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Abstract—Massive MIMO is a promising technique to meet
the exponential growth of global mobile data traffic demand.
However, contrary to the current systems, energy consumptin
of next generation networks is required to be load adaptive &
the network load varies significantly throughout the day. In this
paper, we propose a load adaptive massive MIMO system that
varies the number of antennas following the daily load profié
(DLP) in order to maximize the downlink energy efficiency (EB.
A multi-cell system is considered where each base station & is
equipped with a large number of antennas to serve many single
antenna users. In order to incorporate DLP, each BS is modetke
as an M/G/m/m state dependent queue under the assumption
that the network is dimensioned to serve a maximum number
of users at the peak load. For a given number of users in a
cell, the optimum number of active antennas maximizing EE is
derived. The EE maximization problem is formulated in a game
theoretic framework where the number of antennas to be used
by a BS is determined through best response iteration. Thisolad
adaptive system achieves overall9% higher EE compared to a
baseline system where the BSs always run with the fixed number
of antennas that is most energy efficient at peak load and that
can be switched-off when there is no traffic.

Index Terms—Massive MIMO, Energy efficiency, M/G/m/m
Queue

|. INTRODUCTION
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design parameters; namely, number of BS antennas, number
of users and transmit power. They also show that the energy
optimal strategy requires increasing the transmissionepow
with the number of antennas if the circuit power consumption
is taken into account. In_[6], an adaptive antenna selection
scheme has been proposed where both the number of active RF
(radio frequency) chains and the antenna indices are edlect
depending on the channel condition. However, none of these
studies has provided any mechanism to cope with the daily
load variation and maintain high EE throughout the day in a
multi-cell scenario.

In this work, we find the optimum number of BS antennas,
M, maximizing the EE of a multi-cell massive MIMO system
for any given number of userds. Note that we measure the
EE in bit/Joule, i.e., ratio between the average achievdaia
rate and the total average power consumption [4], [7]. As we
want to maximize EE throughow@4 hour operation of the
network, we optimizeM following the DLP. In order to map
the user distribution to the DLP, we model each BS as a state
dependentM /G /m/m queue([8], [9] and utilize the DLP as
suggested in[[10]. Thé//G/m/m queue dictates that for
exponential arrival and general distribution of servicme]

The goal of5G cellular networks is to provide thousand fold maximumm number of users can be served simultaneously
capacity increase while keeping the same cost as today.eAs tlfinumber of servers m, waiting place = 0). The state depen-

network load varies significantly throughout the day, it é&sw

dency arises from the fact that the user rate depends on the

important thabG networks are capable of adapting their powernumber of users the BS serves simultaneously. We assume
consumption with this temporal variation of load. Massivethe maximum number of users that a BS is allowed to serve
MIMO is expected to be a leading candidate technology thais m=K,,,, and the network is dimensioned in a way that
can cater very high capacity. In massive MIMO systems, eacthis K,,,, corresponds to the peak load of the DLP. We find
BS uses hundreds of antennas to simultaneously serve tens &f,,,.., corresponding optimum number of antennas,,..

user equipments (UEs) on the same time-frequency resour@nd optimum average power per antenpathat maximize

[1]. This study aims to give an insight to the energy efficientEE when serving the peak load, with the assumption of fixed
design of multi-cell massive MIMO system taking into accbun average transmission power per antenna and considering the
the dynamic efficiency of a power amplifier (PA) and adaptiverealistic efficiency characteristics of non-ideal powerpéifier

activation of antennas following the DLP.

(PA). Note that under this assumption the network becomes

Recently, both massive MIMO and energy efficiency ofmost energy efficient when serving maximum load. As the

wireless systems have garnered significant attenfion[@R]-[ number of antennas that maximize the EE of a cell depends
In [3] and [4], the role of circuit power in EE of massive on the number of antennas used by the interfering cells,
MIMO has been emphasized. Specifically, in [4], it has beerwe propose a distributed algorithm where the number of
shown that without accounting for circuit power consumptio antennas is determined through a best response iteraton. A
an infinite EE can be achieved as the number of antennathe formulated EE maximization problem is not convex with

