
ar
X

iv
:1

40
7.

45
15

v2
  [

cs
.IT

]  
25

 S
ep

 2
01

4
1

Oscillator Phase Noise and Small-Scale Channel Fading

in Higher Frequency Bands

M. Reza Khanzadi†,*, Rajet Krishnan* , Dan Kuylenstierna†, and Thomas Eriksson*

†Department of Microtechnology and Nanoscience, Microwave Electronics Laboratory

*Department of Signals and Systems, Communication Systems Group
Chalmers University of Technology, Gothenburg, Sweden
{khanzadi, rajet, dan.kuylenstierna, thomase}@chalmers.se

Abstract—This paper investigates the effect of oscillator phase
noise and channel variations due to fading on the performance of
communication systems at frequency bands higher than10GHz.
Phase noise and channel models are reviewed and technology-
dependent bounds on the phase noise quality of radio oscil-
lators are presented. Our study shows that, in general, both
channel variations and phase noise can have severe effects on
the system performance at high frequencies. Importantly, their
relative severity depends on the application scenario and system
parameters such as center frequency and bandwidth. Channel
variations are seen to be more severe than phase noise when the
relative velocity between the transmitter and receiver is high. On
the other hand, performance degradation due to phase noise can
be more severe when the center frequency is increased and the
bandwidth is kept a constant, or when oscillators based on low
power CMOS technology are used, as opposed to high power
GaN HEMT based oscillators.

I. I NTRODUCTION

Scarcity of the microwave band motivates the need to move
to higher frequency bands (greater than10GHz) that enables
access to several GHz of vacant spectrum [1]. However, this
transition to higher frequency bands presents new challenges,
with channel variations and phase noise being identified as
some of the most critical [1].

It is known that both channel variations due to mobility
and phase noise in radio frequency oscillators increases with
frequency [2], [1]. Furthermore, both channel variations and
the phase noise manifest as a multiplicative form of noise, in
that, they multiply with the transmitted signal of interest[3].
Hence, when both channel variations and phase noise are
present in a practical system, it is interesting to know which
noise is more dominant in terms of its impact on the system
performance. This knowledge is also useful for designing
receiver algorithms, where a pertinent question is whether
one needs to design separate or joint channel-phase noise
compensation algorithms.

The goal of this paper is to study the effects of oscillator
phase noise and small-scale channel variations due to mobility
on the performance of communication systems when operating
in higher frequency bands, e.g., above10GHz. It is also
of interest to see how these effects change with frequency.
In particular it is investigated how oscillators in different
technologies will be affected. First, we present a technology
dependent lower bound that quantifies the quality of practical
oscillators. This bound can be used to predict the phase noise

process statistics in higher frequency bands. Then we analyze
the effect of channel variations and phase noise on the signal-
to-noise ratio (SNR) of a system. Specifically, we study two
scenarios – in the first scenario, the received signal is only
affected by oscillator phase noise, and the channel is assumed
to be known perfectly. In the second scenario, the received
signal is considered to be affected only by the time-varying
channel due to fading and phase noise is absent. For both
scenarios, the received signal is assumed to be compensatedby
estimators that achieve the minimum mean square error. Then
the impact of the residual error due to channel variations and
phase noise on the SNR is analyzed separately. To this end, we
derive the Modified Bayesian Crámer Rao Bound (MBCRB)
for the channel and phase noise estimators that are assumed
to be used at the receiver.

Finally, we present extensive simulation results that analyze
the effects of relative velocity, oscillator quality, operating cen-
ter frequency and the bandwidth on the system performance.
Based on our analysis, we conclude that channel variations due
to fading and phase noise can have severe effects on the system
performance at high frequencies, and their relative severity
depends on the application scenario and system parameters
like center frequency and bandwidth. Channel variations are
seen to be more severe than phase noise when the relative
velocity between the transmitter and receiver is high, and when
the center frequency is increased along with the bandwidth of
the system. On the other hand, performance degradation due
to phase noise can be more severe when the center frequency
is increased and the bandwidth is kept a constant. The severity
of phase noise is also seen to depend heavily on the design
technology of the oscillators – when oscillators based on high
power GaN HEMT based oscillators are used, phase noise is
less of a problem compared to channel fading while for low
power CMOS based oscillators phase noise may be an issue
for high frequency communication systems.

