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Abstract—This paper presents a new approach to intra-cell
pilot contamination in crowded massive MIMO scenarios. The
approach relies on two essential properties of a massive MIMO
system, namely near-orthogonality between user channels and
near-stability of channel powers. Signal processing techniques
that take advantage of these properties allow us to view a set
of contaminated pilot signals as a graph code on which iterative
belief propagation can be performed. This makes it possibleto
decontaminate pilot signals and increase the throughput ofthe
system. The proposed solution exhibits high performance with
large improvements over the conventional method. The improve-
ments come at the price of an increased error rate, although this
effect is shown to decrease significantly for increasing number of
antennas at the base station.

I. I NTRODUCTION

Multiple-input multiple-output (MIMO) has been identified
as a key technology to improve spectral efficiency of wireless
communication systems and is finding its way into practical
systems, like LTE and LTE-Advanced. The research in MIMO
has recently took a turn, when the advantage of having a
massive number of antennas at a base station (BS) was asserted
in [1]. In [1], a massive MIMO system refers to a multi-cell
multi-user system with a massive number of antennas at the
BS that serves multiple users. The number of users is much
smaller than the number of BS antennas, defining an under-
determined multi-user system with a massive number of extra
spatial degrees of freedom (DoF). Exploiting those extra DoF
and assuming an infinite number of antennas at the BS, the
multi-user MIMO channel can be turned into an orthogonal
channel and the effect of small-scale fading and thermal
noise can be eliminated. Based on those excellent properties,
massive MIMO is acknowledged as a promising technology
for very high system throughput and energy efficiency [2].

When the number of antennas becomes massive, acquiring
the channel state information (CSI) becomes a severe bottle-
neck. Downlink channel training requires a training lengththat
is proportional to the number of antennas at the BS and is thus
impractical. One solution promoted in [1] restricts massive
MIMO operations to time-division duplex (TDD) for which
channel reciprocity is exploited. As the downlink and uplink
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channels are equal, CSI is acquired at the BS based on uplink
training and then used for downlink transmission. The benefit
is that the training length is proportional to the number of
users, which is much smaller than the number of BS antennas.

As described in [1], CSI is acquired using orthogonal pilot
sequences, but, due to the shortage of orthogonal sequences,
the same pilot sequences must be reused in neighboring cells,
causing pilot contamination. This problem is considered as
one of the major challenges in massive MIMO systems [3].
Mitigation of pilot contamination has been the focus of several
works recently. These include [4], where it is utilized that
the desired and interfering signals can be distinguished inthe
channel covariance matrices, as long as the angle-of-arrival
spreads of desired and interfering signals do not overlap.
A pilot sequence coordination scheme is proposed to help
satisfying this condition. The work in [5] utilizes coordination
among base stations to share downlink messages. Each BS
then performs linear combinations of messages intended for
users applying the same pilot sequence. This is shown to elim-
inate interference when the number of base station antennas
goes to infinity. A multi-cell precoding technique is used in[6]
with the objective of not only minimizing the mean squared
error of the signals within the cell, but also minimizing the
interference imposed to other cells.

The survey of the related work indicates that the pilot
contamination problem has been seen as an inter-cell problem
that arises when the users associated with two neighboring
cells use the same pilot sequence. An implicit assumption
associated with it is that the pilot sequences of the users
associated with the same cell are perfectly scheduled, suchthat
no intra-cell pilot contamination occurs. These assumptions
fall apart when one considers very dense, crowded scenarios
as envisioned in 5G wireless scenarios [7]. In such a setting,
orthogonal scheduling of the users belonging to the same BS
becomes infeasible, due to scheduling overhead.

In this work, we consider such a crowd scenario, where the
amount of users and their access behavior make it infeasible
to schedule the transmissions. Instead users choose pilot
sequences at random in an uncoordinated manner from a small
pool shared by all users. Since the users are not coordinated,
the pilot contamination problem can be cast as arandom
access problem. We identify two features specific to massive
MIMO: (1) asymptotic orthogonality between user channels;
and (2) asymptotic invariance of the power received from a
user over a short time interval. We use these features in order
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Pilot contamination = collision

Fig. 1. A single cell crowd scenario.

to formulate apilot access protocol using the framework of
coded random access [8, 9]. In such a framework, knowledge
about the pilot applied by each individual user is not necessary
a priori. This will be discussed in more detail in section III.

