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Abstract—One of the main challenges of Machine-to-Machine
(M2M) communications is to extend the network lifetime by
either using energy efficient communication protocols or by
making use of energy harvesting techniques. In this paper, we
consider a wireless M2M network composed of a large group of
end-devices with energy harvesting capabilities that periodically
transmit data to a gateway. We have analyzed and evaluated the
probability of delivery, which measures the ability to transmit
data to the gateway, using the Dynamic Frame Slotted-ALOHA
(DFSA) protocol at the MAC layer. We have validated the
correctness of the analytical model by means of computer-based
simulations using MATLAB. Results show how the probability
of delivery is influenced by the energy harvesting rate, the
number of end-devices, the capacity of the energy storage devices
(e.g., batteries), and the minimum energy that an end-device
needs to transmit data. It has been possible to identify optimal
configuration regions to extend the lifetime of M2M networks.

Index Terms—Machine-to-Machine; energy harvesting; Dy-
namic Frame Slotted-ALOHA; Markov chain model; probability
of delivery.

I. INTRODUCTION

Machine-to-machine (M2M) networks enable the au-

tonomous communication between devices without human

intervention. M2M networks constitute a fundamental part

of the Internet of Things (IoT), which envisage to provide

benefits to individuals, society, and industries via a wide

variety of smart applications. One of the main characteristics

of wireless M2M networks is their dependency on batteries to

power-up the end-devices. In many situations, the maintenance

cost is high due to batteries replacement once the network

has been deployed as the number of end-devices is large

and they may be installed in awkward positions to handle.

Therefore, one of the challenges of M2M networks is to extend

the lifetime of end-devices. There are two main methods of

extending the lifetime of end-devices: (i) by minimizing the

energy consumption devoted to wireless communications, and

(ii) by using energy harvesting techniques that potentially

enable perpetual operation. Both approaches can be used in

combination. In this paper, we focus on the Medium Access

Control (MAC) layer, which manages the access of the end-

devices to the shared wireless communication channel, and

the integration of energy harvesting into its operation. From

the MAC point of view, scheduled solutions such as Time

Division Multiple Access (TDMA) could be optimal from the

energy perspective, since collisions can be totally avoided,

in contrast to random-access protocols where collisions and

random backoff periods can drain the battery of the end-

devices. Unfortunately, the high number of end-devices that

operate in M2M networks makes it difficult to create and

maintain a centralized schedule and, consequently, the design

of energy-efficient random access protocols is needed.

The inclusion of energy harvesting in the operation of

the MAC is a promising technique to extend the lifetime of

M2M networks based on wireless communications. Through

energy harvesting, end-devices can capture energy from the

environment and avoid the need to replace or recharge batteries

periodically [1] [2]. However, the inclusion of energy harvest-

ing opens new challenges in the design of MAC protocols for

M2M networks. For example, since the harvested energy is

not guaranteed continuously, end-devices might not operate

normally due to temporary energy shortages. These open

challenges have motivated different research activities. Several

research works use Markov chain models for wireless sensor

networks (WSN) with energy harvesting, e.g., [3], [4]. These

models are suitable for a single end-device, but do not consider

the more realistic scenario with more than one end-device

operating in the same network.

One of the first works related to the MAC layer with energy

harvesting was presented in [5], which studies the data queue

stability for Carrier Sense Multiple Access (CSMA). The work

in [6] evaluates the throughput and delay performance of the

Distributed Coordinated Function (DCF) of the IEEE 802.11

standard with energy harvesting. The work in [7] analyzes

the throughput in wireless networks with energy harvesting



using slotted-ALOHA. It presents a Markov chain model that

represents the energy available in a device assuming that data

packets are generated following a Poisson distribution and that

energy arrives in fixed amounts at random time instants.

Unfortunately, the operation of ALOHA, CSMA, and DCF

is not suitable for dense M2M networks. The access mech-

anisms based on random backoff periods and idle listening

(clear channel assessment) lead to congestion as the number

of contending end-devices increases. An alternative for such

networks are the Frame Slotted-ALOHA (FSA) and Dynamic

Frame Slotted-ALOHA (DFSA) protocols. The work in [8]

considers FSA to coordinate the transmission of data to a

gateway in M2M networks with energy harvesting. It proposes

an algorithm to estimate the harvestable energy and to predict

the optimum sleep period to ensure that the energy consumed

in each end-device is less than the harvested energy.