Notations: Italic letters (x) are scalar variables, boldface letters(x) are
vectors, uppercase boldface letters(X) are matrices,([X]a,b) denotes the
(a, b)th entry of matrixX, E [·] denotes the statistical expectation operation,
N (x;µ, σ2) andCN (x;µ, σ2) denote the real and complex Gaussian distri-
bution with variablex, meanµ, and varianceσ2, respectively;log(·) denotes
the natural logarithm, and(·)∗ and(·)T denote the conjugate and transpose,
respectively.
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II. SYSTEM MODEL

Consider the transmission of a block ofK data symbols over
a time-variant Rayleigh fading channel, affected by random
oscillator phase noise. In the case of perfect timing and
frequency synchronization, the received signal after sampling
the output of the matched filter at Nyquist rate can be written
as [4]

yk = eθkhksk + wk, k ∈ {1, . . . ,K}, (1)

whereθk represents the phase noise affecting thekth received
signal due to noisy transmit and receive local oscillators.
Furthermore,hk represents the complex channel coefficient
at time instantk, and wk is a realization of a zero-mean
complex circularly symmetric additive white Gaussian noise
(AWGN) with varianceσ2

w. We denote the transmitted and
received symbol sequences asy = {yk}Kk=1 ands = {sk}Kk=1,
respectively.

In the sequel, we first present a detailed background on the
Wiener phase noise model forθk, and the Clarke’s model for
hk.

A. Oscillator Phase Noise

Consider the case where the channel coefficienthk is
perfectly known and compensated at the receiver. Assuming
that |hk| = 1, the system model (1) can be rewritten as

yk = eθksk + wk, k ∈ {1, . . . ,K}. (2)

The phase noise samples are modeled as a discrete Wiener
process,

θk = θk−1 + ζk−1, (3)

where the phase noise innovation processζk is a white zero-
mean Gaussian random process, i.e.,ζk ∼ N (0, σ2

ζ ) [5].2

This discrete process corresponds to the sampled version of
the continuous time Wiener process, which is the result of
the sum of the phase noise processes at the transmit and
receive oscillators. The samples are obtained at Nyquist rate
in everyTs seconds, whereTs is the symbol interval. Spectral
measurements such as the single-side band (SSB) phase noise
spectrum are the common figures for characterizing oscillators.
The SSB phase noise spectrum is defined as the normalized
power of the oscillator at offset frequencies from the carrier
and it is reported indBc/Hz. For Wiener phase noise, the SSB
spectrum has a Lorentzian shape [6]

L(f) =
κ

(κπ)2 + f2
, (4)

wheref is the offset frequency (see Fig. 1). This spectrum
is fully characterized by a single parameter; the3dB single-
sided bandwidth,f3dB = κπ [8, Sec. V], which corresponds
to the frequency at which the noise power drops to half of
the maximum noise level. The connection between the con-
tinuous phase noise process and its discrete sampled version
is captured byσ2

ζ , which is given as

σ2
ζ =

4πf3dB
BW

, (5)

2For discussions on the limitations of this model see [6], [7]and references
therein.

PSfrag replacements
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κ
(f3dB)2

log10(f)f3dB

Fig. 1: The SSB spectrum of the oscillator in case of the Wiener phase noise.
Here,f denotes the offset frequency from the carrier, andf3dB = κπ.

whereBW = 1/Ts denotes the system bandwidth.

