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Abstract—Millimeter wave and massive MIMO are consid-
ered enabling technologies for future 5G networks. While their
benefits for achieving high-data rate communications are well-
known, their potential advantages for accurate positioning are
largely undiscovered. We derive sufficient conditions under which
transmission from a single mm-wave base station leads to a non-
singular Fisher information matrix associated with the position
and orientation of a user terminal equipped with multiple
antennas, which is in turn a prerequisite for joint estimation
of the position and orientation.

I. I NTRODUCTION

5G communication networks will likely adopt millimeter
wave (mm-wave) and massive multiple-input-multiple-output
(MIMO) technologies, due to a number of favorable properties.
In particular, operating at carrier frequencies between 30and
300 GHz, with large available bandwidths and with highly
directional communication, mm-wave can provide extremely
high data rates to users through dense spatial multiplexingby
using a large number of antennas [1], [2]. While these proper-
ties are desirable for 5G services, mm-wave communications
also face a number of challenges. Among these challenges, the
severe path loss at those high carrier frequencies stands out.
The resulting loss in signal-to-noise ratio (SNR) must be coun-
tered through sophisticated beamforming at the transmitter
and/or receiver side, leading to highly directional links [3]–[5].
However, this in turn requires knowledge of the propagation
channel. Such knowledge is generally obtained through pilot
signals, which in turn requires some initial alignment.

Location information can serve as a proxy for channel
information to perform beamforming: when the location of
the user is known, the base station can steer its transmission
to the user, either directly or through a reflected path. This
leads to a synergy between localization and communication.
However, in order to reap the benefits of location informa-
tion for highly directional communications, both the devices’
positions and orientations should be accurately estimated.
Today’s technologies cannot always provide this information
in an efficient and reliable manner. For instance, the global
positioning system (GPS) is a well-established technology
that can provide location information outdoors. However,
in GPS-challenged environments (e.g., indoors and in urban
canyons), the accuracy is poor. Other radio technologies, such
as ultra-wide bandwidth (UWB) can be a solution for indoor
positioning, but requires additional infrastructure and suffers

Fig. 1. Two dimensional illustration of the single-link based positioning
problem. The BS locationq and BS orientation are known, but arbitrary.
The location of the MSp, rotation angleα, AOA θRX, AOD θTX , the
channel between BS and MS, and the distance between the antenna centers
are unknown.

from high hardware complexity [6].
In this paper, we show that mm-wave and massive MIMO,

which are both candidate features for 5G communication
networks, are also enabling technologies for accurate position-
ing and device orientation estimation. The limited scattering
and high-directivity are unique characteristics of mm-wave
channel and massive MIMO, respectively. In the line-of-sight
(LOS) conditions, angle-of-departure (AOD) is used for the
estimation of position while angle-of-arrival (AOA) provides
the estimation of orientation. By exploiting these features
together with beamforming, we provide sufficient conditions
under which the Fisher information matrix (FIM) of the
AOA, AOD and time-of-arrival (TOA) of the LOS path of
a scenario illustrated in Fig. 1 is non-singular, in the presence
of an unknown channel. A non-singular FIM is a necessary
condition for the identifiability of the position and orientation
of the user.

II. RELATED WORK

The use of 5G technologies to obtain position and orienta-
tion was previously explored in [7]–[9] for mm-wave and in
[10]–[12] for massive MIMO. The early work [7] considered
estimation and tracking of DOA through beam-switching. User
localization was treated in [8], formulated as a hypothesis
testing problem, limiting the spatial resolution. A different
approach was taken in [9], where meter-level positioning



accuracy was obtained by measuring received signal strength
levels. In the massive MIMO case, [10] considered estimation
of angles, while [11] treated joint estimation of delay, AOD,
and AOA, and evaluated the impact of errors in delays
and phase shifters. However, no formal treatment regarding
sufficient conditions for well-posed position and orientation
estimation with one base station (BS) were provided. In [12],
positioning was solved using a Gaussian process regressor,
operating on a vector of received signal strengths through
fingerprinting.

