacity of the eavesdropper which

seeks to decode the information intended for thekth MT in the local cell. The analytical results were generated

with (12) while the upper bound results were computed with (15). The vertical dashed lines denoteβ =

1−cα/a2. Fig. 2 reveals that forβ < 1−cα/a2, the upper bound is very tight. For1−cα/a2 < β < 1−α/M ,

the upper bound is not applicable, although the ergodic capacity of the eavesdropper is still finite, cf. Theorem 2

and Remark 1. Forβ → 1−α/M , the ergodic capacity of the eavesdropper tends to infinity sinceX becomes
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Fig. 2. Ergodic capacity of the eavesdropper seeking to decode the information intended for thekth MT in the local cell vs. the normalized

number of MTs in the cell,β, for a system with total transmit powerP = 10 dB, M = 7, φ = 0.75, andNt = 100.

singular. Furthermore, we observe from Fig. 2 that increasing inter-cell interference (i.e., larger inter-cell

interference factors,ρ) has a negative effect on the ergodic capacity of the eavesdropper, whereas as expected,

the eavesdropper can improve his performance by adding moreantennas,Ne (i.e., by increasingα). Moreover,

Fig. 2 confirms that the ergodic capacity of the eavesdropperis monotonically decreasing inβ in the interval

(0, 1 − √
cα/a) and monotonically increasing inβ in the interval(1 − √

cα/a, 1 − cα/a2). The resulting

minimum of the ergodic capacity of the eavesdropper atβ = 1 − √
cα/a is denoted by a black circle in

Fig. 2.

In Fig. 3, for the case of perfect training, we show the ergodic secrecy rate vs. the number of BS antennas

(subfigure (a)) and the secrecy outage probability vs. the target secrecy rateR0 (subfigure (b)) for thekth

MT in the local cell. Results for both considered AN shaping matrix designs are shown. In subfigure (a),

lower bound I was obtained based on (6), (12), (23), and (24) and lower bound II was obtained with (26) and

(27). In subfigure (b), the upper bound was obtained with (34). Fig. 3 reveals that the derived bounds for the

ergodic secrecy rate and the secrecy outage probability areaccurate. As expected, for the ergodic secrecy rate,

lower bound I is somewhat tighter than lower bound II. Furthermore, increasing the number of BS antennas

Nt improves both the ergodic secrecy rate as well as the secrecyoutage probability. Moreover, as expected,

theN -method for generation of the AN shaping matrix always outperforms theR-method as theN -method

May 29, 2014 DRAFT



24

80 100 120 140 160
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of BS antennas (Nt)

E
rg

od
ic

 s
ec

re
cy

 r
at

e 
(b

ps
/H

z)

(a) Ergodic secrecy rate

 

 

Simulation
Lower bound I
Lower bound II

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R0 (bps/Hz)

S
ec

re
cy

 O
ut

ag
e 

P
ro

ba
bi

lit
y

(b) Secrecy outage probability

 

 

Upper bound N

Simulation N

Upper bound R

Simulation R

N -method

R-method

Nt = 80

Nt = 100

Nt = 120

Fig. 3. Ergodic secrecy rate and outage probability for perfect training,M = 7, P = 10 dB, K = 10, ρ = 0.3, α = 0.1, andφ = 0.75.

avoids intra-cell AN leakage.

In Fig. 4, we show the same performance metrics as in Fig. 3, however, now for the case of pilot

contamination. In subfigure (a), lower bound I was obtained based on (6), (12), (42), and (43), whereas

lower bound II was obtained with (44) and (45). In subfigure (b), the upper bound was obtained with (52).

Similar to the case of perfect training, the derived bounds on the ergodic secrecy rate and the secrecy outage

probability are very tight. A comparison of Figs. 3 and 4 reveals that pilot contamination causes a significant

performance degradation in terms of both ergodic secrecy rate and secrecy outage probability. Furthermore,

unlike for the case of perfect training, for pilot contamination, the ergodic secrecy rate is not monotonically

increasing inNt but has a unique maximum for both AN shaping matrix designs.

B. Optimal Power Allocation

In this subsection, we investigate the optimization of power allocation factorφ and illustrate its impact on

the ergodic secrecy rate.