B. Channel Fading

In absence of oscillator phase noise, the input-output rela-
tion (1) is rewritten as

yk = hksk + wk, k ∈ {1, . . . ,K}. (6)

We consider a Rayleigh fading channel, which is an appropri-
ate non-line-of-sight propagation model when there are many
scattering objects in the environment. Based on Clarke’s model
[2], the channel coefficientshk are modeled as zero-mean
complex Gaussian random variables, i.e.,hk ∼ CN (0, σ2

h).
Without loss of generality, we normalize the channel power
by settingσ2

h = 1. Upon splittinghk into its realh(r)
k and

imaginaryh(i)
k components, we obtain [2]

hk = h
(r)
k + h

(i)
k (7)

h
(r)
k ∼ N (0,

1

2
), h

(i)
k ∼ N (0,

1

2
) (8)

Rh(r)h(i)(ℓ) = Rh(i)h(r)(ℓ) = 0 (9)

Rh(r)h(r)(ℓ) = Rh(i)h(i)(ℓ) =
1

2
J0(

2πfD
BW

|ℓ|), (10)

where the functionRxy(ℓ) = E [x(k)y(k + ℓ)] in (9) and
(10) represents the correlation function between the random
variablesx andy. In (10),J0 is the zero-order Bessel function
of the first kind, andfD is the maximum Doppler frequency,
given by

fD =
vf0
c

(11)

wherev is the relative speed between the transmitted and the
receiver,f0 is the center frequency of the radio frequency
signal, andc = 3× 108 [m/s] is the speed of light. Note that
the Doppler frequency scales linearly withf0.

In the next section we employ the models provided in (2)
and (6) to evaluate the effect of phase noise and channel fading
on the the performance of the system, where the performance
metric considered is the SNR of the received signal.

III. E FFECT OFPARAMETER ESTIMATION ERRORS ON THE

SNR

In this section, we investigate the effect of phase noise
and channel fading on the SNR at the receiver. As stated
before, two scenarios are considered – in the first scenario,
an estimator is employed by the receiver to track the random
time varying phase noise process. In the second scenario, an
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estimator is used to track the time varying channel fading
process. For both the scenarios considered, the estimate of
the parameter of interest is used to compensate its effect on
the system performance. However, residual estimation errors
remain, which influence the system performance. The SNR
derived in this section corresponds to the SNR of the received
signal after its compensation at the receiver.

A. Oscillator Phase Noise

Consider the system model in (2), and assume that the
receiver employs a phase noise estimator that tracks the
discrete phase noise process in (3). Specifically, this estimator
tracksθk in each time instant, and let̂θk be the estimate of
θk in the kth time instant. In order to compensate the effect
of phase noise on the received signal, it is rotated by−θ̂k at
the receiver,

e−θ̂ky = eǫksk + e−θ̂kwk, (12)

whereǫk = θk− θ̂k denotes the estimation error, ande−θ̂kwk

has the same statistics aswk. We model ǫk as a zero-
mean Gaussian random variable, i.e.,ǫk ∼ N (0, σ2

ǫ,k) for
k = 1, . . . ,K [5], whereσ2

ǫ,k indicates that the phase noise
estimation variance depends on (position) index of the received
signal in the block. Next we rewrite (12) as

e−θ̂ky = sk + (eǫk − 1)sk + e−θ̂kwk, (13)

where(eǫk − 1)sk represents additive noise term due to the
residual phase noise estimation error. We now use (13) to
obtain the SNR at time instantk, which is written as the ratio
of the desired signal power to the signal power due to AWGN
and phase estimation error,

SNR
PN
k =

E
[
|sk|2

]

E [2(1− cos(ǫk))|sk|2] + E [|w′
k|

2]
(14)

=
Es

2Es(1 − e−
σ2
ǫ,k

2 ) + σ2
w

. (15)

B. Channel Fading

We now analyze the effect of channel estimation errors on
the SNR at the receiver. We consider a channel estimator at the
receiver that provides an estimate of the instantaneous channel
coefficienthk, denoted aŝhk. The channel estimate is modeled
as

ĥk = hk + εk (16)

where εk ∼ CN (0, σ2
ε,k). In order to compensate for the

effect of channel, we multiply the received signal (6) by the
conjugate of the channel estimate as

ĥ∗
kyk = ĥ∗

khksk + ĥ∗
kwk (17)

= (h∗
k + ε∗k)hksk + (h∗

k + ε∗k)wk (18)

= |hk|
2sk + ε∗khksk + (h∗

k + ε∗k)wk. (19)

In (18), we have substituted̂hk from (16). Using (18) the SNR
for kth symbol of the block is obtained as follows

SNR
CH
k =

E
[
|hk|

4|sk|
2
]

E [|εk|2|hk|2|sk|2] + E [(|hk|2 + |εk|2)|wk|2]
(20)

=
Es

σ2
ε,k(Es + σ2

w) + σ2
w

. (21)

As we observe from (14) and (21), the SNR after estimation
of phase noise and channel fading depends on the variance of
estimation errors. In the next section we provide lower bounds
on the estimation error variance for each scenario.