M — oo, which is misleading. In[]4] and_[5], the authors M, we resort to a game theoretic approach to achieve the
show that the EE is a quasi-concave function of the three mainonvergence of the proposed algorithm to a Nash equilibrium
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In the numerical section, we illustrate the potential tosymbols), K,,.. is the maximum number of users assumed
increase EE by adapting the number of antennas in a multi-celo be the same for all cells[1 — % accounts for the

massive MIMO system. We observe that the gain in EE is evefecessary overhead for channel estimaf®is the bandwidth,
around 300% at very low load when compared with a baseling = _— E{—L—}, where the random variable.., i, is

system which does not adapt the number of_antennas to thRe channel variance from the serving BS a@}#c AvapMy
DLP, i.e., each BS use¥,,,, antennas if there is at least one 5 the average inter-cell interference power from eélio ¢

user and turns off all the antennas otherwise. However, thiﬁormalized byA... Note thatR. is achieved by averaging
. . . . . ccH C
gain keeps decreasing with the increase in load. We see thél{,er the locations of the users of cell As a result,R, is a

over24 hour operation, the overall gain is 19%, when the dayiactable lower bound on the average capacity of a cell.
is divided into 24 intervals, i.e., hourly average load is used
as input. I1l. PROBLEM FORMULATION

The rest of the paper is organized as follows: in Sedfibn Il, |n this study we want to maximize the EE of the multi-
we present the system model and in Secfioh Ill, we formulateell massive MIMO system defined in Sectioh II. The EE is
the EE maximization problem. The optimization algorithm defined as the number of bits transferred per Joule of energy
based on best response iteration is presented and discussgfi hence can be computed as the ratio of average sum rate
in Section[IV. In Sectio V/, we illustrate the findings of the (in bit/second) and the average total power consumption (in
numerical analysis. We conclude the paper in Se¢tidn VI.  joule/s)[[5]. Power consumed in a BS depends on the number
Il. SYSTEM MODEL of active antennas and number of users served simultaneousl

, . ) _If P!'(K., M,.) denotes the total energy consumed by a

Let us consider the downlink of a multi-cell massive gg \yhen servingk, number of users simultaneously using

MIMO system consisting of cells with indices in the set M, antennas and®. (K., My, {My}a..) denotes the resulting

€ ={1,2,..,C} and each having its own BS. In the following ,erage data rate per user, the corresponding EE will be
the terms cell and BS are used interchangeably. The B
uses M. antennas to serve{. single antenna UEs. Each pp _ Average sum rate K R.(K., M., {Md}dic)_

antenna of the BS has its own power amplifier. We consider Power consumption: Plot(K., M.)
Rayleigh fading channels to the UEs and the spacing betweerhe EE maximization problem for cefl for a particular load
adjacent antennas at the BS is such that the channel compgan be expressed in the following way:
nents between the BS antennas and the single-antenna UEs

) K. Ro(Ke, Mo, {Ma}az.)

Vserving

are uncorrelated. Under the assumption of this independent maximize — (2i)
fading and considering the fact that power gets averaged ove M Plot(Ke, M) )
many subcarriers, each antenna uses the same average power. subjectto K. +1 < M, (2ii)

Let us denote this average transmit power per antenng, by

) . where M, is the number of the antennas used by any other
hence, the total transmit power of cellis P. = pM.. The d y-any

ber of acti ‘ ¢ ther ab is M q cell d, d # ¢, and the constraint comes from the requirement
number of active antennas of any other e&lf c is My an of zero forcing precoding. However, the network loads vary

the correfpond|r:g transm|ft po;vser_& :tZ;'Md(.j NOti thaF the _ththroughout the day. In order to capture the daily load vianmat
average transmit power of a IS not fixed as it vanes With, 4 maximize EE throughout the day, we model each BS as an
the number of active antennas. The large-scale fadingthe.