The difference from existing approaches for coded random
access is that the proposed protocol combines decoding of
the data in the uplink with estimation of the channel, which
can be used for downlink transmission. Moreover, the massive
MIMO property of a stable norm makes it possible to apply the
protocol in fading channels, which is not possible with existing
approaches to coded random access. Overall, the solution
proposed in this paper is a radical departure from the usual
treatment of the pilot contamination problem and introduces
an important link to the area of random access protocols.

II. SYSTEM MODEL

In this work we denote scalars in lower case, vectors in
bold lower case and matrices in bold upper case. A superscript
“T ” denotes the transpose and a superscript “H” denotes the
conjugate transpose.

We consider a random access system consisting of a single
base station withM antennas andK users with a single
antenna, whereM andK are in the hundreds or thousands.
see Fig. 1. Communication is performed on a time slotted
basis, where each time slot consists of four phases; an uplink
pilot phase, an uplink data phase, a downlink pilot phase anda
downlink data phase, see Fig. 2. The channel between thek’th
user and the base station in then’th time slot is denotedhhhnk =
[hnk(1) hnk(2) . . . hnk(M)]

T , wherehnk(i) ∼ CN (0, 1) ∀ i.
It is assumed thathhhnk ∀ k are mutually orthogonal, which
is justified by the range ofM . Moreover, it is assumed that
channel coefficients in different time slots are i.i.d, while the
channel power,hhhHnkhhhnk = ||hhhnk||2 remains constant within a
period ofβ time slots. Note that the channel power varies due
to path loss and shadowing effects, which causes it to vary
much slower than the channel coefficients.

In each time slot, each user is active with probability
pa. If a user is active, a random pilot sequence,sssk =

Pilot Uplink Downlink Pilot Uplink Downlink

ts

Time slot 1 Time slot 2

Pilot Pilot

Fig. 2. An example of a transmission schedule.
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Fig. 3. An example of a pilot schedule.

[sk(1) sk(2) . . . sk(τ)]
T , is chosen among a set of sizeτ with

mutually orthogonal pilot sequences. Note that multiple users
may choose the same pilot sequence. See Fig. 3 for an example
of a random pilot schedule withτ = 2 andK = 3. By An, we
denote all active users in time slotn and byAj

n, we denote the
set of users applyingsssj in then’th time slot. If YYY pu

n denotes
the uplink pilot signal received in time slotn, we have

YYY pu
n =

τ
∑

j=1

∑

k∈A
j
n

hhhnksss
T
j +ZZZpu

nj , (1)

whereZZZpu
nj is a matrix of i.i.d. Gaussian noise components,

henceZZZpu
nj(i, j) ∼ CN (0, σ2

n) ∀ i, j. Any future instances of
a vectorzzz or matrix ZZZ, with different sub- or superscripts
follow the same definition. All active users transmit a message
of lengthL in the uplink data phase. The message from the
k’th user is denotedxxxuk = [xuk(1) x

u
k(2) . . . x

u
k(L)]

T . Denoting
the received uplink signal in time slotn asYYY u

n, we then have

YYY u
n =

∑

k∈An

hhhnkxxx
u
k
T +ZZZu

n. (2)

In the downlink phase we rely on channel reciprocity, such that
the uplink channel estimate is assumed to be a valid estimateof
the downlink channel. The base station transmits a precoded
downlink pilot sequence, such that thek’th user receives a
downlink pilot signal,yyypdnk, given by

yyypdnk = hhhTnkwwwnksss
T
j + zzzpdnk, (3)

where wwwnk = [wnk(1) wnk(2) . . . wnk(M)]T is the pre-
coding vector for userk in the n’th time slot. The base
station is able to schedule the downlink messages,xxxdk =
[

xdk(1) x
d
k(2) . . . x

d
k(L)

]T
, such that the received signal in the

downlink data phase is

yyydnk = hhhTnkwwwnkxxx
d
k

T
+ zzzdnk. (4)



III. P ILOT ACCESSPROTOCOL

This section describes the proposed method of communi-
cation in the system described in section II. The main focus
of this work is the uplink phase, however, a subsection is
dedicated to describing the operation in the downlink phase.

A. Uplink

From the uplink pilot signals in (1), it is possible to estimate
the channels between the users and the base station. However,
since multiple users may apply the same pilot sequence, it is
only possible to estimate a sum of the involved channels. The
least squares estimate,φφφnj , based on the pilot signal in time
slot n from users applyingsssj is found as

φφφnj = ((sssHj sssj)
−1sssHj YYY

pu
n

T )T

=
∑

k∈A
j
n

hhhnk + zzzpu
′

nj . (5)

wherezzzpu
′

nj is the impairment of the estimate caused by the
noise,zzzpunj . Any future instances of a vectorzzz with a prime
follow the same definition.