IV. L OWER BOUND ON ESTIMATION ERROR VARIANCE

In order to assess the estimation performance of a random
parameter, the Bayesian Cramér-Rao bound (BCRB) can be
utilized – this bound gives a tight lower bound on the mean
square error (MSE) of the estimator of interest [9]. Consider
a burst-transmission system, whereK symbols, denoted by
the vectors = [s1, . . . , , sK ]T, is transmitted in each burst.
According to the system model (2), a frame of signalsy is
received with the phase distorted by a vector of oscillator phase
noise denoted byθ = [θ1, . . . , θK ]T, with its prior probability
density function (pdf) denoted byf(θ). The BCRB satisfies
the following inequality for the MSE associated with a phase
noise estimator:

Ey,θ

[(

θ̂ − θ

)(

θ̂ − θ

)T
]

−B−1
PN � 0,

BPN = Eθ [F(θ)] + Eθ

[

−
∂2

∂θ2 log f(θ)

]

, (22)

where θ̂ denotes an estimator ofθ, BPN is the Bayesian
information matrix (BIM), and for a matrixZ, Z � 0 implies
thatZ is positive semi-definite. In (22),F(θ) is defined as

F(θ) = Es

[

Ey|θ,s

[

−
∂2

∂θ2 log f(y|θ, s)

]]

, (23)

and this is referred to as the modified Fisher information
matrix (FIM) [9]. Equivalently, the bound computed from (22)
is called the modified Bayesian Cramér-Rao bound (MBCRB).
The MBCRB is a tight lower bound for non-data-aided pa-
rameter estimation at moderate and high SNR [5]. Note that
in (22), the diagonal elements ofB−1

PN provide a lower bound
on the variance of the estimator for the elements inθ, i.e.,

σ2
ǫ,k ,E

[

(θk − θ̂k
︸ ︷︷ ︸

,ǫk

)2
]

≥
[
B−1

PN

]

k,k
. (24)

From (22)-(24), we observe that the estimation error vari-
ance is entirely determined byf(θ) and f(y|θ, s), which is
the conditional pdf of the received signaly given θ and s

(usually referred to as the likelihood ofθ).
For the phase noise model, where the phase noise inno-

vationsζk, for k ∈ {1, . . . ,K}, are correlated,BPN can be
found in [5, Eq. 22]. By adopting that result to the Wiener
phase noise model in (3), where the phase noise innovations
are uncorrelated, we obtain

BPN =
2Es

σ2
w

I+C−1, (25)
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whereI is anK ×K identity matrix, and

[C]m,n = σ2
θ1

+ (min(m,n)− 1)σ2
ζ (26)

m,n ∈ {1 . . .K}.

Here in (26),σ2
θ1

denotes the phase noise variance associated
with the first received signal in the block, whereθ1 is
uniformly distributed over[0, 2π).

Assuming that the phase noise estimator used at the receiver
achieves an MSE performance close to the MBCRB and by
substituting (25) in (24), then (24) in (14), the SNR for
the received signal model in (2) after PN compensation is
determined as

SNR
PN
k =

Es

2Es

(
1− exp

(
−0.5[B−1

PN]k,k
))

+ σ2
w

. (27)

Next we obtain the MBCRB for the channel estimator.
First, we decompose the complex channel coefficient into
its real and imaginary components and then calculate the
MBCRB for the joint estimation of these components. We
denoteh̃T = [hT

r h
T
i ], wherehT

r = [h
(r)
1 , . . . , h

(r)
K ] andhT

i =

[h
(i)
1 , . . . , h

(i)
K ]. The BIM and the FIM are defined as

BCH = E
h̃

[

F(h̃)
]

+ E
h̃

[

−
∂2

∂h̃2
log f(h̃)

]

(28)

F(h̃) = Es

[

E
y|h̃,s

[

−
∂2

∂h̃2
log f(y|h̃, s)

]]

. (29)

Now, it remains to determine the likelihood function,
f(y|h̃, s), and the a prior distribution of̃h, denoted byf(h̃).

