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Abstract—We consider a broadcast communication system
over parallel sub-channels where the transmitter sends three
messages: a common message to two users, and two confidential
messages to each user which need to be kept secret from the
other user. We assume partial channel state information at the
transmitter (CSIT), stemming from noisy channel estimation.
The first contribution of this paper is the characterization of the
secrecy capacity region boundary as the solution of weighted sum-
rate problems, with suitable weights. Partial CSIT is addressed
by adding a margin to the estimated channel gains. The second
paper contribution is the solution of this problem in an almost
closed-form, where only two single real parameters must be
optimized, e.g., through dichotomic searches. On the one hand,
the considered problem generalizes existing literature where only
two out of the three messages are transmitted. On the other hand,
the solution finds also practical applications into the resource
allocation of orthogonal frequency division multiplexing (OFDM)
systems with both secrecy and fairness constraints.

Index Terms—Broadcast communication, orthogonal fre-
quency division multiplexing (OFDM), parallel channels, physical
layer security, power allocation.

I. I NTRODUCTION

With the widespread adoption of wireless networks, security
becomes an inherent issue of nowadays communications. In
this context,physical layer securityarises as a promising tool
to complement traditional cryptographic solutions. The basic
concepts of this approach were founded by the pioneering
work of Wyner [1]. He introduced thewiretap channel model
in which the transmitter aims at sending reliably a confidential
message to the legitimate receiver in presence of an eavesdrop-
per. Thesecrecy capacitymeasures the maximum information
rate at which the transmitter can reliably communicate a secret
message to the receiver, while the eavesdropper left with no
information on the message. Recently, the wiretap channel
witnessed a renewed interest and many research works inves-
tigated the secrecy capacity of wireless fading [2], parallel [3],
[4] and multiple-input multiple-output (MIMO) channels [5],
[6]. All of these works deal with the point-to-point wiretap
channel model. There has been also an effort to generalize
physical layer security to the multi-user context (see [7] for a
survey).

An important scenario of multi-user physical layer security
is thebroadcast channel with confidential messages(BCC) [8].

This work was partly supported by the Italian Ministry of Education and
Research (MIUR) under project ESCAPADE (Grant RBFR105NLC)in the
“FIRB-Futuro in Ricerca 2010” funding program.

In [9], the authors established the secrecy capacity regionof
parallel sub-channels where a source node has a common
message for two receivers and a confidential message is
intended only for one receiver. Extensive research work was
made to characterize the secrecy capacity region of Gaussian
MIMO BCC [10] [11]. In all these works, the communication
scenario consists of a source node communicating with two
receiving users maliciously eavesdropping on each other. Se-
cure broadcasting to multiple receivers was analyzed in [12],
[13] when the eavesdropper is external to the group of users.
For an overview of the different considered BCC scenarios,
the reader can see [14].

In this paper, we consider a parallel BCC with two receivers,
where the transmitter aims at sending three independent mes-
sages with a total power constraint: one common message to
both users and two confidential messages, one for each user.
We further consider the case in which only partial channel
state information at the transmitter (CSIT) is available before
transmission, stemming from a noisy estimate of the channels.
We first characterize the secrecy capacity region of the con-
sidered system where partial CSIT is addressed by adding a
margin to the estimated channel gains. Then, an almost closed-
form solution to the weighted sum-rate maximization problem
is derived, where two real variables must be optimized, e.g.,
through dichotomic search. Our contribution generalizes some
related work which considered only two out of the three pos-
sible messages: in [15], [16], the authors derived the optimal
power allocation in presence of two confidential messages
without a common while in [9], the optimal power allocation
for the case of one common message and one confidential
message was established.

