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Abstract—We present and evaluate new ROS packages for
coordinated multi-robot exploration, namely communication,
global map construction, and exploration. The packages allow
completely distributed control and do not rely on (but allow)
central controllers. Their integration including application layer
protocols allows out of the box installation and execution. The
communication package enables reliable ad hoc communication
allowing to exchange local maps between robots which are
merged to a global map. Exploration uses the global map
to spatially spread robots and decrease exploration time. The
intention of the implementation is to offer basic functionality for
coordinated multi-robot systems and to enable other research
groups to experimentally work on multi-robot systems. The
packages are tested in real-world experiments using Turtlebot
and Pioneer robots. Further, we analyze their performance using
simulations and verify their correct working.

I. INTRODUCTION AND MOTIVATION

Multi-robot systems for exploration and mapping have
received a lot of interest using theoretical and simulative
approaches [1]. Within recent years the reliability and per-
formance of single mobile robot systems have increased
significantly. Affordable robots are offered allowing research
institutions to acquire multiple robots to conduct experiments
focusing on the organization of multi-robot teams [2], [3].
Additionally, several frameworks to develop robot software are
available. One prominent framework is the Robot Operating
System (ROS) [4] offering a wide range of controllers for
various hardware platforms. However, the support of multi-
robot systems is still limited. We aim to enable future re-
search in the area of autonomous multi-robot systems by
presenting implementations in ROS of basic functionalities
for coordinated multi-robot systems. Further, we discuss the
performance of the implemented ROS packages.

During exploration, robots navigate to frontiers [5] to extend
the known area until the complete (reachable) environment is
explored. Using multiple rather than standalone robots allows
to parallelize exploration by having individual robots explore
distinct areas. It has been shown that explicit coordination of
such systems can improve system performance, e.g., decrease
exploration time of unknown environments [6]. Explicit multi-
robot coordination requires a number of components. A map
common to all robots is required to allow common understand-
ing of the coordination. This map is constructed by exchanging
local maps created by each robot. We use the terms “local”
and “global” to distinguish contexts of a single robot and
the complete multi-robot system. For example, a local map

is the map created by each individual robot, while the global
map includes local maps of all robots. Communication enables
the exchange of data, e.g., local maps. Lastly, coordinated
exploration utilizes communication and the global map to
organize the multi-robot system by assigning frontiers to
robots. We focus on self-organizing, decentralized systems
where individual robots behave autonomously and do not
depend on any additional infrastructure.

Our contribution is to present ROS packages that enable
multi-robot exploration implementing the aforementioned re-
quired components, namely

• ad hoc communication between robots,
• construction of global maps from local maps, and
• exploration of unknown environments.

The remainder of this paper describes the capabilities of each
package, implementation details, and evaluation. These pack-
ages are intended to be used by other researchers. Documenta-
tion and presentation of basic concepts shall ease their usage.
To the best of our knowledge no integrated packages enabling
coordinated multi-robot exploration are currently available on
ROS. The presented ROS packages are available at:

• http://wiki.ros.org/adhoc communication
• http://wiki.ros.org/map merger
• http://wiki.ros.org/explorer

II. RELATED WORK

A number of ROS packages have been published to al-
low communication and exploration. We briefly discuss their
strengths and weaknesses.

A. Wireless Ad Hoc Communication

The majority of ROS packages implementing inter-robot
communication in ROS rely on existing infrastructure in form
of WLAN access points to which robots connect to. Commu-
nication packages focus on communication with short delays
using UDP at the cost of decreased reliability. Currently avail-
able packages differ with respect to their functionalities and
organization of communicated data. The rocon multimaster1

package implements building blocks that can be used by other
packages to enable inter-robot communication, but does not
offer communication itself. The multimaster fkie2 package
allows the discovery of robots as well as unicast and multicast

1http://wiki.ros.org/rocon multimaster/
2http://wiki.ros.org/multimaster fkie



transmissions based on UDP. The socrob multimaster3 han-
dles packet medium access using a TDMA scheme within the
robot network. The Real-Time Database (RTDB) middleware
[7] follows the concept of distributed shared memory where
local databases are replicated to other robots allowing local,
non-blocking access.

Existing infrastructure may not be assumed for all applica-
tions. For example, in search and rescue missions in devastated
areas, robots should form an ad hoc network to setup their
own communication infrastructure. The cg mrslam package
sets up an ad hoc network though does not seem to implement
any routing protocols or diversity transmissions to increase
reliability [3]. UDP is used on the transport layer.