Given thatwk, k ∈ {1, . . . ,K}, are i.i.d. random variables,
andyk only depends onh(r)

k , h(i)
k andsk according to (6), the

likelihood function is written as

f(y|h̃, s) =
K∏

k=1

f(yk|h̃, s) =
K∏

k=1

f(yk|h
(r)
k , h

(i)
k , sk), (30)

where

f(yk|h
(r)
k , h

(i)
k , sk) =

1

σ2
wπ

exp

(

−
|yk − sk(h

(r)
k + h

(i)
k )|2

σ2
w

)

. (31)

By substituting (30) in (29), it is straightforward to show that

F(h̃) =
2Es

σ2
w

I(2K×2K). (32)

In order to find the prior distributionf(h̃), we use that
the real and imaginary components of the channel are i.i.d.
Gaussian random variables. By using (8)-(10), we obtain that
f(h̃) = N (h̃;0,Σ) where

Σ =

[

R 0

0 R

]

(2K×2K)

(33)

[R]m,n =
1

2
J0(

2πfD
BW

|m− n|), m, n ∈ {1 . . .K}. (34)

TABLE I: Oscillator Design Parameters

Technology Vc/d Ic/d [mA] Q0 References

Si CMOS 1 5 15 [10], [11]
SiGe HBT 2 30 15 [11], [12]
InGaP HBT 5 25 40 [13], [14]
GaN HEMT 20 40 40 [14], [15]
GaAs HEMT 4 25 40 [14], [16], [17]

By settingf(h̃) andF(h̃) in (28), followed by straightforward
simplifications, we obtain

BCH =
2Es

σ2
w

[

I 0

0 I

]

+Σ−1. (35)

The estimation error variance ofhk can be found as the sum
of the error variances associated withhr andhi,

σ2
ε,k ≥

[
B−1

CH

]

k,k
+
[
B−1

CH

]

k+K,k+K
= 2

[
B−1

CH

]

k,k
, (36)

where the equality in (36) is becauseB in (35) is symmetric.
Finally, by assuming that the channel estimator used at the
receiver attains the MBCRB, and by substituting (36) in (21),
we obtain

SNR
CH
k =

Es

2
[
B−1

CH

]

k,k
(Es + σ2

w) + σ2
w

. (37)

V. RESULTS AND DISCUSSIONS

We start by providing realistic lower bounds on the innova-
tion variance for the Wiener phase noise model. By using (5)
andf3dB = κπ, and employing the lower bounds onκ given
in [18, Eq. 5] and [19, Eq. 28], we obtain

σ2
ζ ≥

π2 × 19.496× 10−21

IdVdQ2
0

f2
0

BW
. (38)

wheref0 is the operating center frequency of the oscillator,
Q0 is the unloaded quality factor of the resonator inside the
oscillator, andId andVd denote the operating collector/drain
current and safe operating voltage of the transistor insidethe
oscillator, respectively.3 The safe operating voltage is normally
about1/3 of the device breakdown voltageVB. Typical values
of Q0, Ic and VB depend on the design technology of the
oscillators. Tab. I provides these parameters for the various
design technologies. As observed from (38), the phase noise
innovation variance grows quadratically with the operating
center frequencyf0 and decreases linearly withBW . In Fig. 2
we compare the lower bound (38) for Si CMOS [20] and GaN
HEMT [21] technologies against different values off0. We
consider two cases; in the first case a fixed bandwidth is used,
BW = 1MHz. In the second case we linearly increase the
bandwidth withf0. Specifically, we setBW = 0.001f0. We
observe that for both the technologies and in the fixed band-
width case,σ2

ζ grows quadratically withf0 (20dB/dec). In the
second case,σ2

ζ scales almost linearly withf0 (10dB/dec).
Furthermore, GaN HEMT technology has a lowerσ2

ζ than
the Si CMOS technology for the scenarios considered. This
difference is due to the higher quality factor obtained in GaN
HEMT technology [11], [14] and the higher available power
[15].