III. SYSTEM MODEL

We consider a MIMO system with a BS equipped withNt
antennas and a mobile station (MS) equipped byNr antennas.
Let p = [px, py]

T ∈ R2 andq = [qx, qy]
T ∈ R2 be locations

of the MS and BS and letα ∈ [0, 2π) be the rotation angle
of the MS’s antenna array, with respect to the horizontal axis
(see Fig. 1).

A. Transmitter Model

The transmitted signal is given byFx(t), where F =
[f1, f2, . . . , fMt

] ∈ CNt×Mt is a beamforming matrix, in
which Mt ≤ Nt denotes the number of beams. The sig-
nal transmitted1 over theMt beams is denoted byx(t) =
[x1(t), . . . , xMt

(t)]T ∈ CMt .

B. Channel Model

In contrast to [11], we consider only line-of-sight (LOS)
narrowband communication with a bandwidthB and a carrier
frequencyfc. In particular, the narrowband assumption in-
volves (i)B is sufficiently small such that the path loss can be
considered constant over the signaling band; and (ii) the phase
difference between upper and lower band edges for propaga-
tion across the entire array is small, i.e., max(Nt, Nr)d≪ c/B
in which d denotes the distance between the antenna elements
and c is the speed of light. Under these assumptions, the
channel can be expressed as anNr ×Nt matrix

H =

√
NtNr
ρ

h aRx(θRx)a
H
Tx(θTx), (1)

in which ρ is the path loss between BS and MS,h is
the complex gain of the LOS path,aTx(θTx) ∈ CNt and
aRx(θRx) ∈ CNr are the antenna steering and response
vectors,θTx and θRx are the AOD and AOA, respectively,
as depicted in Fig. 1. For concreteness, we will consider a
uniform linear array (ULA) at the transmitter, so that the vector
aTx(θTx) can be written as

aTx(θTx) = (2)
1√
Nt

[1, ej
2π
λ
d sin(θTx), . . . , ej(Nt−1) 2π

λ
d sin(θTx)]T,

1Unlike the system model in [13], where beams are sequentially transmitted
one at the time in each observation time interval, we exploitbeamforming to
multiplexing data onto orthogonal spatial beams simultaneously, i.e., beam-
space MIMO (B-MIMO) [8], [14], [15]. As a result, we obtain a signal that
allows the estimation of AOA, AOD and TOA jointly. This improves the
fundamental bounds on the estimation of position and orientation of the user
significantly.

whereλ = c/fc is the signal wavelength. Correspondingly,
we will assume an ULA at the receiver, thusaRx(θRx) can
be expressed similarly, replacing the subscriptTx by Rx in
(2), and replacingNt by Nr. For notational convenience,
we will use the notationaTx instead ofaTx(θTx). It should
be noted that our analysis can be extended to any antenna
configuration at transmitter and receiver, provided the above
mentioned narrowband assumptions are met.

C. Receiver Model

The observedNr × 1 signal is given by

y(t) = HFx(t− τ) + n(t), (3)

whereτ = ‖q − p‖/c is the propagation delay between BS
and MS andn(t) ∈ CNr is a Gaussian noise vector with zero
mean and two-side power spectral densityN0/2.

Our goal is to determine positionp and orientationα of the
MS from y(t), observed during the time intervalt ∈ [0, Tob).
Note that we do not assume any specific receiver-side process-
ing or beamforming, as we aim to derive afundamental lower
bound.

IV. D ERIVATION OF THE FUNDAMENTAL BOUNDS

In this section, we derive the FIM and the Cramér-Rao
bound (CRB) for the estimation problem of the position
and orientation of a MS using mm-wave MIMO. First, as
an intermediate step, we construct the FIM of the channel
parameters: delay, AOD, AOA, and the real and imaginary
parts of the channel coefficients. Then, by means of a bijective
transformation we obtain the FIM and thus the CRB of the
position and rotation angle, which are the final parameters of
interest.