The works in [9] [10] analyze DFSA and FSA in data

collection networks with energy harvesting capabilities. They

propose a Markov chain to analyze the energy stored in a de-

vice and compute the probability of delivery. Results show that

the probability of delivery increases with the energy harvesting

rate. However, they do not evaluate how the probability of

delivery changes with the capacity of the energy storage device

(e.g., battery) and the minimum energy (or threshold) that a

device needs to transmit data. This is the main motivation for

the work presented in this paper, which aims to fill this gap

with the following contributions:

1) We use a Markov chain model to analyze DFSA in M2M

networks with energy harvesting for data collection.

2) We optimize the joint operation of the MAC protocol and

energy harvesting strategy to prolong the network lifetime.

3) We evaluate the probability of delivery over the energy

harvesting rate, the number of end-devices, the capacity of the

energy storage devices, and the energy threshold.

The remainder of this paper is organized as follows. In

Section II, the system model is described. In Section III,

we formulate the theoretical model to analyze the operation

of DFSA with energy harvesting. Section IV is devoted to

validate the model and discuss the performance evaluation.

Finally, Section V concludes the paper.

II. SYSTEM MODEL

We consider a single-hop wireless network formed by one

coordinator and n end-devices, each equipped with an energy

harvesting unit (EHU) and an energy storage device (ESD),

e.g., rechargeable battery or capacitor. The data communica-

tion flow and the MAC protocol operation are described in

subsection II.A, then followed by the energy consumption, the

energy storage, and the energy harvesting models.

A. Data Model and MAC Protocol Operation

Periodically, every TR seconds, the coordinator collects data

from the end-devices by initiating Data Collection Rounds

(DCR). The end-devices operate in power saving mode, and

wake-up periodically to maintain synchronization. This oper-

ation is exemplified in Figure 1. The coordinator broadcasts
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Figure 1: Illustration of data collection rounds considering

n = 3 end-devices.

a request for data (RFD) packet to initiate a DCR. Not all

the end-devices will participate in each DCR. Only those

end-devices whose energy level is above a predefined energy

threshold will enter into active mode upon the reception of a

RFD packet, and will try to transmit data to the coordinator.

The rest will remain in sleep mode and wait for the next DCR.

The active end-devices will contend for the channel using

the DFSA protocol to transmit exactly 1 data packet to the

coordinator in a DCR. According to this protocol operation,

time is divided into frames, which are further divided into

m slots where the end-devices transmit data. The active end-

devices select at random one of the slots to transmit data in

every frame. Each slot can be in three different states: (i)

success, i.e., one data packet has been received and properly

decoded by the coordinator; (ii) collision; no data packet can

be decoded; or (iii) empty, the channel has been sensed idle.

We assume that the coordinator is able to estimate the

number of end-devices that will contend in each frame [11]

of a DCR. Then, according to DFSA, the coordinator adjusts

the number of slots in every frame to be equal to the number

of contenders. A feedback packet (FBP) is transmitted by the

coordinator at the end of each frame to inform of: (i) the

number of slots of the next frame, and (ii) the slots of the

previous frame where a data packet has been successfully

received. When an end-device has transmitted its data packet

successfully, it enters into sleep mode until the next DCR

starts. Otherwise, it reattempts transmission in the next frame

as long as it has enough energy to do so. A DCR finishes when

all the end-devices successfully transmit their data packet or

go to sleep due to the lack of energy to remain active.

We assume that all packets are always transmitted without

errors due to the wireless channel and there is no capture

effect, i.e., a data packet cannot be decoded by the coordinator

if it collides with other packets. We also assume that the time

TC(k) of the contention process is shorter than the time TR

between the beginning of two consecutive DCRs.

In the example of Figure 1, end-devices 1 and 2 have enough

energy and they contend to transmit their data packet in the

k-th DCR, while end-device 3 is in energy shortage at the

beginning of the k-th DCR. In the (k+1)-th DCR, end-device

1 is in energy shortage, while end-devices 2 and 3 have enough

energy to contend.



B. Energy Consumption and Energy Storage Models

We normalize the energy consumed by the end-devices.

Therefore, we say that an end-device consumes one energy

unit per data packet transmitted in one frame (i.e., ETX = 1),

regardless of the result of the transmission (i.e., success or

collision), considering that this includes the energy used to

transmit the data packet and receive the FBP. We consider

that an end-device consumes 0 energy units in sleep mode.

The number of energy units stored in the ESD of an

end-device is denoted by EESD ∈ {0, 1, 2..., N}, where N
indicates the normalized capacity of the ESD. EESD can be

modeled with a random variable which depends on the energy

harvesting process and the energy consumption of the end-

devices. We consider that the energy consumption is only due

to radio operations.