3Note that notationsIc and Vc for simplicity refer also to drain current
and voltage.
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Fig. 2: Phase noise innovation varianceσ2

ζ for Si CMOS and GaN HEMT
technologies versus the center frequencyf0 of the oscillator.

Fig. 3 illustrates the SNR after phase noise compensation for
Si COM and GaN HEMT technologies. The SNR is calculated
by using (27), followed by an averaging operation over a block
of K = 100 symbols. For the Si CMOS technology, an SNR
loss of0.1dB and0.8dB can be seen forBW = 1MHz and
BW = 0.001f0, respectively, when increasingf0 from 1GHz
to 100GHz. However, the SNR is less affected for the GaN
HEMT technology.

Fig. 4 shows the SNR after channel fading compensation
for relative velocities ofv = 1Km/h andv = 50Km/h. The
SNR is calculated by using (37), followed by an averaging
operation over a block ofK = 100 symbols.4 WhenBW =
0.001f0, SNR stays constant for both relative velocities. This
is because the autocorrelation function of the channel (10)
stays constant. On the other hand, when the increasingf0 with
BW = 1MHz, SNR drops0.04dB and0.1dB for v = 1Km/h
and v = 50Km/h, respectively. From figs. 3 and 4, we can
clearly see that the degradation of the SNR due to phase noise
is more severe than that due to the channel, when BW is a
constant and an estimator that achieves MCRB is used at the
receiver. This is because the phase noise innovation variance
increases quadratically withf0. However, the degradation of
the SNR due to phase noise and the channel are seen to be
similar whenBW scales withf0.

The channel fading based on the Clarke’s model is a
bandlimited process with single-side bandwidth given byfD.
On the other hand, phase noise is not a bandlimited process – it
has infinite bandwidth. However, as mentioned before, we can
define a3dB bandwidth for the phase noise process. In Fig. 5
we compare the effect of phase noise and channel fading on
the SNR whenf3dB = fD. It can be seen that in this particular
comparison, phase noise affects the SNR more severely. We
can also observe that the gap between the SNRs achieved in
the scenarios considered dramatically grows upon increasing
f3dB andfD, while maintainingf3dB = fD. However, here it
is worth noting that thef3dB of most practical oscillators is
significantly smaller thanfD.

In Tab. II we compareSNRCH and SNR
PN for the

4Note thatΣ in (35) can be very close to a singular matrix that raises
matrix inversion problems. To avoid this a constant bias value as explained
in [22] is added to lag-zero of the channel’s autocorrelation function.
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IEEE 802.15.3c and IEEE 802.11b standards. In [20], for
the IEEE 802.15.3c standard a radio frequency oscillator with
CMOS technology is used withL(1MHz) = −95dBc/Hz
in (4). For the IEEE 802.11b standard, another CMOS-based
oscillator with L(1MHz) = −115dBc/Hz is employed in
[23]. For a relative velocity ofv = 0.5Km/h, the effects
of channel fading and phase noise are observed to be of
the same level, indicated by the identical SNRs achieved.
This comparison shows that upon using better oscillators or
when the relative velocity is slightly higher, channel fading
has a more prominent effect on the performance compared
to oscillator phase noise. Although the oscillator used in
IEEE 802.11b has a lower phase noise level, we observe that
SNR

PN achieved for both the standards are similar. This is
becausef0/BW in IEEE 802.11b is4.32 times higher than
that of IEEE 802.15.3c.

In Fig. 6 we use (14) and (21) to compare the SNR
degradation due to channel and phase noise estimation errors
when σ2

ǫ,k = σ2
ε,k. We observe that when the variance of

TABLE II

Standard f0[GHz] BW [GHz] SNR
CH[dB] SNR

PN[dB]

IEEE 802.15.3c [20] 60 2.16 19.956 19.951
IEEE 802.11b [23] 2.4 0.02 19.956 19.952
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the estimator increases, the SNR degradation due to channel
fading is more severe for arbitrary estimation error variance.
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