, . M /G/m/m state-dependent queue. Let us consider that during
average channel attenuation due t(_) path-loss, scattexirg, time intervalh, the steadystate probability of the BServing
shadowing from the BS to the UEs is assumed to be the same L ber of users, i.ePr|K, — n] is denoted byr.(h, n).
lafur objective is to maximize EE by adapting the number
of active antennas for any user states taking the received
fhterference into account. The main problem formulation fo

BS ¢ can be rewritten as

BS is much larger than the distance among the antennas.
Let us assume that the BSs and UEs employ a time-divisio
duplex (TDD) protocol and are perfectly synchronized. Vé®al
assume that the BS obtains perfect CSI from the uplink pilots o " "
ich i i i o S Re(n, M {My" Yaze
which is a reasonable assumption for low-mobility scersario maximize Z Zﬂc(h,n)n (n {M;" Yaze)

Each BS employs zero forcing precoding so that the intracell , — = Ptot(n Mc(h)) (37
interference is canceled out and the power allocation ipteda , h=1n= () ¢ ’ .
to make sure that all the users achieve the same average dat@UPiect t0n +1 < M (n) < Miax (3ii)

rate. Let us denote this rate for the users in cddiy R.. Note where Rc(n,Mc(h), {Méh)}#c) is the average rate per user

that 1t is a function of K., M. and My, d € C, d # c. The - \ypan there arer number of users in the cell at time interval
average data rate achieved by each user in ceihder the h. M, = [M((jl)M((JQ)_“M(H)

b ; be gi ¢ '] where M) is the vector that
above assumptions can be given byl[11] gives the number of antennas that maximize EE at different

Koan pie (M, — K.) user states in celt during the time intervak. The constraints
Rc:B(l_ T )1og2 <1+A 02;2 A M) (1)  come from the requirement of zero forcing. Note that EE
¢ « dc SedDd optimization could be divided into any arbitrary number of

whereT, is the length of the channel coherence interval (intime intervals, H. In this work, we setH = 24 in the




simulations in order to optimize the system owugt hour In order to find the steady state probability distribution
operation where we use the hourly average network load abroughout the day, first we set the values forand s. As
input. As the solution for the probleni](3) depends on thewe allow 2% blocking rate while servintp0% load, we find
actions taken at other BSs, we formulate the joint optinzat the maximumJ, i.e., A4, that resultsm(K,,.,) = 0.02

under a game theory framework. for a fixed s. Assuming thats remains constant, we derive
) the hourly average number of users following the DLP using
A. Traffic model Amaz. FOr example, from the DLP, if the average load at any

The maximal number of users that can be served simultdime intervalh is 2%, the corresponding average number of
neously is derived based on the queuing model and is denoté$ersA, = 155 - Amaz- This Ay, has been used as the input
by m = K,.... Users achieve different data rates as thelo the M/G/m/m queue to find the steady state probability
number of users served by the BS changes. The network @stribution of the users during time interval Fig.[1 gives
assumed to be dimensioned in a way that the data carridwo example plots of the user distribution for 50% and 100%
by the cell while servingk,,.. corresponds to the peak load loads with the parameters provided in Sectioh V. Note that
of the DLP. In a queuing system with no buffer space, thefor 100% load, the probability of serving .. = 93 users is
blocking probability is equal to the probability of havinget 0.02.
system 100% loaded, i.e., probability of haviig,,, number )
of users. This can be explained by the PASTA (Poisson Asival B- Power consumption model
See Time Averages) property which holds when the arrivals The total power consumed in a BS is given by
are following the Poisson process. In this work, we allow at rot
most2% blocking at peak load, i.e., the probability of serving P (Ke, Me) = McPpa(p) + Pep(Ke, Mc) + Potn
the maximum allowed number of users,,. . Simultaneously \yhere Pp 4 (p) gives the power consumption of a PA when
is 0.02. In order to capture the daily traffic variation, we the average output power is, Psg(K,, M.) is the base
consider the DLP proposed for data traffic in Europel [10].hand signal processing power when the BS seifgsiumber
The steady state probabilities for the random number ofsuseif ysers simultaneously withZ. number of antennasPoq,

K in the BSc modeled as\//G/m/m state-dependent queue, includes the load-independent power for site cooling, rmint

Te(n) = Pr[K.=n], are as follows:[[8] signal, DC-DC conversion loss, etc. For baseband and fixed
[)\ R r power consumption we use the model proposed_In [4]. The
R.(1) total circuit power is given by