A. FIM: Channel Parameters

Let η ∈ R5 be the vector consisting of the unknown channel
parameters (delay, AOD, AOA, and channel coefficients)

η =
[
τ, θT,hT

]T
, (4)

where h =
[
hR, hI

]T
with hR and hI being the real and

imaginary parts ofh, θ =
[
θTx, θRx

]T
.

Let η̂ be an unbiased estimator ofη. The mean squared
error (MSE) ofη̂ − η is bounded as [16]

Ey|η

[
(η̂ − η)(η̂ − η)T

]
� J−1

η , (5)

in whichEy|η[.] denotes the expectation parameterized by the
unknown parametersη, andJη is the5× 5 FIM defined as

Jη , Ey|η

[
−∂

2 ln f(y|η)
∂η∂ηT

]
, (6)

wheref(y|η) is the likelihood ratio of the random vectory
obtained from the Karhunen-Loeve expansion ofy(t) condi-
tioned onη. More specifically,f(y|η) can be written as [17]

f(y|η)∝exp

{
2

N0

∫ Tob

0

µH(t)y(t)dt− 1

N0

∫ Tob

0

‖µ(t)‖2dt
}
, (7)



whereµ(t) , HFx(t− τ). The FIM in (6) can be structured
as

Jη =



Φ(τ, τ) Φ(τ, θ) Φ(τ,h)
Φ(θ, τ) Φ(θ, θ) Φ(θ,h)
Φ(h, τ) Φ(h, θ) Φ(h,h)


 , (8)

in which the operator2 Φ(x1,x2) is defined as

Φ(x1,x2) , Ey|η

[
−∂

2 ln f(y|η)
∂x1∂x2

]
. (9)

The entries of the FIM are derived in Appendix A. Here we
only summarize terms includingτ andθ, taking into account
that the norm ofaRx(θRx) is one and hence it is omitted:

Φ(τ, τ) = γ|h|2aHTx,FA2aTx,F, (10)

Φ(τ, θTx) = γ|h|2ℜ{jaHDTx,FA1aTx,F}, (11)

Φ(τ, θRx) = γ|h|2ℜ{jADRx
aHTx,FA1aTx,F}, (12)

Φ(θTx, θTx) = γ|h|2aHDTx,FA0aDTx,F, (13)

Φ(θTx, θRx) = γ|h|2ℜ{ADRx
aHTx,FA0aDTx,F}, (14)

Φ(θRx, θRx) = γ|h|2ADdRx
aHTx,FA0aTx,F, (15)

whereγ = 2NtNr/(ρN0). We have introduced a number of
notations:An, n ∈ {0, 1, 2}, is given by

An ,

∫ B/2

−B/2

ωn x(ω)xH(ω)dω, (16)

where the integral is applied element-wise,x(ω) =[
x1(ω), . . . , xMt

(ω)
]T

wherein xi(ω) is the Fourier trans-
form of xi(t). The vectorsaTx,F and aDTx,F are given by
aTx,F = FHaTx, aDTx,F = FHDTxaTx. The matrixDTx is
defined as

DTx , j
2π

λ
d cos(θTx)diag{0, . . . , NTx − 1}. (17)

The scalarsADRx
andADdRx

are defined as

ADRx
, aHRxDRxaRx, (18)

ADdRx
, aHRxDRxD

H
RxaRx, (19)

whereDRx has the same expression as (17) by replacing the
subscriptTx by Rx, and aRx(θRx) is replaced byaRx for
notational convenience.

B. CRB for Position and Orientation

In this section, we derive the FIM of the unknown position
and orientation of the MS. We consider a parameter trans-
formation fromη to η̃ ,

[
pT, α,hT

]T
, whereη and η̃ are

related by (see also Fig. 1):τ = ‖q − p‖/c, cos(θTx) =
(px − qx)/(‖q − p‖), andα = π + θTx − θRx. This allows
us to expressη as a function of̃η. Therefore, by means of a
bijective transformation, the FIM of̃η can be obtained as