An end-device enters in active mode at the beginning of the

k-th DCR if its energy level, denoted as EESD(k), is above

a certain energy threshold εth. Thus, the probability that an

end-device enters in active mode in steady-state conditions (or

probability of activation), denoted by p∞active, can be expressed

as

p∞active = lim
k→∞

Pr{EESD(k) > εth}. (1)

C. Energy Harvesting Model

The EHU captures an amount of energy from the envi-

ronment, denoted by EH(k), along the time TR of the k-

th DCR. The harvested energy EH(k) can be modelled as

a discrete random variable with a probability mass function

qj = Pr {EH(k) = j} with j ∈ {0, 1, 2, ...}, which depends

on the characteristics of the energy source. The energy har-

vesting rate, denoted by EH , is defined as the average energy

harvested by an end-device in a DCR,

EH = E[EH(k)]. (2)

We assume that the energy harvested during the contention

process TC of a DCR is negligible. We consider that the energy

harvested by an end-device during a DCR is independent over

end-devices and DCRs.

III. ENERGY MODEL OF AN END-DEVICE

The objective of this section is to present the markov chain

that models the evolution of the energy available in an ESD,

formulate the probability of success in a frame and the steady-

state probability distributions, and derive the probability of

delivery in a DCR.

A. Discrete Markov Chain Model

We use a two dimensional Markov chain to model the

energy available in the ESD of an end-device as shown in Fig-

ure 2. Each state of the chain is defined by {e(t), f(t)},where

e(t) ∈ {0, ...N} is a stochastic process which represents the

number of energy units stored in the ESD at time t, and

f(t) ∈ {0, ...N} is a stochastic process which represents the

number of frame in which an end-device contends. An end-

device is in sleep mode when f(t) = 0.
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Figure 2: State transition diagram of the Markov chain that

models the evolution of the energy available in an ESD.

Some transitions have been intentionally omitted for ease of

understanding.

The Markov chain is characterized by a transition matrix

P = [Pij ], where the one-step transition probabilities are

defined as

Pij = Pr{e(t+ 1) = ej , f(t+ 1) = fj |
e(t) = ei, f(t) = fi}. (3)

The operations of an end-device across DCRs are as follows.

When an end-device is not active in a DCR, it remains in

sleep mode waiting for the next DCR. When a DCR starts, the

amount of energy harvested during the previous TR is added.

Then, if the energy available in the ESD is above the energy

threshold εth, the state of the end-device changes from sleep

to active mode. See Figure 2 fromf(t) = 0 to f(t + 1) = 1.

Otherwise, if the energy available in the end-device is still

below or equal to the energy threshold when a DCR starts,

the end-device remains in sleep mode.

The transition probability from the states in sleep mode is

defined as

Pij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

qε, if(ei ≤ ej)and(ej ≤ εth)and(fj = 0)
qε, if(ei ≤ ej)and(εth < ej < N)and(fj = 1)

1−
N−1−ei∑

k=0

qk, if(ei < ej)and(ej = N)and(fj = 1)

0, otherwise,

where qε is the probability that an end-device captures ε =
(ej − ei) energy units. There are three different conditions in

the transition from any state in sleep mode: (i) the end-device

remains in sleep mode because it has not harvested energy,

(ii) the end-device harvests ε (with ej < N ) energy units, and

(iii) the end-device harvests an amount of energy equal to or

above the capacity of the ESD.



Once an end-device becomes active at the beginning of a

DCR, it will transmit its data packet in successive frames until

it either succeeds in transmitting its data packet, enters in

energy shortage, or both. The transition probability from any

state in active mode is defined as

Pij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ps, if(ei > 1)and(ej = ei − 1)and(fj = 0)
1− ps, if(ei > 1)and(ej = ei − 1)

and(fj = fi + 1)
1, if(ei = 1)and(ej = 0)and(fj = 0)
0, otherwise,

where ps is the probability that an end-device succeeds in

transmitting its data packet in a given frame, and 1−ps is the

probability that an end-device fails. There are three different

conditions in the transition from any state in active mode:

(i) if an end-device transmits its data packet successfully, it

will change from state (ei, fi) to (ei − 1, 0), (ii) if the end-

device does not succeed, it will change from state (ei, fi) to

(ei−1, fi+1), and (iii) if the energy level of the end-device is

1, it will change to (0,0), no matter whether the transmission

is successful or not.