7(0),n=1,2,...m,

i nf(m)f(n = 1)--fBFQ) Pcp = Prc + Pce + Peyp + Pup-

where(0) is the probability that there is no user in cell The power consumed in the transceiver is giveniy: =

and is given by MPgs + Psyn Where Pgg is the power required to run
s 71t the circuit components, e.g., converters, mixers and dilter

77_1(0) 14 i [/\Rc(l)} attached to each antenng at the !38 dhgy is the power

¢ — | df@)fE—1). f(2)f(1) consumed by the local oscillatdfcg is the power required for

channel estimation procesBc,p, is the total power required
where 77 is the expected service time when BServes a for channel codingPoop and channel decodingprc. Frp
single userf(n) = R.(n)/R.(1) whereR.(n) is the data rate IS the power consumed for linear processing. According o [4
per user while serving number of users) is the arrival rate, the total baseband power can be expressed as
ands is the total data traffic contribution by a single user. Note 3 2

that we use[{1) to find the data rates at different user states. Pgp(M,, K.) = AK R+ Y CoKi+M.»  Cy K}
=0 i=0
0.07 T 'r%& T T T T T T T chB CcEB
0081 ; % ] where Coo = Psyn,Con = 0,Cop = 0,Co3 =
0.05 sk 1 —3TC§B5701,0 = Pps,C11 = %(2_4' T%)acl.,z = LS_BBSaA =
_ 004t 1 X A Pcop + Pprc, R is the rate achieved by a user on average
30.03, Y X . ] as given in equation’{1) an® is the bandwidth. Note that
| % X & | the power consumptio6F? is independent of the number of
002 # 1 &£ antennas used.
001 g W&& 1 For traditional PAs, the total input power needed for mean
0 el output transmission powercan be approximated &s [17], [13
p p pp
0 10 20 30 40 50 60 70 80 90 100 = -

Number of users, K 1
Ppa(p) = ;\/P * Praz,PA

Fig. 1. User distribution while serving0% and100% cell load with the
parameters given in Secti¢d V. wheren denotes the maximum PA efficiency when transmitting



the maximum output powe,;,..,p.4. Note that the maximum ‘Ajgorithm 1 Best response iteration
mean transmit power,,,. must be around dB less than M, « Moo -1.VceC.

Ppq2,p4 due to the high peak to average power ratio (PAPR) maxtol — 1 ’

of recent technologies, e.g., OFDM. The total power consump
tion at BSc can be written as

while maxtol+# 0 do
forall ceC do

Piotal = Co + C1 M, 4) 14 ¢
BB BB M_. >, Ma(n)m,,Vn € Ug,¥d : d # ¢
whereCy = CBB + Poy, andCy = CBB + Pp4(p). Define strategy spacs. based on[{7)

M < argmax g ey, m_,) Ee(M—¢)

IV. BEST RESPONSE ITERATION AND ALGORITHM
tol. + M. — M|

The objective function in [{3) involves summation over all M, — M,
the user states at different hours. Let us rewrite the proble end for
@) using [1) and[{4) as maxtol < max. (tol.)
H m end while
. nBlog (1 — nMcye1 + Ye1 M?)
maximize <(h, : .
M. ;;ﬂ ( n) Co+Ci1 M,
(5i) We present the best response optimization algorithm in the
subjectton + 1 < M.(n) < Muyax (5ii) form of pseudocode, see Algorithin Initially, the number
N _ _ _ of antennas of all the cells are set to the maximu,, ..

where~. 1 = (ACCUQJFZZPC Aoy 1S the achieved signal to We start the best response iterations from #hé cell. The

interference plus noise ratio (SINR) by celfor using a single interference level received by any user in the eeli.(M_.),

antenna angs = (1 — K%m ). Note that we drop: from is a function of the number of antennas used in the other,cells

notationM!") henceforth as the optimization for different time M. In order to compute the interference leve(M._.),

interval . can be carried out separately. The objective functiorit 1S @ssumed that the-th interfering BS,d # ¢, transmits
when the BS is serving a particular number of usersan be with the number of antennas found from the weighted mean

broadly written as of the number of antennas for its diffe_rent user states i.e.,
5 S Ma(n)ma(n),Vd:d # c. Once the interference caused