Jη̃ = TJηT
H, (20)

where

T =



∂τ
∂p

∂θT

∂p
∂hT

∂p
∂τ
∂α

∂θT

∂α
∂hT

∂α
∂τ
∂h

∂θT

∂h
∂hT

∂h


 , (21)

2If x1 andx2 are scalars, thenΦ(x1,x2) is also a scalar.

in which ∂τ/∂p = c/u,

∂θTx

∂p
=
∂θRx

∂p
=

1

‖q− p‖

[
0 −1
1 0

]
u, (22)

and ∂θRx/∂α = −1, ∂hT/∂h = I2 where I2 is the 2 × 2

identity matrix, andu =
[
cos(θTx), sin(θTx)

]T
. The remain-

ing terms in the transformation matrixT are zero. It can be
seen that the transformation matrixT has full rank.

V. NON-SINGULAR FIM WITH ONE BASE STATION

Now, we provide sufficient conditions forJη to be non-
singular. Note that these conditions also imply thatJη̃ is non-
singular, sinceT has full rank. For notational convenience
we will limit ourselves to signalsx(t) for which A1 = 0.
We also limit ourselves towell-posed systems, for which all
diagonal elements inJη are strictly greater than zero. This
places certain natural requirements on the system (e.g., the
number of transmit and receive antennas should be greater
than 1), by ensuring that each parameter inη can be estimated
when the other parameters are known.

Proposition 5.1: Consider a MIMO system, signalx(t),
and beamforming matrixF designed such that the system is
well-posed. For such as systemJη has full rank if and only
if A0 has at least two non-zero eigenvalues.

Proof: See Appendix B.
From the proposition, it follows that it is required to use at

least 2 beams and that the signal need to be properly designed
in order to obtain a non-singular FIM. It should be noted that
a non-singular FIM is in general not a sufficient condition for
unambiguous determination of position and orientation, due
to the possibility of multiple optimal points of the likelihood
function.

VI. SIMULATION RESULTS

In this section, we present simulation results to demonstrate
the performance of the proposed bounds with respect to
different parameters.

A. Simulation Setup

We setfc = 60 GHz, B = 100MHz, N0 = 2W/GHz and
ρ = K‖q−p‖2 in whichK = 1. The inter-element spacing is
assumed to bed = λ/2. The number of transmit and receive
antennas are set toNt = Nr = 64, while the number of beams
is fixed toMt = 3. We have generated a signalx(t) for which
A0 andA2 areMt×Mt diagonal matrices3 andA1 ≈ 0. The
system parameters are set such that within one meter of the
transmitter, the SNR varies over a range of approximately 38
dB. We consider a scenario that the BS is located at a fixed
positionq = [0, 0]T and the MS is placed in a square area of
10 m× 10 m. We fix α = 0 rad and the unknown channel to
h = (1 + j)/

√
2. We use a64× 3 TX beamformer matrixF

with the i-th column defined as

fi =
[
1, ej

2π
λ
d sin(ψi), . . . , ej(Nt−1) 2π

λ
d sin(ψi)

]T
, (23)
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Fig. 2. PEB performance for different locations of the MS, for a scenario
with 3 beams in the directions[+π/5,−π/3,+π/5+0.01]. For visualization
purposes, PEB values were truncated above 10 m.

in which [ψ1, ψ2, ψ3] = [+π/5,−π/3,+π/5+ 0.01].
Performance is measured in terms of the position er-

ror bound (PEB, expressed in meters) and the rotation er-
ror bound (REB, expressed in radians), where4 PEB ,√
tr{[J−1

η̃ ]1:2,1:2}, andREB ,

√
[J−1

η̃ ]3,3.