II. SYSTEM MODEL

We consider1 parallel BCC (e.g., OFDM) withL sub-
channels, one transmitter and two receiving users. Note that
we consider real-valued signals. The transmitter sends thereal-
valued symbolxℓ on sub-channelℓ. The channel input is

1Notation: Vectors and matrices are written in bold letters.log and ln
denote the base-2 and natural-base logarithms, respectively. We indicate
the positive part of a real quantityx as [x]+ =max{x; 0}. E[X] denotes
the expectation of the random variableX, I(X; Y ) denotes the mutual
information between variablesX andY . tr(X) denotes the trace of a square
matrix X. For two positive semi-definite matricesX and Y , we write
X � Y wheneverY −X is a positive semi-definite matrix.
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subject to the statistical total power constraint

L
∑

ℓ=1

E{x2
ℓ} ≤ P. (1)

We assume that the channel is quasi-static, i.e., it remains
constant over the entire duration of a single packet. At sub-
channelℓ of receiveri = 1, 2 we obtain

yi,ℓ = hi,ℓxℓ + ni,ℓ , (2)

whereni,ℓ is the real-valued zero-mean unit variance additive
white Gaussian noise (AWGN) term. Noise components for
different sub-channels are independent.hi,ℓ is the real-valued
channel coefficient. Letαi,ℓ = h2

i,ℓ be the channel power gain.
We assume that the transmitter has some partial channel state
information. It knows the channel statistical distribution and
possesses estimatesĥi,ℓ of the channel coefficients, that are
corrupted by noise

ĥi,ℓ = hi,ℓ + ηi,ℓ , (3)

whereηi,ℓ are iid real-valued zero-mean Gaussian noise with
varianceσ2. The conditional probability density function (pdf)
of the channel gainαi,ℓ given the channel coefficient estimate
ĥi,ℓ can be computed from thea priori pdf of the channel
coefficientfhi,ℓ

and that of the estimation noisefη as

fαi,ℓ|ĥi,ℓ
(a|b) =

fη(b −
√
a)fhi,ℓ

(
√
a) + fη(b +

√
a)fhi,ℓ

(−√
a)

2
√
a
[

fhi,ℓ
⊗ fη

]

(b)
.

(4)

where⊗ denotes the convolution operation.
As illustrated in Fig. 1, we consider a BCC where the

transmitter aims at reliably delivering a common message
M0 with information rateR0 and two separate confidential
messagesM1 and M2 with information ratesR1 and R2,
respectively [17]. The common messageM0 is intended for
both receivers, while confidential messageMi is intended for
receiveri and needs to be kept secret from the other receiver.
The transmitter allocates powerpi,ℓ on sub-channelℓ for the
confidential messageMi, and powerp0,ℓ for the common
messageM0.

In order to havereliable transmissionsto the intended
receiver, vanishing error probabilities must be obtained as
the codeword lengthn grows to infinity.Secrecyis measured
in terms of the information leakage rate to the non-intended
receiver (akaweakinformation theoretic secrecy) [1], [8], i.e.,
definingY n

i = [yi(1), . . . ,yi(n)], we require

1

n
I(M1;Y

n
2 ) → 0 ;

1

n
I(M2;Y

n
1 ) → 0, (5)

asn → ∞.

A. Secrecy Capacity Region

Since the transmitter does not know the exact channel
realization, secrecy outage may occur, i.e., the transmitted
message is either not secret or not decoded by the receiver.
However, computing the secrecy outage probability is an

Tx {h1,ℓ}

{h2,ℓ}

{n1,ℓ}

{n2,ℓ}

Rx 1

Rx 2

(M0,M1,M2) {xℓ}

{y1,ℓ}

{y2,ℓ}

(M̂0, M̂1)

(M̃0, M̂2)

Fig. 1. Parallel BCC with common and two confidential messages.

involved task, therefore we consider here a simpler approach
where we add some margin to the channel estimates in order
to keep the outage probability under control.