The problem of interfering users applying the same, or a
non-orthogonal, pilot sequence is often calledpilot contami-
nation. If we proceed to detect the data in the uplink phase
using a contaminated channel estimate, the result will be a
summation of data messages. Ifψψψnj is the data estimate based
on the channel estimateφφφnj , we have

ψψψnj = ((φφφH
njφφφnj)

−1φφφHnjYYY
u
n)

T

=
∑

k∈A
j
n

||hhhnk||2
||hhhnj ||2

xxxuk + zzzu
′

n . (6)

Hence, a pilot collision leads to a data collision. In our system,
one way to deal with this problem is to carefully selectpa,
such that the probability of having one and only one user
applying a particular pilot sequence in a particular time slot
is maximized. Hence, we have

maximize
pa

Pr(
∣

∣Aj
n

∣

∣ = 1)

subject to 0 ≤ pa ≤ 1 (7)

This will maximize the number of non-contaminated channel
estimates, and in turn maximize the number of successful
data transmissions. This approach is reminiscent of the framed
slotted ALOHA protocol for conventional random access. We
consider this a reference scheme in this work and refer to
it as ALOHA. Note that a random access, i.e. nonscheduled,
scheme must be considered as a reference, due to the assump-
tion of a crowded scenario, where scheduling is infeasible.

ALOHA has been state-of-the-art for many years within ran-
dom access protocols, but recently a paradigm shift has started
with the advent of coded random access [8, 9]. In this work, we
view the problem of pilot contamination as a random access
problem and apply newly developed tools in this area to solve
the problem. Two features from the massive MIMO scenario
are essential to our solution; near-orthogonality betweenuser

channels and near-stability of channel powers. Through signal
processing techniques they allow us to resolve pilot collisions
and thereby utilize otherwise wasted resources. The solution
can be viewed as a two-stage processing approach:

1) Matched filter: The received uplink pilot and data
signals, in (1) and (2), are processed using matched
filters, which are constructed from the contaminated
estimates in (5). More specifically, we multiply the re-
ceived signals withφφφH

nj creating filtered signals, denoted
fffnj and gggnj for data and pilots respectively. These
signals contain linear combinations of the data and pilots
transmitted by the users contributing to the contaminated
estimate,φφφnj , see (8) and (9). The relationship between
the variables we wish to estimate and the filtered signals
can be viewed as a factor graph, see Fig. 4 and Fig. 5.

2) Successive interference cancellation (SIC):The coef-
ficients of the linear combinations in (8) and (9) are the
two-norms,||hhhnk||2, of the involved channels. In a mas-
sive MIMO system, these can be assumed slowly fading,
contrary to the fast fading channel coefficients. Hence,
successive interference cancellation can be applied on
the filtered signals in order to reduce the linear combina-
tions to data signals from individual users. This requires
knowledge about the edges in the code graphs, i.e. what
pilots have been applied by the individual users and in
which time slots. This information is not available a
priori at the base station. However, it can be embedded in
the uplink data messages, such that when a data message
has been recovered, the base station is informed about
the pilot pattern chosen by the user. In practice, this
could be realized by embedding the seed for a pseudo
random number generator. Note, that graph knowledge
is not necessary to initiate SIC, since a data message
can be recovered immediately when one and only one
user chose a particular pilot in a particular time slot. This
provides the necessary graph information to proceed SIC
using belief propagation. The overhead resulting from
embedding graph information is considered negligible.

fffnj = (φφφH
njYYY

u
n)

T

=
∑

k∈A
j
n

||hhhnk||2xxxuk + zzzu
′

n (8)

gggnj = (φφφH
njYYY

pu
n )T

=
∑

k∈A
j
n

||hhhnk||2sssj + zzzpu
′

nj (9)

The purpose of the matched filters is to transform the received
signals from linear combinations with fast fading coefficients
(the channel coefficients) into linear combinations with slowly
fading coefficients (the norms). Note that the signals only
remain linear combinations, when the channels are orthogonal,
and that the coefficients are slowly fading only when the norms
are stable. Both are fulfilled under the conditions given by a
massive MIMO scenario. We can thus see the filtered signals,
fffnj and gggnj ∀ j and n = 1, 2, ..., β, as a code on which
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iterative belief propagation can be performed. See Fig. 6 for a
graph showing the inter-dependencies betweenfffnj andgggnj .