In comparison, our ROS package implements Ad hoc On-
Demand Distance Vector (AODV) for unicast and Multicast
AODV (MAODV) for unicast multicast transmission. It uses
automatic repeat request (ARQ) on data link and transport
layers for unicast and multicast allowing reliable transmis-
sions. The advantage is that applications using the commu-
nication package do not have to ensure reliability themselves.
Developers may focus on their application and do not need to
implement retransmission protocols themselves.

B. Map Merger

Distributed simultaneous localization and mapping (SLAM)
has been discussed in the literature [8], [9], [10], though only
few implementations are available on ROS. The cg mrslam
package implements distributed SLAM using condensed
graphs while the mapstitch package allows to compute the
overlap between maps and combines them accordingly. It was
designed for offline usage. Our package builds upon mapstitch
and extends it by application layer protocols allowing its usage
during exploration (online usage).

C. Exploration

Early versions of ROS offered the explore and exploration
packages but these are no longer maintained. Exploration
packages for current ROS versions include nav2d4, fron-
tier exploration5, and hector exploration node6, which im-
plement single robot exploration. They identify frontiers [5]
as navigation goals for a robot. In comparison, our package
allows distributed coordination of multiple robots aiming to
prevent robots from exploring identical areas. The authors of
[1] give an overview of frontier selection and coordination
methods.

The advantage of our three packages compared to all afore-
mentioned ROS packages is the tight integration including ap-
plication layer protocols. We offer out of the box coordinated
multi-robot exploration and invite other researchers to further
improve the implementations. The following sections discuss
the three packages.

3http://wiki.ros.org/socrob multicast
4http://wiki.ros.org/nav2d
5http://wiki.ros.org/frontier exploration
6http://wiki.ros.org/hector exploration node
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Fig. 1: (a) Central master manages interprocess communi-
cation (b) Each robot runs its own master managing local
communication. Global communication is handled by a special
ROS package.

III. WIRELESS AD HOC COMMUNICATION

ROS was designed allowing primarily local interpro-
cess communication managed by a master using the pub-
lish/subscribe communication pattern. The master matches
publishers and subscribers based on ROS topics, i.e., commu-
nication channels between processes. To implement a multi-
robot system, in a first step, all robots would have to connect
wirelessly to a single master, illustrated in Fig. 1a. Only
the master allows to establish direct communication channels
between processes. Two processes need to communicate with
the master to detect each other. If connections fail, processes
rely on the master to reconnect them again. The solution
having a single master per system has the drawback that,
firstly, local interprocess communication is managed by an
externally running master, i.e., two processes running on the
same robot have to detect each other through the external
master. Secondly, a single master decreases the reliability of
the system as single point of failure.

Fig. 1b presents a distributed approach in which every robot
executes its own master. Local interprocess communication is
handled by the local master while global communication be-
tween robots is handled by a special communication package.
Robots may communicate directly forming an ad hoc wireless
network and do not rely on a central controller.

Ad hoc networks are a class of networks that do not
rely on preexisting infrastructure. All robots participate in
routing using routes that are adapted or created anew when the
topology of the underlying network changes. The high degree
of flexibility of these networks makes them ideal for mobile
multi-robot systems. A well known ad hoc routing protocol is
AODV [11]. Communication routes between robots are created
on demand. If a route fails, i.e., the connection between source
and destination is lost, the route will be repaired or a new route
will be established. AODV is designed for mobile networks
such as indoor robot systems.

We present the Ad Hoc Communication package, whose
implementation strongly resembles AODV. In the following
we sketch the integration of the Ad Hoc Communication
package into ROS.

A. Features

Features of the Ad Hoc Communication package are as
follows:
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Fig. 2: Integration of the Ad Hoc Communication package in
ROS.

• Routing allows robots to communicate via multiple hops
to other robots which are not in the immediate neighbor-
hood.

• Multicast allows to transmit from one robot to multiple
robots, especially useful for dissemination of map data,
for example.

• ARQ stands for automatic repeat request. If a frame is
not acknowledged within a specified time, the sender
will automatically repeat the transmission. The Ad Hoc
Communication package supports both hop-by-hop ARQ
and end-to-end ARQ.

• Segmentation allows to split data packets into multiple
frames of smaller size. The IEEE 802.11a/g/n MAC layer
supports payloads up to 2304 octets [12]. At the receiver
side the frames are ordered and combined.

• Ordering ensures that frames and packets are delivered
in the correct order.