Figs. 5 and 6 show the ergodic secrecy rates of thekth MT in the local cell as functions ofφ for the cases

of perfect training and pilot contamination, respectively. The ergodic secrecy rate curves were obtained via

Monte Carlo simulation and various values ofα and β are considered. The optimal values forφ obtained

with (32)/(33) (for perfect training) and (50)/(51) (for pilot contamination) are denoted by black circles. As
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Fig. 4. Ergodic secrecy rate and outage probability for pilot contamination,M = 7, P = 10 dB, K = 10 MTs, ρ = 0.1, α = 0.1, φ = 0.75,

τ = K, andpτ = P/K.

expected from our discussions in Sections IV and V, Figs. 5 and 6 show that, for both theN and theR AN

shaping matrix desigs, the optimalφ∗ is decreasing inα, i.e., the system should allocate more power to AN

if the eavesdropper is becoming stronger, and increasing inβ, i.e., less power should be allocated to AN if

the number of users increases. Forα = 0.4, no results are shown for the case of pilot contamination in Fig. 6

since the corresponding ergodic secrecy rates are zero for all choices ofφ, i.e.,α > αsec holds in this case.

In Fig. 7, we depict the ergodic secrecy rate and the optimal power allocation factor,φ∗, as functions of the

normalized number of MTs in each cell,β. Thereby, the ergodic secrecy rate is calculated using the optimal

φ∗, which was obtained based on the analytical results in Sections IV and V for the case of perfect training

and pilot contamination, respectively. We observe that, unlike the case whenφ is fixed, if φ is optimized,

the ergodic secrecy rate is a non-increasing function ofβ also in case of pilot contamination, i.e., for a

given number of users, increasing the number of BS antennas is always beneficial. On the other hand, for all

considered cases, the optimal value ofφ is a monotonically increasing function ofβ, i.e., as the number of

users in the system increases relative to the number of BS antennas, less power is allocated to AN. Also, the

performance gap between both AN shaping matrix design methods decreases with increasingβ.

May 29, 2014 DRAFT



26

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

φ

E
rg

od
ic

 s
ec

re
cy

 r
at

e 
(b

ps
/H

z)

 

 
N -method

R-method

α = 0.1, β = 0.5

α = 0.1, β = 0.05

α = 0.4, β = 0.05

α = 0.4, β = 0.5

Fig. 5. Ergodic secrecy rate vs. power allocation factorφ assuming perfect training,Nt = 100, M = 7, P = 10 dB, andρ = 0.1. Black circles

denote the optimal power allocation factor,φ∗, obtained with (32) and (33).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

φ

E
rg

od
ic

 s
ec

re
cy

 r
at

e 
(b

ps
/H

z)

 

 
N -method

R-method

α = 0.1, β = 0.05

α = 0.1, β = 0.5

Fig. 6. Ergodic secrecy rate vs. power allocation factorφ assuming pilot contamination,M = 7, Nt = 100, P = 20 dB, τ = K, pτ = P/K,

andρ = 0.1. Black circles denote the optimal power allocation factor,φ∗, obtained with (50) and (51).
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allocation factor was obtained with (32), (33), 50), and (51).

C. Conditions for Non-zero Ergodic Secrecy Rate

In Fig. 8, we illustrate for both AN shaping matrix designs under what conditions a non-zero ergodic

secrecy rate is possible. To this end, we plotαsec as defined in (28), (29), (46), and (47) as functions ofβ

for pτ = P/K (subfigure on left hand side) and the amount of power,pτ , spent by the MTs for training for

β = 0.05, 0.5 (subfigure on right hand side). Forα ≥ αsec, the ergodic secrecy rate is zero regardless of the

amount of power allocated to AN. On the other hand, forα < αsec, a positive ergodic secrecy rate can be

achieved. We observe from Fig. 8 that for both AN shaping matrix designsαsec is a decreasing function ofβ,

whereas it is an increasing function ofpτ , i.e., the more reliable the channel estimates, the more eavesdropper

antennas can be tolerated before the ergodic secrecy rate drops to zero. However,αsec saturates for large

values ofpτ . We note that the values ofαsec are smaller for theR-method than for theN -method because

of the larger intra-cell AN leakage caused by theR-method.