In particular, the transmitter can compute upper and lower
bounds on the channel gainsα+

i,ℓ and α−
i,ℓ that provide the

desired outage probability. We consider here a simpler ap-
proach where the same probability thresholdε is used on each
channel, i.e.,

P
[

αi,ℓ > α+
i,ℓ

∣

∣

∣ĥi,ℓ

]

< ε , P
[

αi,ℓ < α−
i,ℓ

∣

∣

∣ĥi,ℓ

]

< ε . (6)

Then, α−
i,ℓ will be considered as the channel gain to the

intended receiver, whileα+
i,ℓ is the channel gain to the un-

intended receiver. The probabilities in (6) can be computed
using the pdf (4). Note also that when perfect CSIT is available
α−
i,ℓ = α+

i,ℓ.
The secrecy capacity regionCs is defined as the closure

of all rate triples (R0, R1, R2) that can be achieved by
any coding scheme while maintaining both reliability and
secrecy requirements. LetKx be the covariance matrix of
{xℓ}ℓ=1,...,L, the secrecy capacity region of the Gaussian
MIMO BCC under a covariance constraint (i.e.,Kx � K)
was characterized in [10], [11]. The secrecy capacity region
Cs under the total power constraint (1) is obtained by the
union over all covariance matrices which satisfytr(K) ≤ P .
Moreover, the parallel channels can be seen as a special case
of MIMO channels. Having independent inputs for each sub-
channel is optimal for the parallel BCC [9]. Consequently, it is
sufficient to have diagonal input covariance matrices [11],[10]
for the parallel BCC. We define the power allocation vector
p = [p0,1, . . . , p0,L, p1,1, . . . , p1,L, p2,1, . . . , p2,L]. The setP
includes all power allocation vectorsp that satisfy the total
power constraint (1), i.e.,

P =

{

p :

L
∑

ℓ=1

(p0,ℓ + p1,ℓ + p2,ℓ) ≤ P

}

. (7)

Let us partition the channel index set{1, . . . , L} into

S1 = {ℓ : α−
1,ℓ > α+

2,ℓ} , S2 = {ℓ : α−
2,ℓ > α+

1,ℓ} ,

S3 = {1, . . . , L} \ (S1 ∪ S2) .
(8)

By combining the results of [10] and [9], the secrecy capacity
region of the parallel BCC with common and two confidential
messages can be written as



Cs =
⋃

p∈P















(R0, R1, R2) :
0 ≤ R0 ≤ Rmax

0 (p)

0 ≤ Ri ≤ Rmax
i (p)

(9)

where
Rmax

0 (p) = min{Rmax
01 (p), Rmax

02 (p)} (10)

Rmax
01 (p) =

1

2

L
∑

ℓ=1

log
(

1 + α−
1,ℓ[p0,ℓ + p1,ℓ + p2,ℓ]

)

− log
(

1 + α−
1,ℓ[p1,ℓ + p2,ℓ]

)

(11)

Rmax
02 (p) =

1

2

L
∑

ℓ=1

log
(

1 + α−
2,ℓ[p0,ℓ + p1,ℓ + p2,ℓ]

)

− log
(

1 + α−
2,ℓ[p1,ℓ + p2,ℓ]

)

(12)

Rmax
1 (p) =

1

2

∑

ℓ∈S1

log(1+α−
1,ℓp1,ℓ)− log(1+α+

2,ℓp1,ℓ) (13)

Rmax
2 (p) =

1

2

∑

ℓ∈S2

log(1+α−
2,ℓp2,ℓ)− log(1+α+

1,ℓp2,ℓ). (14)

The expression of the secrecy capacity region states that the
receivers decode the common message first, by treating the
confidential messages as noise. Then, each receiver decodes
its own confidential message.

Note that the expressions of the secrecy capacity region hold
also for perfect CSIT by lettingα−

i,ℓ = α+
i,ℓ.

III. POWER ALLOCATION ALGORITHM

First note that the secrecy capacity region (9) is convex.
Therefore, for each triplet(Rmax

0 (p∗), Rmax
1 (p∗), Rmax

2 (p∗))
on the region boundary, there exists a weight triplet
w0, w1, w2 > 0 satisfying

p∗ = argmax
p∈P

[w0R
max
0 (p) + w1R

max
1 (p) + w2R

max
2 (p)] .