B. Implementation and Integration into ROS

Fig. 2 illustrates the integration into ROS. In this example,
robots A and B do not communicate directly but utilize the
Ad Hoc Communication package using a service call (1). The
service call includes destination, data to be transmitted, and a
topic on which to publish the data at the destination. The Ad
Hoc Communication package wraps the data into an extended
MAC frame and transmits the frame using a raw socket (2).
Using raw sockets allows the implementation of AODV and
MAODV and easy modifications for future improvements run-
ning in user space and not in kernel space. Once robot B has
received the frame successfully, the Ad Hoc Communication
package publishes the received data under the topic specified
within the packet (3). This implementation is flexible with
respect to communication partners and completely transparent
to ROS. Furthermore, this approach follows the ROS principle
of communication by subscribing to topics.

IV. MAP MERGER

The task of the Map Merger package is to collect local maps
of the robots and to merge them into a global map, which
is used by the robots to navigate, explore, and coordinate.
The mapping itself is performed only on the local map to
decrease impact of errors in the global map. The Map Merger
package may be distributed or centralized. If run centrally,
each Ad Hoc Communication package will have to send its
robot’s local map to the central instance where the maps are
merged. Having been merged, the global map needs to be
disseminated to the robots. If distributed, robots share their
local maps. The Map Merger package merges the local maps

and delivers the resulting global map only locally, i.e., to the
robot it is executed on.

The Map Merger package is inspired by the map stitch
package, but extents and improves it in numerous ways.
Our package allows to be executed online during exploration
and implements application layer protocols to exchange maps
between robots.

A. Merging Process

Birk et al. describe the merging process conceptually and
mathematically in [13]. The Map Merger package computes
the transformation between two local maps M1 and M2 con-
structing the global map by joining the local maps maximizing
the match over overlapping areas.

The transformation between coordinate systems is com-
puted with OpenCV. By converting the ROS occupancy grid
to a bitmap file, OpenCV’s estimateRigitTransform
method is used. It tries to match patterns within the local maps
to determine the transformation. The decision to use OpenCV
instead of more sophisticated models based on Bayesian
updates [14] or filters [15] was made in favor of its easy
implementation. A drawback is that overlapping local maps are
required. However, in exploration missions it is meaningful to
assume robots to start at the same position, e.g., the entrance
of a building, so that maps overlap from the beginning on.

B. Features

Features of the Map Merger package are:

• Map updates are triggered if changes in local maps are
detected.

• New robots are added and maps are exchanged automat-
ically if the Ad Hoc Communication package reports a
new robot in the system.

• Robot positions are transmitted in regular intervals. The
package automatically converts other robots’ positions to
the correct coordinate system.

• Integration Ad Hoc Communication package allows
the wireless exchange of maps between robots right out
of the box. All topics are preconfigured.

V. EXPLORATION

Robots may be utilized for a variety of scenarios, including
search and rescue missions. For a complete search, robots
need to ensure that they explore the entire environment. This
requires robots to create a map to distinguish between already
explored and unexplored space. The exploration package has
the task to, firstly, identify frontiers [5] based on the current
map. Secondly, frontiers are selected to be explored by the
robot to extend explored areas. Exploration will finish if no
more frontiers are left. Thirdly, in case of multi-robot system
the package shall explicitly coordinate the robots to decrease
exploration time [6].
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Fig. 3: Global maps created by (a) two Pioneer 3-DX robots
with laser range scanners in a real world environment and (b)
by four robots in a simulation each equipped with a laser range
scanner. The light areas are the local maps overlayed on the
global map for better illustration.

A. The Exploration Process

The exploration process is frontier based, i.e., transitions
between explored and unknown space are detected and defined
as navigation goals for a robot. Goals are ranked according to
the Euclidean distance between the current position of a robot
and a goal. Using the actual travel distance to frontiers would
yield better results but has the drawback of consuming more
resources and being error prone with currently available ROS
path planners. Frontiers are clustered and coordinated based
on auctioning [16] yielding good results compared to other
methods [1]. The assignment of robots to clusters is performed
based on the Hungarian method [17].

B. Features

Features of the Explorer package are:

• Integration Ad Hoc Communication package and
• Integration Map Merger package allow out of the box

deployment. All topics and settings are pre-configured.
• Coordination exploration including frontier identifica-

tion and coordinated assignment as described above.
• Bid interpolation aims to interpolates bids of other

robots which did not send their bids for an auctioned
cluster.