D. Optimization of the Net Ergodic Secrecy Rate

Fig. 9 depicts the net ergodic secrecy rate,(1 − τ/T )Rsec
nk , as a function ofλ, where the lower bounds in

(44) and (45) were used to approximateRsec
nk . The cases ofT = 100 andT = 500 are considered forK = 5
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andK = 20 MTs. We assume thatpτ = 0 dB andλ is varied by changingτ and the optimal power allocation

factorφ∗ is employed. Thereby, the range of possibleτ is [K, T ), which directly translates into the range of

possibleλ asλ = pττ

1+pττa
. Fig. 9 reveals that the optimalλ is (slightly) increasing inT since for larger values

of T , more time for allocation to uplink training is available, i.e., τ can be increased resulting in a larger

value for the optimalλ. ForK = 20, the lower limit of the permissible interval forτ given byτ = K yields

the maximum net secrecy rate. In this case, increasingτ beyondτ = K does not improveRsec
nk sufficiently

to compensate for the decrease of the term1− τ/T .

VII. CONCLUSIONS

In this paper, we considered a multi-cell massive MIMO system with matched-filter precoding and AN

generation at the BS for secure downlink transmission in thepresence of a multi-antenna passive eavesdropper.

For AN generation, we considered both the conventional nullspace based AN shaping matrix design and a

novel random AN shaping matrix design. For both perfect training and pilot contamination, we derived two

tight lower bounds on the ergodic secrecy rate and a tight upper bound on the secrecy outage probability. The

analytical expressions allowed us to optimize the amount ofpower allocated to AN generation and to gain

significant insight into the impact of the system parameterson performance. In particular, our results reveal

that for the considered multi-cell massive MIMO system withmatched-filter precoding (1) AN generation is
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necessary to achieve a non-zero ergodic secrecy rate if the user and the eavesdropper experience the same

path-loss, (2) secrecy cannot be guaranteed if the eavesdropper has too many antennas, (3) for the case of

pilot contamination, the ergodic secrecy rate is only an increasing function of the number of BS antennas

if the amount of power allocated to AN generation is optimized, and (4) the proposed random AN shaping

matrix design is a promising low-complexity alternative tothe conventional null space based AN shaping

matrix design.

APPENDIX

A. Proof of Lemma 1

The proof closely follows [7]. We first derive an expression for the secrecy rate for given realizations of

hmk andHeve
m , k = 1, . . . , K, m = 1, . . . ,M . Since the MISOME channel in (4) and (5) is a non-degraded

broadcast channel [3], the secrecy capacity is given by [7],[22]

Csec
nk (h) = max

snk→wnksnk→ynk,yeve

I (snk; ynk|h)− I (snk;yeve|h) , (53)

where vectorh contains the CSI of all user and eavesdropper channels andI(x; y|h) is the mutual information

between two r.v.sx and y conditioned on the CSI vector.Csec
nk (h) is achieved by maximizing over all joint
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distributions such that a Markov chainsnk → wnksnk → ynk,yeve results, wheresnk is an arbitrary input

variable [7]. Specifically, forsnk ∼ CN(0, 1) an achievable secrecy rate for thekth MT in the local cell,

Rsec
nk (h), is given by

Rsec
nk (h) =

[

I (snk; ynk|h)− I (snk;yeve|h)
]+

(a)
=

[

I (wnksnk; ynk|h)− I (wnksnk;yeve|h)
]+

(b)

≥
[

Rnk (h)− Ceve
nk (h)

]+

(54)

where (a) follows sincewnksnk is a deterministic function ofsnk. Furthermore,Rnk(h) ≤ max I (wnksnk; ynk|h)
is an achievable rate of thekth MT in the local cell andCeve

nk (h) = log2
(
1 + pwH

nkH
eveH
n X−1Heve

n wnk

)
≥

I (wnksnk;yeve|h) is an upper bound on the mutual informationI (wnksnk;yeve|h). Thus, follows (b). We

note that for computation ofCeve
nk (h) we made the worst-case assumption that the eavesdropper candecode

and cancel the signals of all MTs except the signal intended for the MT of interest [23, Chapter 10.2].

Finally, to arrive at the ergodic secrecy rate, we averageRsec
nk (h) over all channel realizations, which results

in [10]

E

[

Rsec
nk (h)

]

= E

[[

Rnk (h)− Ceve
nk (h)

]+
]

≥
[

E [Rnk (h)]− E [Ceve
nk (h)]

]+

= Rsec
nk . (55)

Introducing the definitions of the achievable ergodic secrecy rate, Rnk = E [Rnk (h)], and the ergodic

eavesdropper capacity,Ceve
nk = E [Ceve

nk (h)], completes the proof.