B. Probability of Success in a Frame

The probability that an end-device succeeds in transmitting

its data packet in a given frame, assuming that there are neither

transmission errors nor capture effect, can be formulated as

ps = m

(
1

m

)(
1− 1

m

)nc−1

, (4)

where m is the number of slots in the frame, and nc is the

number of end-devices which contend in that frame. Since we

consider that the number m of slots in every frame is equal to

the number nc of contending end-devices, then

ps =

(
nc

k

)(
1

m

)k (
1− 1

m

)nc−k

for k = 1, (5)

which is the binomial distribution with k = 1. If nc is large,

i.e., nc > 20, the expression of ps can be approximated by

the Poisson distribution:

ps � λke−λ

k!
, (6)

being λ = nc/m and k = 1. Consequently, the probability

that an end-device succeeds in a frame is constant, ps � 1/e,

for all the frames of the contention process of DFSA.

C. Steady-State Probability Distributions

The Markov chain model admits a unique steady-state

probability distribution π = πe,f defined as

πe,f = lim
t→∞Pr{e(t) = e, f(t) = f}, (7)

which satisfies that (P ′ − I)π′ = 0, where P is the transition

matrix and I is the identity matrix. By calculating the eigen-

vector of P ′ that corresponds to an eigenvalue equal to 1, we

can solve the equation (P ′ − I)π′ = 0 and get π. Then, the

probability of activation p∞active can be formulated as

p∞active = πB
εth+1,1 + πB

εth+2,1 + · · ·+ πB
N,1 =

N∑
πB
e,1

e=εth+1

, (8)

where πB
e,f is the steady-state probability distribution condi-

tioned on being active at the beginning of a DCR, which can

be formulated as

πB = πSP, (9)

where πs is the steady-state probability distribution condi-

tioned on being in sleep mode, which is calculated from the

steady-state probability distribution as

πS
e,f =

⎧⎨
⎩

πe,0

N∑

i=0
πi,0

, if (f = 0)

0, if (1 ≤ f ≤ N) .
(10)

D. Probability of Delivery

The probability of delivery, denoted by p∞delivery , is defined

as the probability that an end-device becomes active and

succeeds in transmitting its data packet in a DCR in steady-

state conditions. Once the steady-state probability distribution

conditioned on being active at the beginning of a DCR (9)

is computed, we can formulate the expression to calculate

p∞delivery . Recall that an end-device that enters in active mode

at the begining of a DCR starts from one of the states (e, 1),
with e ∈ {εth+1, ..., N}, and then retransmits its data packet

in the next frames as long as the available energy stored

in ESD is enough. According to the steady-state probability

distribution at the beginning of a DCR, the expression of the

probability of delivery can be formulated as

p∞delivery =
N∑

e=εth+1
πB
e,1ps +

N∑
e=εth+2

πB
e,1(1− ps)ps+

· · ·+ πB
N,1(1− ps)

N−1ps.
(11)

which can be rewritten as

p∞delivery =
εthr∑
f=1

N∑
e=εthr+f

πB
e,1(1− ps)

f−1
ps+

N∑
f=εthr+1

N∑
e=f

πB
e,1(1− ps)

f−1
ps.

(12)

IV. MODEL VALIDATION AND PERFORMANCE

EVALUATION

In this section, we present and analyze the relationship

between the probability of delivery and the following system

parameters: (i) the energy harvesting rate; (ii) the total number

of end-devices; (iii) the energy threshold to determine whether

an end-device becomes active in a DCR; and (iv) the capacity

of the ESD. In addition, we have compared the analytical

results with the computer-based simulations using MATLAB

to validate the analytical model proposed in section III. The

simulation results of 500 samples have been averaged for

every test case. Results show that the analytical results are

tightly matched with the simulation results, thus validating

the correctness of the analytical model.
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Figure 3: Probability of delivery over the energy harvesting

rate.

We assume that the energy captured by an EHU follows a

binominal distribution with probability mass function

qj =

(
NH

j

)(
EH

NH

)j(
1− EH

NH

)NH−j

(13)

for j ∈ {0, 1, 2, ..., NH}, where NH = 10 is the maximum

number of energy units that can be harvested, and EH ∈
[0, 1, 2, ...NH ] is the energy harvesting rate.

A. Energy Harvesting Rate

Figure 3 shows the probability of delivery as a func-

tion of the energy harvesting rate EH (from 0.25 to 3

energy units). It has been evaluated by considering: n ∈
{100, 500, 1000}, εth = 1, and N = 10.