B. Results and Discussion

Fig. 2 shows the PEB for different locations of the MS.
As expected, in the directions of the beams, the PEB has
the lowest values, while in the other locations the value of
PEB is much higher. More specifically, for a distance of
‖q − p‖ = 1 m, the PEB in the directions of the beams is
approximately17cm (corresponding to10 log10(PEB) ≈ 7.6)
while the highest PEB is approximately13.7m (corresponding
to 10 log10(PEB) ≈ 11.4), if we ignore values forx ≈ 0. We
note that while increasing the transmitted power will decrease
the PEB, what is important to note from the figure is the
extremely large range of PEB values, with variations over
multiple orders of magnitude. We also observe the impact of
the different beams: in the direction ofπ/5, the two beams
provide increased SNR, leading to better TOA information (in
the Fisher sense) and good information regarding AOD. In
the direction of−π/3, the single beam provides good TOA
information, but leads to poor AOD information (except for
MS locations close to the BS). Hence, the PEB in the direction
of −π/3 is higher. At larger distances, say 5 meters, the PEB
in the directionπ/5 is still around 86 cm.

Fig. 3 shows REB for different locations of the MS. We
observe that for the same conditions as in Fig. 2, the results
confirm our previous findings. When the MS is within one
meter of the BS, REB values range from 0.0014 rad in the

3In particular A0 ≈ 8 × 10−3I and A2 ≈ 6.6 × 10−4I, obtained by
generating white Gaussian signals.

4Here [J−1

η̃
]1:2,1:2 denotes the2 × 2 block from the first two rows and

first two columns of the inverse of the FIMJη̃ .

0 1 2 3 4 5 6 7 8 9 10

-5

-4

-3

-2

-1

0

1

2

3

4

5

-35

-30

-25

-20

-15

-10

-5

0

x [m]

y
[m

]

10 log10(REB)

Fig. 3. REB performance for different locations of the MS, for a scenario
with 3 beams in the directions[+π/5,−π/3,+π/5+0.01]. For visualization
purposes, REB values were truncated aboveπ/2 rad.

direction π/5, over 0.05 rad in the direction−π/3, up to
0.2 rad outside any of the beams. We observe that in the
direction −π/3, the single beam cannot provide good REB
values. This is because even though the AOA information is
high, the low AOD information results in high REB in the
direction−π/3. Interestingly, even at larger distances, say 5
meters, REB values are still around 0.007 rad.

VII. C ONCLUSION

We have presented a study of the fundamental bounds
of a narrowband MIMO mm-wave system. Using a LOS
channel model, we have first computed the FIM for delay,
AOD, AOA, and channel gain. We have then transformed
the FIM to comprise the position and rotation angle of MS.
We have proved that obtaining a non-singular FIM with one
BS in a LOS mm-wave system is possible by using multi-
beam transmission and appropriate signal design. Numerical
results confirm that in the direction of isolated beams, neither
position nor orientation can be estimated well, due to the
poor information regarding in AOD. Multiple nearby beams
provide good conditions for joint estimation of position and
orientation.

APPENDIX A
ELEMENTS IN (8)

In what follows, we provide the proofs for the elements of
the FIM presented in (10) to (15). Replacingy(t) from (3) in
(7), using (9), and consideringEy[nQ(t)] = 0, we obtain

Φ(x1, x2) =
2

N0

∫ Tob

0

ℜ
{
∂µH(t)

∂x1

∂µ(t)

∂x2

}
dt. (24)

First of all,

Φ(τ, τ) =
2

N0

∫ Tob

0

ℜ
{
∂µH(t)

∂τ

∂µ(t)

∂τ

}
dt (25)

(a)
= γ|h|2

∫ Tob

0

ℜ
{
aHTx,FS

′′

x(t− τ)aTx,F

}
dt,



where (a) is the result of rearranging a complex scalar and
definingS

′′

x(t− τ) as

S
′′

x(t− τ) =
∂x(t− τ)

∂τ

∂xH(t− τ)

∂τ
. (26)

Finally, (10) is obtained by using the Parseval’s identity.
The termΦ(τ, θTx) is obtained as follows:
Φ(τ, θTx) = (27)

γ|h|2
∫ Tob

0

ℜ
{
∂xH(t− τ)

∂τ
aTx,F

∂aHTx,F

∂θTx
x(t − τ)

}
dt.