(15)

By solving (15) all points of the secrecy capacity region
boundary are obtained. Note also that the weighted sum rate
problem is also of interest for resource allocation in OFDM
systems with a fairness constraint, where the weights are
selected in order to enforce the desired fairness.

Now, the optimization problem (15) together with (10) is a
max-min optimization, and can be solved by using an approach
similar to that of [18]. The particular result is provided inthe
following lemma, whose proof is not reported as it follows the
same steps of [18].

Lemma 1. The solution of (15) also solves one of the
following three problems:

(P1) p(1) =argmax
p∈P

[w0R
max
01 (p) + w1R

max
1 (p) + w2R

max
2 (p)]

(P2) p(2) =argmax
p∈P

[w0R
max
02 (p) + w1R

max
1 (p) + w2R

max
2 (p)]

(P3) p(3) =argmax
p∈P

[w0(µR
max
01 (p) + (1 − µ)Rmax

02 (p))

+ w1R
max
1 (p) + w2R

max
2 (p)]

for someµ ∈ (0, 1) in (P3). In particular,

p∗ =











p(1) if Rmax
01 (p(1)) < Rmax

02 (p(1))

p(2) if Rmax
01 (p(2)) > Rmax

02 (p(2))

p(3) if Rmax
01 (p(3)) = Rmax

02 (p(3))

. (16)

We now focus on the solution of problems (P1)-(P3). Before
introducing the result, we define the following terms, with
ℓ = 1, . . . , L and i = 1, 2. Let ı̄ = 2 if i = 1 and ı̄ = 1
if i = 2, let µi = µ if i = 1 and µi = 1 − µ if i = 2.
Denote byδi,ℓ = 1/α+

ı̄,ℓ−1/α−
i,ℓ, and letλ ≥ 0 be a real

valued parameter. Then, denote

βi,ℓ =
1

2

[

δi,ℓ

(

δi,ℓ +
2wi

λ ln 2

)]1/2

− 1

2

(

1

α+
ı̄,ℓ

+
1

α−
i,ℓ

)

(17a)

γi,ℓ =
w0

2λ ln 2
− 1

α−
i,ℓ

, ζi,ℓ =
wi

w0
δi,ℓ −

1

α+
ı̄,ℓ

(17b)

νi,ℓ =
1

2





(

1

α−
ı̄,ℓ

− 1

α−
i,ℓ

− w0

2λ ln 2

)2

+
2w0µi

λ ln 2
(

1

α−
ı̄,ℓ

− 1

α−
i,ℓ

)

]1/2

− 1

2

(

1

α−
ı̄,ℓ

+
1

α−
i,ℓ

− w0

2λ ln 2

)

(17c)

∆i,ℓ =





(

wi

w0

)2

+
wi

w0





2 · ( 2
α−

ı̄,ℓ

− 1
α−

i,ℓ

− 1
α+

ı̄,ℓ

)

1
α+

ı̄,ℓ

− 1
α−

i,ℓ



+ 1





·
[

1

α+
ı̄,ℓ

− 1

α−
i,ℓ

]2

θi,ℓ =

wi

w0

(

1
α+

ı̄,ℓ

− 1
α−

i,ℓ

)

−
(

1
α+

ı̄,ℓ

+ 1
α−

i,ℓ

)

+
√

∆i,ℓ

2
(17d)

Λi,ℓ =
(

δi,ℓ
)2
(

wi

w0

)2

+ 2
wi

w0

[

δi,ℓ
(2− µi

α−
ı̄,ℓ

− µı̄

α−
i,ℓ

− 1

α+
ı̄,ℓ

)

]

+
(

δi,ℓ
)2

+ µi

( 1

α−
ı̄,ℓ

− 1

α−
i,ℓ

)

[

µi

( 1

α−
ı̄,ℓ

− 1

α−
i,ℓ

)

− 2
( 1

α+
ı̄,ℓ

− 1

α−
ı̄,ℓ

)

]

ξi,ℓ =

wi

w0
δi,ℓ −

(

1
α+

ı̄,ℓ

+ 1
α−

i,ℓ

)

− µi

(

1
α−

ı̄,ℓ

− 1
α−

i,ℓ

)

+
√

Λi,ℓ

2
.