VI. EXPERIMENTS

The packages are tested in real-world experiments using
Turtlebot and Pioneer P3-DX robots in office corridors, labs,
and partly in environments built for demonstration. All pack-
ages show reliable behavior, especially on the Pioneer robots.
The Map Merger package benefits from the precise mapping of
the Pioneer robots using laser range scanners. The Turtlebot is
equipped with a Kinect in which map errors occur more often
compared to the laser range scanner. Fig. 3a illustrates merged
maps in our labs. For the Ad Hoc Communication package, we
additionally executed long running tests on laptops to test its
stability. Due to space constraints we refrain from publishing
performance measurements for the Ad Hoc Communication
package. AODV has been analyzed thoroughly in [18].

TABLE I: Errors e for resulting global maps at the end of
explorations compared to a reference map.

R 0.05 mean 0.95

1 -0.24 0.11 0.68
2 -1.73 0.19 1.53
3 -1.32 1.83 6.20
4 0.74 6.40 14.67

VII. SIMULATIONS

We use simulations to quantitatively determine the perfor-
mances of the multi-robot system, verify the correct implemen-
tation of the packages, and determine possible improvements
for future work. Simulations are performed using the ROS
stage simulator. Robot teams consist of R = 1, 2, 3, 4 robots.
Simulations are performed N = 40 times for each robot team.
Fig. 3b depicts a global map of the simulation environment.
The map has dimensions of 26 m by 15 m. Rooms have
dimensions of 4 m by 4.9 m. Robots start in the upper left
corner of the map facing to the right. To solely determine
the performance of the exploration package, we use error free
communication.

A. Map Merger

We evaluate the quality of the global maps (see Fig. 3).
To quantitatively determine mapping errors, we compare the
number of explored pixels in the resulting global map to a
reference map. The reference map is created by a single robot
exploration. This accounts for the high impact the quality
of the local maps have on map merging. We compare the
global maps created by each robot individually at the end of
explorations.

Maps consist of P = P o + P e pixels of which P o pixels
indicate obstacles and P e explored space. We approximate the
error en = (

P e
n

P̂ e
−1)·100 for a simulation n = 1, . . . , N , where

P̂ e is the reference value derived from the reference map. If
the global map and reference map are identical, the number
of explored pixels P e

n and the reference value P̂ e will have
the same value, i.e., en = 0. Errors e < 0 result from local
maps slightly shifted with respect to each other increasing the
width of obstacles and thus reducing explored space. Errors
e > 0 occur when local maps are slightly rotated or shifted in
such a way that the map is invalidly extended in one or more
directions.

The method for comparison is chosen because other tech-
niques such as feature extraction, edge and line detection did
not yield reliable results. While this metric is vulnerable to
errors, comparing the quantitative error qualitatively to maps,
the metric yields reliable results.

Tab. I shows the arithmetic mean of e and 0.05 and 0.95-
quantiles over all N simulations. For up to three robots the
maps are merged very precisely (e ≈ 0) with small variance.
For R = 4 robots, the merging process fails more often tending
to increase the size of the global map due to misaligned
mergers. We continue to evaluate the impact of map errors
when using multiple robots on the Explorer package.



B. Explorer

We use the same simulation as described above. For each
run n = 1, . . . , N , robot r ∈ 1, . . . , R takes time T r

n to finish
its exploration while traveling distance drn. The exploration for
a robot r finishes when no more frontiers are available. The
exploration of the environment is completed at time Tn once
all robots have completed exploration, i.e., Tn = max(T r

n).
This is a lower bound for the exploration time. The global
map may be available in advance.

TABLE II: (a) Cumulative travel distance for multi-robot team
of size R in meters. (b) Team exploration time T̄ in seconds.

(a)

R 0.05 mean 0.95

1 65 81 96
2 93 121 157
3 127 154 176
4 196 274 371

(b)

R 0.05 mean 0.95

1 865 945 1001
2 649 783 942
3 673 776 893
4 847 1208 1673

Tab. IIa shows the mean travel distance per robot team d̄ =
1
N

∑N
n=1

∑R
r=1 d

r
n in meters and 0.05 and 0.95-percentiles.

With an increasing number of robots, the cumulative travel
distance increases as expected. Multiple robots have to travel
the same paths to reach their goals. In comparison, the
mean travel distance per robot decreases for the multi-robot
systems compared to a single robot. A single robot treks
81 m, while three robots travel 154 m

3 ≈ 51 m. The comparably
large range between the 0.05 and 0.95-quantiles is due to
the path planning. With different timings of received sensor
data between simulations, robots may plan paths to identical
destination points differently. For four robots the mean travel
distance increases to 69 m suggesting a decrease in exploration
efficiency and likely longer exploration times.