B. Proof of Theorem 1

We first recall that the entries ofHeve
m , m = 1, . . . ,M , are mutually independent complex Gaussian r.v.s. On

the other hand, forNt → ∞ and both AN shaping matrix designs, the vectorsvml, l = 1, . . . , Nt−K, form an

orthonormal basis. Hence,Heve
m Vm, m = 1, . . . ,M , also has independent complex Gaussian entries, which are

independent from the complex Gaussian entries ofHeve
n wnk. Thus, the termγeve = pwH

nkH
eveH
n X−1Heve

n wnk

in (7) is equivalent to the SINR of anNe-branch MMSE diversity combiner withM(Nt−K) interferers [10],

[24]. As a result, for the considered simplified path-loss model, the cumulative density function (CDF) of the

received SINR,γeve, at the eavesdropper is given by [24]

Fγeve(x) =

∑Ne−1
i=0 λix

i

∏2
j=1(1 + µjx)bj

, (56)
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whereλi, µj, andbj are defined in Theorem 1. Exploiting (56), we can rewrite (7) as

Ceve
(a)
=

1

ln 2

∫ ∞

0

(1 + x)−1Fγeve(x)dx

=
1

ln 2

Ne−1∑

i=0

λi ×
∫ ∞

0

xi

(1 + x)
∏2

j=1(1 + µjx)bj
dx

(b)
=

1

ln 2

Ne−1∑

i=0

λi ×
1

µ0

2∑

j=1

bj∑

l=1

∫ ∞

0

ωjl

(x+ 1)(x+ 1
µj
)l
dx

(c)
=

1

ln 2

Ne−1∑

i=0

λi ×
1

µ0

2∑

j=1

bj∑

l=2

ωjlI(1/µj, l), (57)

whereµ0, ωjl, andI(·, ·) are defined in Theorem 1. Here, (a) is obtained using integration by parts, (b) holds

if the order ofx in the denominator of (56) is not smaller than that in the numerator, i.e.,Nt−K ≥ Ne/M or

equivalently1− β ≥ α/M , which is also the condition to ensure invertibility ofX in (7), and (c) is obtained

using the definition ofI(·, ·) given in Theorem 1. This completes the proof.

C. Proof of Theorem 2

Using Jensen’s inequality and the mutual independence ofw̃nk = Heve
n wnk andHeve

m Vm, m = 1, . . . ,M

(cf. Appendix B),Ceve
nk in (7) is upper bounded by

Ceve
nk ≤ log2

(
1 + Ew̃nk

[
pw̃H

nkE
[
X−1

]
w̃nk

])
. (58)

Let us first focus on the termE [X−1] in (58) and note thatX is statistically equivalent to a weighted sum

of two scaled Wishart matrices [25]. Specifically, we haveX = qX1 + ρqX2 with X1 ∼ WNe
(Nt −K, INe

)

andX2 ∼ WNe
((M − 1)(Nt−K), INe

), whereWA(B, IA) denotes anA×A Wishart matrix withB degrees

of freedom. Strictly speaking,X is not a Wishart matrix, and the exact distribution ofX seems intractable.

However,X may be accurately approximated as a single scaled Wishart matrix, X ∼ WNe
(ϕ, ξINe

), where

parametersξ andϕ are chosen such that the first two moments ofX andqX1+ρqX2 are identical [26], [27].

Equating the first two moments of the traces of these matricesyields [27]

ξϕ = q(Nt −K) + ρq(M − 1)(Nt −K), (59)

and

ξ2ϕ = q2(Nt −K) + ρ2q2(M − 1)(Nt −K). (60)
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By exploiting the expectation of an inverse Wishart matrix given in [27, Eq. (12)], we obtainE[X−1] =

1
ξ(ϕ−Ne−1)

INe
with ξ = cq/a if ϕ−Ne > 1 or equivalently ifβ < 1− cα/a2 for Nt → ∞. Plugging this result

andE[w̃H
nkw̃nk] = Ne into (58), we finally obtain the result in (15). This completes the proof.
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