Since∂aHTx,F/∂θTx = aHTxD
H
TxF, we find (11) after applying

the Parseval’s identity.
The termΦ(τ, θRx) is obtained as follows:

Φ(τ, θRx) = (28)

γ|h|2
∫ Tob

0

ℜ
{
∂xH(t− τ)

∂τ
aTx,Fa

H
Rx

∂aRx

∂θRx
aHTx,Fx(t− τ)

}
dt.

Since∂aRx/∂θRx = DRxaRx, applying the Parseval’s identity
leads to (12).

The term Φ(τ,h) is obtained by taking the derivative
with respect to real and imaginary parts of complex channel
coefficienth and applying the Parseval’s identity, leading to

Φ(τ,h) = (29)

γ
[
ℜ{jh∗aHTx,FA1aTx,F},−ℜ{h∗aHTx,FA1aTx,F}

]
.

The termΦ(θTx, θTx) is obtained as
Φ(θTx, θTx) = (30)

γ|h|2
∫ Tob

0

ℜ
{
xH(t− τ)

∂aTx,F

∂θTx

∂aHTx,F

∂θTx
x(t − τ)

}
dt.

Since∂aTx,F/∂θTx = FHDTxaTx, we find (13).
The termΦ(θTx, θRx) is obtained as follows:

Φ(θTx, θRx) = (31)

γ|h|2
∫ Tob

0

ℜ
{
xH(t− τ)

∂aTx,F

∂θTx
aHRx

∂aRx

∂θRx
aHTx,Fx(t− τ)

}
dt.

Since ∂aTx,F/∂θTx = FHDTxaTx and ∂aRx/∂θRx =
DRxaRx, applying the Parseval’s identity leads to (14).

The termΦ(θTx,h) can be obtained by taking the deriva-
tives with respect to real and imaginary parts of the channel
coefficients andθTx and using the Parseval’s identity as

Φ(θTx,h) = (32)

γ[ℜ{h∗aHTx,FA0aDTx,F
},ℜ{jh∗aHTx,FA0aDTx,F

}].

The termΦ(θRx, θRx) is obtained as

Φ(θRx, θRx) = (33)

γ|h|2
∫ Tob

0

ℜ
{
xH(t− τ)aTx,F

∂aHRx

∂θRx

∂aRx

∂θRx
aHTx,Fx(t− τ)

}
dt.

Replacing the derivatives and using the Parseval’s identity
leads to (15).

The termΦ(θRx,h) can be obtained similarly by taking the
first derivative with respect toθRx using the same procedure

as (33), and the second derivative with respect to real and
imaginary parts of channel coefficienth and applying the
Parseval’s identity as

Φ(θRx,h) = (34)

γ[ℜ{h∗A∗
DRx

aHTx,FA0aTx,F},ℜ{jh∗A∗
DRx

aHTx,FA0aTx,F}].

Finally, the termsΦ(hR, hR), Φ(hI, hI), andΦ(hR, hI) are
obtained as

Φ(hR, hR) = Φ(hI, hI) = γℜ{aHTx,FA0aTx,F}, (35)

and
Φ(hR, hI) = γℜ{jaHTx,FA0aTx,F} = 0, (36)

by taking the derivatives with respect to real and imaginary
parts of channel coefficienth and applying the Parseval’s
identity.

APPENDIX B
PROOF FORPROPOSITION5.1

The FIM of η is of the following form

Jη =



Φ(τ, τ) 0T 0T

0 Φ(θ, θ) Φ(θ,h)
0 Φ(h, θ) Φ(h,h)


 . (37)

Due to the well-posed system requirement,Φ(τ, τ) > 0, so we
only need to prove that the rank of4 × 4 lower right matrix
in (37) is 4, since thenJη would be full rank. We will denote
this 4× 4 matrix byM.