(17e)
The main result for the solution of the optimization problem

(15) is provided by the following theorem.

Theorem 1. The solutions of problems (P1)-(P3) are:

(P1) For ℓ ∈ S1, if w1

w0
>

α−

1,ℓ

α−

1,ℓ
−α+

2,ℓ

, then

p
(1)
0,ℓ = [γ1,ℓ − ζ1,ℓ]

+
, p

(1)
1,ℓ = [min {β1,ℓ; ζ1,ℓ}]+ . (18a)



Otherwise, ifw1

w0
≤ α−

1,ℓ

α−

1,ℓ
−α+

2,ℓ

, then

p
(1)
0,ℓ = [γ1,ℓ]

+
, p

(1)
1,ℓ = 0 . (18b)

For ℓ ∈ S2, if w2

w0
>

α−

1,ℓ

α−

2,ℓ
−α+

1,ℓ

, then

p
(1)
0,ℓ = [γ1,ℓ − θ2,ℓ]

+
, p

(1)
2,ℓ = [min {β2,ℓ; θ2,ℓ}]+ . (18c)

Otherwise, ifw2

w0
≤ α−

1,ℓ

α−

2,ℓ
−α+

1,ℓ

, then

p
(1)
0,ℓ = [γ1,ℓ]

+ , p
(1)
2,ℓ = 0 . (18d)

For ℓ ∈ S3,
p
(1)
0,ℓ = [γ1,ℓ]

+ (18e)

whereλ is chosen to satisfy the total power constraint (7).
(P2) Due to the symmetry (with respect to the user index)

of problems (P1) and (P2), solution (P2) is the same as that
of (P1) where user indices 1 and 2 are swapped.

(P3) For ℓ ∈ Si, if Λi,ℓ > 0, then

if wi

w0
>

µiα
−

i,ℓ
+µı̄α

−

ı̄,ℓ

α−

i,ℓ
−α+

ı̄,ℓ

, then

p
(3)
0,ℓ = [νi,ℓ − ξi,ℓ]

+
, p

(3)
i,ℓ = [min {βi,ℓ; ξi,ℓ}]+ . (19a)

Otherwise, ifwi

w0
≤ µiα

−

i,ℓ
+µı̄α

−

ı̄,ℓ

α−

i,ℓ
−α+

ı̄,ℓ

, then

p
(3)
0,ℓ = [νi,ℓ]

+ , p
(3)
i,ℓ = 0 . (19b)

If Λi,ℓ = 0, then

if wi

w0
>

α−

i,ℓ
+µı̄α

+

ı̄,ℓ
+µi

α
−

i,ℓ
α
+

ı̄,ℓ

α
−

ı̄,ℓ

α−

i,ℓ
−α+

ı̄,ℓ

, then

p
(3)
0,ℓ = [νi,ℓ − ξi,ℓ]

+
, p

(3)
i,ℓ = [min {βi,ℓ; ξi,ℓ}]+ . (19c)

Otherwise, ifwi

w0
≤

α−

i,ℓ
+µı̄α

+

ı̄,ℓ
+µi

α
−

i,ℓ
α
+

ı̄,ℓ

α
−

ı̄,ℓ

α−

i,ℓ
−α+

ı̄,ℓ

, then

p
(3)
0,ℓ = [νi,ℓ]

+
, p

(3)
i,ℓ = 0 . (19d)

If Λi,ℓ < 0, then

if wi

w0
>

µiα
−

i,ℓ
+µı̄α

−

ı̄,ℓ

α−

i,ℓ
−α+

ı̄,ℓ

, then

p
(3)
0,ℓ = 0 , p

(3)
i,ℓ = [βi,ℓ]