Example: Consider the simple example already introduced
in Fig. 3. We assumeβ = 2, such that the resulting graphs
after matched filtering are found in Fig. 4 and Fig. 5. Note,
that since the norms are assumed constant, we can omit the
time index, such that||hhhk||2 = ||hhhnk||2 ∀ n. We then have

fff11 = ||hhh1||2xxxu1 + ||hhh2||2xxxu2 + zzzu
′

11,

fff12 = ||hhh3||2xxxu3 + zzzu
′

12,

fff21 = ||hhh2||2xxxu2 + zzzu
′

21,

fff22 = ||hhh1||2xxxu1 + ||hhh3||2xxxu3 + zzzu
′

22,

ggg11 = ||hhh1||2sss1 + ||hhh2||2sss1 + zzzpu
′

11 ,

ggg12 = ||hhh3||2sss2 + zzzpu
′

12 ,

ggg21 = ||hhh2||2sss1 + zzzpu
′

21
,

ggg22 = ||hhh1||2sss2 + ||hhh3||2sss2 + zzzpu
′

22 . (10)
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Fig. 6. A graph representation of data and pilot collisions.

We introduce the variableccc which accounts for accumulated
noise components and estimation errors. Note, that the mag-
nitude of the elements inccc increases as processing progresses.
This will be discussed in further detail in section IV.

Initially, we isolate the contribution from user1, giving us

||hhh1||2xxxu1 + ccc = fff11 − fff21. (11)

Since the applied pilot sequence is known a priori by the base
station, we can find the norm as

||hhh1||2 + ccc = (sssH1 sss1)
−1sssH1 (ggg11 − ggg21). (12)

Finally, the estimate of the message from user1, x̂xxu1 , is

x̂xxu1 = ((sssH1 sss1)
−1sssH1 (ggg11 − ggg21))

−1(fff11 − fff21). (13)

Similar operations can be performed for findingx̂xxu2 andx̂xxu3 .

B. Downlink

In downlink we assume channel reciprocity, such that the
user does not need to estimate each coefficient ofhhhnk, which
would require a pilot signal for allM antennas. Instead, we
let the receiver estimate the concatenated “channel” consisting
of both the downlink precoder,wwwnk, and the actual channel.
Denoting the concatenated channel,qnk, we have

qnk = hhhTnkwwwnk, (14)

whereqnk is estimated through (3).
In order to choose an appropriate precoder, the base station

must have an estimate of the current channel. The coded
operation applied in uplink does not guarantee that such an
estimate is available. Uplink operation relies on SIC based
only on knowledge of the norm. Hence, downlink transmission
to a user is only possible if that user avoided collision during
the previous uplink pilot phase, such that an uncontaminated
channel estimate is available. This incurs a delay in downlink
transmissions, whose magnitude is analyzed in section III-C.

C. Analysis

The performances of the reference scheme and the proposed
scheme are tightly connected with the factor node degree
distribution of the code graph. Here a factor degree, denoted as
dnj , refers to the number of users occupying the same resource



block, i.e. applies thej’th pilot sequence in then’th time slot.
A user is active and applying pilot sequencej with probability
pa/τ , such that the degree probability distribution is

Pr(dnj = d) =

(

K

d

)

(pa
τ

)d (

1− pa
τ

)K−d

. (15)

For the ALOHA scheme, we found that the optimal perfor-
mance is achieved when the probability of havingdnj = 1 is
maximized. DifferentiatingPr(dnj = 1) with respect topa
and finding the roots satisfying our conditions, we get that
pa = τ

K
maximizes the performance of the ALOHA scheme.

We can not use the same approach for optimizing the
proposed scheme, since resource blocks withdnj > 1 may
be useful. Instead we must seek a well performing degree dis-
tribution which favors the iterative belief propagation. Several
works have studied this, e.g. in [10, 11], however, in this work
we can not freely tailor the degree distribution. We are limited
to the binomial distribution as expressed in (15), with only
the freedom to choose a properpa. Similar limitations were
considered in [9] with focus on choosing an average degree,
d̄, which was optimized numerically. In our context, we have

d̄ =
paK

τ
. (16)

A numerical optimization ofd̄ and thereby in turnpa for a
specific pair ofK andτ will be performed in section IV.

As described in section III-B, downlink transmissions expe-
rience a delay due to lack of channel knowledge. We denote
the delay for userk, ∆k. This delay is equal to the number of
time slots until userk is active and avoids a collision during
the uplink pilot phase. Denoting the probability of a user being
active and avoiding collision,p∗a, we have

p∗a = pa

(

1− pa
τ

)K−1

. (17)

The probability distribution of∆k follows the negative bino-
mial and is therefore given by

Pr(∆k = δ) = p∗a(1 − p∗a)
δ−1. (18)

The expected value,E[∆k], of the delay is then found as

E[∆k] =
(1 − p∗a)

p∗a
. (19)

There is a natural tradeoff between optimizingpa for high
uplink throughput and optimizing it for limiting the delay in
the downlink phase. Such a joint optimization is outside the
scope of this work. In the numerical evaluations in section IV,
we will solely be concerned with the uplink throughput.