We expand the positive semidefinite (PSD) matrixA0 as
A0 = UΛUH in which U is theMt ×Mt matrix whosei-
th column is the eigenvectorui andΛ is a diagonal matrix
whose diagonal elements are corresponding eigenvaluesλi ≥
0. The eigenvalues are assumed to be ordered so that the first
M̃t ≤Mt eigenvalues are non-zero, whileλi = 0, for i > M̃t.
SubstitutingA0 = UΛUH back into (37), and plugging in
the appropriate entries from Appendix A, the lower4 × 4
matrix can then be written as (without loss of generality, we
setγ = 1):

M =

M̃t∑

i=1

λi

[
ζi µT

i

µi Ωi

]
, (38)

in which

ζi = |h|2|aHDTx,Fui|
2, (39)

µi =
[
|h|2ℜ{ADRx

βi},ℜ{h∗βi},−ℑ{h∗βi}
]T
, (40)

Ωi = |aHTx,Fui|2Ω, (41)

whereinβi = aHTx,Fuiu
H
i aDTx,F and

Ω =

[
|h|2ADdRx

ρT

ρ I2

]
, (42)

in which ρT = [ℜ{h∗A∗
DRx

},−ℑ{h∗A∗
DRx

}].
We introduceΩ̃ =

∑M̃t

i=1 λiΩi =
∑M̃t

i=1 λi|aHTx,Fui|2Ω,

µ̃ =
∑M̃t

i=1 λiµi andζ̃ =
∑M̃t

i=1 λiζi. We recall that̃ζ > 0 due



to the well-posed system. Regarding the lower3 × 3 matrix
of M, we find that

det(Ω̃) =
( M̃t∑

i=1

λi|aHTx,Fui|2
)3

det(Ω) (43)

=
( M̃t∑

i=1

λi|aHTx,Fui|2
)3

|h|2(ADdRx
− |ADRx

|2),

which is non-zero, since (i)ADdRx
> |ADRx

|2 and (ii) if
|aHTx,Fui|2 = 0, ∀i, this would implyΦ(θRx, θRx) = 0, thus
violating the well-posed system condition. Therefore, therank
of M is at least three.

Now, since

det(M) = det(Ω̃)(ζ̃ − µ̃TΩ̃−1µ̃), (44)

the condition forM to be of full rank is that

ζ̃ − µ̃TΩ̃−1µ̃ > 0. (45)

Note that this condition is nothing else than the equivalent
FIM of the AOD being strictly positive.

It is readily verified that

Ω−1
i =

1

|aHTx,Fui|2 det(Ω)

[
1 −ρT

−ρ Ψ

]
, (46)

whereΨ is the2× 2 matrix with elements

ψ1,1 = |h|2ADdRx
−ℑ2{h∗A∗

DRx
}, (47)

ψ1,2 = −ℑ{h∗A∗
DRx

}ℜ{h∗A∗
DRx

} = ψ2,1, (48)

ψ2,2 = |h|2ADdRx
−ℜ2{h∗A∗

DRx
}. (49)

Using the fact that

|h|2ℜ{ADRx
βi} = ℜ{(h∗βi)(h∗A∗

DRx
)∗} (50)

= ℜ{h∗βi}ℜ{h∗A∗
DRx

}+ ℑ{h∗βi}ℑ{h∗A∗
DRx

},
we obtain

µT
i Ω

−1
i µi =

|h|2|βi|2
|aHTx,Fui|2

= ζi, (51)

and
µT
i Ω

−1µj = |h|2ℜ{βiβ∗
j }. (52)

Substitution ofζ̃ =
∑M̃t

i=1 λiζi and (51) and (52) into (45)
yields the equivalent condition for full-rankM:

M̃t∑

i=1

ν

νi
|λiβi|2 −

∣∣∣∣∣∣

M̃t∑

i=1

λiβi

∣∣∣∣∣∣

2

> 0, (53)

whereνi = λi|aHTx,Fui|2, ν =
∑M̃t

i=1 νi. We now distinguish
two cases:

• Case 1 (̃Mt = 1): In this caseνi = ν, and (53) is clearly
not fulfilled. Hence,M does not have full rank and thus
Jη is not of full rank.

• Case 2 (̃Mt > 1): Now νi < ν, so that due to the Cauchy-
Schwarz inequality, (53) must be true. Hence,M andJη

have full rank.
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