+
. (19e)

Otherwise, ifwi

w0
≤ µiα

−

i,ℓ
+µı̄α

−

ı̄,ℓ

α−

i,ℓ
−α+

ı̄,ℓ

, then

p
(3)
0,ℓ = [νi,ℓ]

+
, p

(3)
i,ℓ = 0 . (19f)

For ℓ ∈ S3,
p
(3)
0,ℓ = [ν1,ℓ]

+ (19g)

whereλ is chosen to satisfy the total power constraint (7),
andµ is chosen to satisfyRmax

01

(

p(3)
)

= Rmax
02

(

p(3)
)

.

Proof: See the Appendix.
Table I summarizes the power allocation algorithm solving

(15). The algorithm includes three steps consisting of simple

TABLE I
POWER ALLOCATION ALGORITHM.

Step 1 Computep(1) by (18).
If Rmax

01 (p(1))<Rmax
02 (p(1)), thenp∗ = p(1) .

Otherwise, go toStep 2.

Step 2 Computep(2) by (18) with user indices exchanged.
If Rmax

01 (p(2))>Rmax
02 (p(2)) , thenp∗ = p(2) .

Otherwise, go toStep 3.

Step 3 Computep(3) by (19).
Thenp∗ = p(3) .

closed-form solutions of problems (P1)-(P3). Steps 1 and
2 require the optimization ofλ, while Step 3 requires the
optimization of bothλ and µ ∈ (0, 1). As Rmax

01 (p(3)) and
Rmax

02 (p(3)) are monotonous functions versus bothλ and µ,
these optimizations can be performed efficiently for instance
by a dichotomic search. Moreover, the two searches can be
performed in cascade.

Note that the power allocation algorithm can be used also
for perfect CSIT by lettingα−

i,ℓ = α+
i,ℓ.

IV. N UMERICAL RESULTS

In this section, we validate the analytical results by consider-
ing a system where the number of sub-channelsL and the total
powerP are both fixed to64. Each sub-channel is Rayleigh
fading, thus, the powers of the sub-channel gainsh2

1,ℓ andh2
2,ℓ

are exponentially distributed with meansSNR1 = E{h21,ℓ} and
SNR2 = E{h22,ℓ}.

Fig. 2 shows a contour plot of the boundary surface for the
three dimensional secrecy capacity averaged over the channel
realizations withSNR1 = SNR2 = 10 dB and perfect CSIT.
We remark that the surface of the secrecy capacity gets smaller
asE[R0] increases. Moreover, the secrecy capacity region is
symmetric for the same averageSNR values of both users.

We then compare the algorithm with two other schemes.
The first one is uniform power allocation over the sub-channels
and over the three messages. The second scheme is the power
allocation algorithm proposed in [15] which maximizes the
sum secrecy-rate in the presence of two confidential messages
but without a common message. In order to compare [15]
with our approach, we first assign powerP/3 to transmit the
common message and then we split the remaining power2P/3
between the two confidential messages according to the algo-
rithm of [15]. Fig. 3.a compares the average weighted sum-rate
(with w0 = w1 = w2) of our algorithm with the average sum-
rate of the two schemes versusSNR = SNR1 = SNR2. The
optimal algorithm provides a significant advantage mainly at
high SNR range.

Lastly, in Fig. 3.b we show the rates when imperfect CSIT
is available withσ = 0.01, as function ofǫ. We note that asǫ
increases the secret rates increases, as we are less restrictive
on the illegitimate channel, while on the other hand the rate
of the common message decreases.
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SNR = SNR1 = SNR2 of some power allocation algorithms.

V. CONCLUSIONS

We have provided a characterization of the boundary for the
secrecy capacity region of a parallel BCC with two confidential
and one common messages by converting it into a power
allocation problem. An almost closed-form solution to the
problem has been provided, which can also be exploited
in practical scenarios for resource allocation in OFDM sys-
tems with secrecy and fairness constraints. Comparison with
existing power allocation schemes highlights the significant
advantage of the optimal algorithm.