As it could be expected, the higher the energy harvesting

rate, the greater the amount of energy that can be used to

transmit data, and thus the greater the probability of delivery.

The higher the number of energy units stored in the ESD

between two consecutive DCRs, the greater the number of

retransmissions is allowed.

It is worth noting that according to the analytical model

presented in Section III, the probability of delivery is inde-

pendent of the number of end-devices in the network. This

can be corroborated with the simulation results shown in

Figure 3. This is due to the fact that the average number of

retransmissions of an end-device does not change with the

number n of end-devices. Note that the probability of success

in a given frame is constant for all the end-devices thanks to

the dynamic reconfiguration of the number of slots per frame

of DFSA.

B. Number of End-Devices

Figure 4 shows the probability of delivery as a function of

the number n of end-devices (from 100 to 1000). It has been

evaluated by considering: EH ∈ {0.5, 1, 1.5, 2, 2.5, 3}, εth =
1, and N = 10.
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Figure 4: Probability of delivery over the number of end-

devices.

As it can be observed in Figure 4, the result shows that

the probability of delivery remains almost constant and in-

dependent of the number of end-devices. With DFSA, the

number of slots in each frame is adjusted dynamically by the

coordinator based to the number of contending end-devices

in every frame, and thus the probability of collision among

end-devices remains approximately constant.

In addition, it is possible to see that the higher the energy

harvesting rate, the higher the probability of delivery. It can

be observed that when the energy harvesting rate is lower than

one energy unit, the probability of delivery is below 0.4.

C. Energy Threshold

Figure 5 shows the probability of delivery as a function of

the energy threshold εth (from 1 to 9 energy units), which

is bound to the probability of activation in each DCR. It

has been evaluated by considering: n ∈ {100, 1000}, EH ∈
{0.5, 1, 2, 3, 4, 5}, and N = 10.

The higher the energy harvesting rate, the more sensitive the

probability of delivery is with regard of the selected threshold.

On the contrary, the lower the energy harvesting rate, the less

sensitive the probability of delivery becomes with respect to

the threshold. The reason for this behavior lies in the fact

that the higher the threshold, the more retransmissions are

allowed per DCR since each end-device participates with more

remaining energy in the ESD. However, when the energy

threshold is too high, the average number of active end-

devices per DCR is lower, and thus the probability of delivery

decreases.

D. Capacity of the Energy Storage Device

Figure 6 shows the probability of delivery as a function of

the capacity N of the ESD (from 3 to 10 energy units). It

has been evaluated by considering: n ∈ {100, 500}, EH ∈
{0.5, 1, 2, 3}, and εth = 1.
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Figure 5: Probability of delivery over the energy threshold to

enter in active mode at the beginning of each DCR.

Results show that the higher the capacity of the ESD,

the higher the probability of delivery. For the higher energy

harvesting rate (when εth is more than 2 energy units), the

more sensitive the probability of delivery is with regard to

the capacity of the ESD. On the contrary, the lower energy

harvesting rate, the less sensitive the probability of delivery is

with the increasing capacity of the ESD. When the capacity of

the ESD is large, the amount of possible retransmissions per

DCR is greater, and then the probability of transmitting a data

packet successfully increases. In addition, the probability of

delivery approximates to its maximum value when the capacity

is above 6-7 energy units regardless of the energy harvesting

rate. This is a very practical design guideline for the scenario

considered in this paper.

V. CONCLUSIONS

In this paper, we have analyzed and evaluated the perfor-

mance of M2M networks with energy harvesting capabilities

using the Dynamic Frame Slotted-ALOHA (DFSA) proto-

col. In particular, we have considered the case when one

coordinator requests periodic data from a number of end-

devices with energy harvesters. Since energy is not always

available at the end-devices, the number of contenting end-

devices changes along time depending on the dynamics of the

harvesting process. To understand the impact of such dynamic

process in the performance of the network, we have considered

the probability of delivery as a key performance indicator.

Results show that DFSA efficiently optimizes the performance

of the network as the number of contending end-devices

changes. The impact of the size of the batteries and the energy

harvesting rate has been shown, and it has been possible to

identify optimal configuration regions to extend the lifetime

of M2M networks. Future work aims at incorporating realistic

channel models to the theoretical analysis and considering

the possibility of transmitting more than one packet per DCR

when fragmentation of data is required.
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Figure 6: Probability of delivery over the capacity of the

energy storage device.
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