Tab. IIb shows the mean exploration times T̄ =
1
N

∑N
n=1 Tn. With up to R = 3 robots the exploration time

decreases compared to R = 1 robots. For R = 4, as suggested
by the travel distance, T̄ increases due to increased map errors
(see Tab. I) and robot interference. We consider the exploration
progress for a more detailed analysis. Similar to the pixels
for the Map Merger evaluation, robots use occupancy grids
dividing maps into M = O +E tiles out of which O tiles are
obstacles and E tiles are explored. We track the exploration
progress Et at time t. A reference value Ê is determined
through complete explorations by a single robot. Again, we
compute the mean number of explored elements Ē for all N
simulations.

Fig. 4 shows the normalized mean number of explored
elements Ēt

Ê
. The vertical lines indicate the mean exploration

times T̄ according to Tab. IIb. With an increasing number of
robots, the explored area Et is extended faster by spatially
distributing the robots decreasing exploration time. For exam-
ple, at t = 400 one robot explores 0.66 of the area while
three robots explore 0.82 in the same time. For R = 4 robots,
however, the exploration time increases while Fig. 4 seems to
indicate faster progress. The reason is increased map errors of
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Fig. 4: Exploration progress by area on map depicted in Fig. 3b

the global map as depicted in Tab. I, invalidly increasing the
size of the map. Therefore, the explored area may become
larger than the actually existing area, i.e. Ēt

E > 1. Fig. 4
verifies that the robots spread through coordination, but also
stresses the importance of reliable map merging.

So far we have determined the exploration time based on
the last robot completing exploration. This includes a negative
bias when the whole environment is explored, but one or more
robots identify new pseudo frontiers in their own maps, i.e.,
frontiers that were only created due to map errors. Pseudo
frontiers may be generated when obstacles in local maps erase
each other due to alignment errors. This can be prevented by
having obstacles never be deleted by explored space which
may yield pseudo obstacles. While pseudo frontiers decrease
efficiency, pseudo obstacles may keep robots from completing
the exploration process. Pseudo frontiers prolong exploration
because either a robot travels to a pseudo frontier detecting
its mistake or such frontiers cannot be reached. Unreachable
frontiers take additional time due to extended path planning.
Ideally, robots complete exploration simultaneously. Though
pseudo frontiers lead to a high variance of exploration times
per robot T r

n .
We show the corresponding cumulative density function

(CDF) of T r
n values in Fig. 5, i.e., the probability when

individual robots finish exploration due to the absence of
frontiers. The vertical lines again indicate the mean exploration
time T̄ for the corresponding team size. For example, while
for multi-robot systems consisting of r = 3 robots 96 % of
the robots finish exploration within t = 900 s, for r = 1
only 21 % finish exploration in the given time. With an
increasing number of up to three robots, the probability to
finish exploration earlier increases supporting previous results
of faster exploration and verifying the correct implementation
of the packages. Only in case of R = 4 robots the probability
decreases significantly having two reasons. The first reason
is aforementioned pseudo frontiers. The map error e can be
correlated to long exploration times. With increasing map error
e for increasing number of robots, robots are more likely
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Fig. 5: Probability of exploration progress on map depicted in
Fig. 3b

to take a long time to finish exploration. For example, for
r = 4 robots 50 % of all robots take exploration times longer
than 1021 s. Secondly, increased robot interference decreases
efficiency because the environment is too small and simple for
four robots to efficiently distribute.

VIII. CONCLUSIONS

We presented three ROS packages enabling distributed, co-
ordinated multi-robot exploration and invite other researchers
to modify and extend according to their needs. Specifically, the
Ad Hoc Communication package allows reliable unicast and
multicast while not requiring additional infrastructure such as
WLAN access points. It integrates transparently into the ROS
ecosystem, allows transmission of arbitrary data, and supports
basic functionalities of communications such as segmenta-
tion, in-order transmissions and acknowledgments. The Map
Merger package allows to build a global map from multiple
local maps and transform between coordinate systems. The
Explorer package keeps track of already explored space and
implements coordinated multi-robot exploration by assigning
distinct frontiers to robots using auctioning and the Hungarian
method. In comparison to other packages available on ROS,
the packages include application layer protocols allowing out
of the box execution and do not require central control. The
packages are independent of the used hardware and have been
tested on Turtlebot and Pioneer 3-DX robots. Additionally,
simulations show the performance of the packages and verify
their correct implementation. They also highlight the impor-
tance of accurate global maps having a direct impact on the
exploration time. Extensions and modifications to the packages
can be implemented easily according to the individual needs.
We continue to improve and update the packages.
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