APPENDIX

We solve problems (P1)-(P3) by a technique based on
deriving an upper bound on the Lagrangian operator and

establishing power allocations that achieve the upper bound.
(P1) The LagrangianL of (P1) is given by

L =

L
∑

ℓ=1

w0

2
log
(

1 +
α−
1,ℓp0,ℓ

1 + α−
1,ℓ[p1,ℓ + p2,ℓ]

)

+
∑

ℓ∈S1

w1

2
log
(

1 + α−
1,ℓp1,ℓ

)

− w1

2
log
(

1 + α+
2,ℓp1,ℓ

)

+
∑

ℓ∈S2

w2

2
log
(

1 + α−
2,ℓp2,ℓ

)

− w2

2
log
(

1 + α+
1,ℓp2,ℓ

)

− λ

L
∑

ℓ=1

[

p0,ℓ + p1,ℓ + p2,ℓ
]

(20)

where λ ≥ 0 is the Lagrange multiplier. Forℓ ∈ S1, the
transmitter merely sends the common and the confidential
messagesM1 (i.e., p2,ℓ=0). For ℓ ∈ S2, the transmitter sends
the common and the confidential messageM2, (i.e. p1,ℓ=0).
While, for ℓ ∈ S3, the transmitter sends only the common
message. Forℓ ∈ S1, p(1)0,ℓ andp(1)1,ℓ need to maximize :

L1 =
w0

2
log
(

1 +
α−
1,ℓp0,ℓ

1 + α−
1,ℓp1,ℓ

)

+
w1

2
log
(

1 + α−
1,ℓp1,ℓ

)

− w1

2
log
(

1 + α+
2,ℓp1,ℓ

)

− λ(p0,ℓ + p1,ℓ). (21)

We denote byu0,ℓ(·) andu1,ℓ(·) the partial derivative ofL1

with respect top0,ℓ andp1,ℓ, respectively:

u0,ℓ(x) =
w0

2 ln 2

α−
1,ℓ

1 + α−
1,ℓx

− λ (22)

ui,ℓ(x) =
wi

2 ln 2

(

α−
i,ℓ

1 + α−
i,ℓx

−
α+
ı̄,ℓ

1 + α+
ı̄,ℓx

)

− λ. (23)

Then, (21) can be rewritten as

L1 =

∫ p1,ℓ+p0,ℓ

p1,ℓ

u0,ℓ(x) dx +

∫ p1,ℓ

0

u1,ℓ(x) dx (24)

and upper bounded as

L1 ≤
∫ +∞

0

[max{u0,ℓ(x), u1,ℓ(x)}]+ dx. (25)

The root ofu0,ℓ(x) is γ1,ℓ defined in (17b) while the largest
root of u1,ℓ(x) is β1,ℓ defined in (17a).u0,ℓ(x) and u1,ℓ(x)
intersect at the pointζ1,ℓ given by (17b). In the following, we
consider two cases.

1) w1

w0
>

α−

1,ℓ

α−

1,ℓ
−α+

2,ℓ

, i.e., ζ1,ℓ is positive.

In this case,u1,ℓ(0) > u0,ℓ(0). There are three possibil-
ities to consider depending on the value ofλ.

a) If u1,ℓ(0) < 0, then bothu0,ℓ(x) andu1,ℓ(x) are
negative forx > 0, and (25) is achieved byp(1)0,ℓ =

0 andp(1)1,ℓ = 0.
b) If u1,ℓ(0) ≥ 0 andγ1,ℓ < ζ1,ℓ, then (25) is achieved

by p
(1)
0,ℓ = 0 andp(1)1,ℓ = β1,ℓ.

c) If γ1,ℓ ≥ ζ1,ℓ, then (25) is achieved byp(1)0,ℓ =

γ1,ℓ − ζ1,ℓ andp(1)1,ℓ = ζ1,ℓ.