IV. N UMERICAL RESULTS

The proposed scheme is simulated and compared to framed
slotted ALOHA in terms of uplink throughput and block
error rate. Framed slotted ALOHA does not utilize SIC, but
optimizes performance through a maximization of degree one
nodes in the code graph, see (7). The proposed scheme is based
on an assumption that the channel coefficients in different time
slots are i.i.d, while their two-norms remain constant within

a period ofβ time slots. In the numerical evaluations, we
will challenge these assumptions by simulating with fading
channels. A rich scattering environment is assumed, such that
hnk(m) can be modeled using Clarke’s model [12], hence

hnk(m) =
1√
Ns

Ns
∑

i=1

ej2πfdnts cosαi+φi , (20)

whereNs is the number of scatterers,fd is the maximum
Doppler shift,αi and φi is the angle of arrival and initial
phase, respectively, of the wave from thei’th scatterer. Both
αi andφi are i.i.d. in the interval[−π, π) andfd = v

c
fc, where

v is the speed of the user,c is the speed of light andfc is the
carrier frequency. An overview of the simulation parameters
is given in Table I. Note thatβ = 1.2K/τ is chosen in order
to ensure a 20% surplus of resource blocks relative toK,
such that the iterative belief propagation performs well. All
simulation results are averages over10, 000 iterations.

Initially, in Fig. 7 we present results for the normalized
throughput of the proposed scheme as a function of the average
degree of a resource block, which is directly related to the
activation probability, as seen in (16). We define normalized
throughput as the total number of successfully decoded mes-
sages divided byβτ , i.e. the total amount of resource blocks. It
is evident that an average degree of approximately2.5 should
be aimed for in the considered range ofK, which is confirmed
by the results from [9]. All other simulations are performed
using an average degree of2.5 regardless ofK. Note that
improved performance could be achieved by optimizing the
activation probability to a particular value ofK.

Fig. 8 shows normalized goodput, i.e. throughput with
erroneous messages discarded, as a function of the number
of users accessing the base station. The proposed scheme
clearly outperforms the conventional method of framed slotted
ALOHA. The improvement increases withK, since the pro-
posed scheme benefits from a larger number of messages to
code across. An increase inK can be viewed as an increase
in the block length, which improves coding efficiency.

The coding gain comes at the price of an increased error
rate. As mentioned in section III, whenever SIC is performed,
noise and estimation errors are accumulated, which may lead
to errors. At higherK, it is more common to see high degrees
in the code graph, even if the average degree remains constant.
Moreover, SIC is performed across a larger time span, which
leads to larger errors in the norm estimation. As a result, we
experience an increased error rate for increasingK, which
is illustrated in Fig. 9. It also shows that the error rate drops
significantly, as the number of base station antennas increases.
The reason is that the norm stabilizes for increasingM ,
making the assumption of a constant norm increasingly valid.

V. CONCLUSIONS

We presented a solution for the pilot contamination prob-
lem in crowded scenarios, where users within a single cell
must share a small set of pilot sequences. We view intra-
cell pilot contamination as a random access problem and



TABLE I
SIMULATION PARAMETERS

Parameter Value Description

fc 1.8 GHz Carrier frequency

v 3 km/h User mobility

Ns 20 Number of scatterers

σ2
n

0.1 Relative noise power

τ 5 bits Length and number of pilot sequences

ts 0.01 s Length of a time slot

L 1000 bits Length of uplink data messages

β 1.2K/τ Number of time slots

2 2.2 2.4 2.6 2.8 3
0.45

0.5

0.55

0.6

0.65

0.7
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0.8
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Fig. 7. Throughput as a function of the average degree of a resource block.

draw on newly developed ideas from this area of research.
The massive MIMO setting provides two essential properties;
near-orthogonality between user channels and near-stability
of channel powers. These properties allow us to view a set
of contaminated pilot signals as a graph code on which
iterative belief propagation can be performed. The proposed
solution proves highly efficient, comfortably outperforming
the conventional ALOHA approach to random access. The
price to pay is an increased error rate, due to accumulation of
estimation errors in the belief propagation algorithm. However,
this downside is shown to significantly diminish as the number
of base station antennas increases.
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