In summary, we obtain (18a).

2) w1

w0
≤ α−

1,ℓ

α−

1,ℓ
−α+

2,ℓ

, i.e., ζ1,ℓ is negative.

In this case,u0,ℓ(0) ≥ u1,ℓ(0).

a) If u0,ℓ(0) ≤ 0, then (25) is achieved byp(1)0,ℓ = 0

andp(1)1,ℓ = 0.

b) If u0,ℓ(0) > 0, then (25) is achieved byp(1)0,ℓ = γ1,ℓ

andp(1)1,ℓ = 0.
In summary, we obtain (18b).

For ℓ ∈ S2, p(1)0,ℓ andp(1)2,ℓ need to maximize :

L2 =
w0

2
log
(

1 +
α−
1,ℓp0,ℓ

1 + α−
1,ℓp2,ℓ

)

+
w2

2
log
(

1 + α−
2,ℓp2,ℓ

)

− w2

2
log
(

1 + α+
1,ℓp2,ℓ

)

− λ(p0,ℓ + p2,ℓ). (26)

Then, we obtain, analogously to (25)

L2 ≤
∫ +∞

0

[

max
{

u0,ℓ(x), u2,ℓ(x)
}]+

dx. (27)

The largest root ofu2,ℓ(x) is β2,ℓ given by (17a).u0,ℓ(x) and
u2,ℓ(x) intersect at two points. The largest pointθ2,ℓ is given
by (17d). We consider two cases depending on the sign of the
two points.

1) w2

w0
>

α−

1,ℓ

α+

2,ℓ
−α+

1,ℓ

, i.e., one point is negative and the other

is positive.
In this case,u2,ℓ(0) > u0,ℓ(0). There are three possibil-
ities to consider.

a) If u2,ℓ(0) < 0, then bothu0,ℓ(x) andu2,ℓ(x) are
negative forx > 0, and (27) is achieved byp(1)0,ℓ =

0 andp(1)2,ℓ = 0.
b) If u2,ℓ(0) ≥ 0 and γ1,ℓ < θ2,ℓ, then (27) is

achieved byp(1)0,ℓ = 0 andp(1)2,ℓ = β2,ℓ.

c) If γ1,ℓ ≥ θ2,ℓ, then (27) is achieved byp(1)0,ℓ =

γ1,ℓ − θ2,ℓ andp(1)2,ℓ = θ2,ℓ.
In summary, we obtain (18c).

2) w2

w0
≤ α−

1,ℓ

α+

2,ℓ
−α+

1,ℓ

, i.e., the two intersection points are

negative.
In this case,u0,ℓ(0) ≥ u2,ℓ(0). There are two possibili-
ties to consider.

a) If u0,ℓ(0) ≤ 0, then (27) is achieved byp(1)0,ℓ = 0

andp(1)2,ℓ = 0.

b) If u0,ℓ(0) > 0, then (27) is achieved byp(1)0,ℓ = γ1,ℓ

andp(1)2,ℓ = 0.
In summary, we obtain (18d).

The case that the two points are positive is not possible.

For ℓ ∈ S3, p(1)0,ℓ need to maximize

L3 =
w0

2
log
(

1 + α−
1,ℓp0,ℓ

)

− λ p0,ℓ. (28)

L3 can be upper bounded by

L3 =

∫ p0,ℓ

0

u0,ℓ(x) dx ≤
∫ +∞

0

[u0,ℓ(x)]
+ dx. (29)

If u0,ℓ(0) < 0, then the upper bound onL3 is achieved by
p
(1)
0,ℓ = 0. If u0,ℓ(0) ≥ 0, the upper bound is achieved in this

case byp(1)0,ℓ = γ1,ℓ. In summary, we obtain (18e).
The Lagrange parameterλ is chosen to satisfy the power

constraint with equality.
The solution of (P2) and (P3) is obtained in a similar

fashion to that of (P1) and is not reported here for the sake of
conciseness.
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