B, = nBlog (1 — nMcyen + %,1MC). (6) to thecth cell is calculated, we identify the strategy space

Co + C1 M, for the c-th cell based on equatiof](7). Finally, we find the

As the transmit power of a BS depends on the number ofector of antennas that maximizes EE at different user state
active antennas, the number of active antennas for differen\l’c «+ argmax, cs,(m_.)Ec(M-.) Where *-" indicates
cells are coupled due to inter-cell interference. As a tetd  the direction of value assignment. We have to iterate over al
objective function in[(b) for celt is dependent on the number the cells and optimize the antenna vector for each cell. The
of antennas used by other cells and there is no closed foriterations are carried out until the antenna vector for ezgh
expression forM/,.. Because of that we resort to an algorithm converges, i.e., there is one iteration where none of thenaat
based on best response iteration in a game theoretic frarkewo numbers changes.

In this framework, each BS iteratively finds the most energy The number of antennas for a user staeV.(n),n € U,

efficient number of active antennas taking into account thes jndependent of the antennas used for the other user tates
interference from the surrounding BSs. In order to forneilat ha same cell. Therefore. in order to carry out the optinvzat

@), in a game theoretic framework, we s_tart by defining the_step,/\/l’c  argmax s, vy Be(M_), it is sufficient to
set of feasible number of antennas at different user state iBlve the optimization problenﬁ(S) separately for each user

cell ¢, U = {1,2,...,m}. The setS, of feasible number of gate For the given number of antennas of the interfering
antennas for the cetlis a function of the number of antennas ggg the interference is known. For known interference the

at the interfering BSSM .. EE problem for any user state is a quasi-concave function of
Se(M_o)={Me(n) :in+1< Mo(n) < Mpaa¥n € U.}. (7) M. @s itis a ratio of_ a concave and an affine function of
_ S M, [14]. As a result, it suffices to compute the value of the
Next, we define th&E maximization gamej(K, S, £) where  gpjective function at the stationary point and at the enahisoi

the players are the BSsy = 51 x Sz x -+, Sc is the  of the interval to identify the optimal/,..

strategy space, i.e., space of number of active antennds, an | der t th ¢ the best
& =E.(M.,M_.),ceCis the utility of the players, i.e., EE n order to prove the convergence of the best response

of the cells. Thébest responsis the strategy (or strategies) that strategy for dynamic adaptation of the number of antennas to

produces the most favorable outcome for a player given oth ash equilibrium, it can be shown that the objective functio

players’ strategies. The use of best response strategy dsee asincreasing differencesn (M., M_.) which enables us
to a dynamic system of the form to formulate the problem as auper-modular gamdl5].

Therefore the best response converges tdaah equilibrium
M. = argmaxMcesc(Mfc)Ec(Mc,M_c),Vc. (8)  which is uniquel[15].



V. NUMERICAL ANALYSIS

number of active antennas adapts to the user profile. The rati

We consider the downlink of a cellular network with 19 between the number of antennas and the number of users is

is applied in order to get rid of the boundary effect. The€nds up slightly higher than two at high load. Overall, the
maximum cell radius i$00 m if not otherwise specified. The relation between the number of antennas and the number of

users that reside in the innd6 m from the cell center are USEers is quite linear.

not considered in this analysis and a uniform user distigbut
has been assumed outside that range. Note that we consic
15000 test points in each cell in order to calculate the averag:
channel variance from the serving B&,.. and the average
inter-cell interference power\.;. We also consider uniform
load for the cells. The parameters for the simulation aremgiv
in Table[l. Some of them are taken frof [5].

200
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TABLE |
SIMULATION PARAMETERS

Reference parameters

Parameter

Value

Number of cells

19

Grid size inside each cell

15000 points

Cell radius:d,,q2

500 m

Minimum distanced,,,;, 35 m
Maximum PA efficiency 80%
Path loss at distance d hgﬁ%
Local oscillator powerPsyn 2 W
BS circuit power:Pgg 1w
Other power:Poy 18 W

Power for data codingPcop

0.1 W/(Gbit/s)

Power for data decoding”pgc

0.8 W/(Gbit’s)

Computational efficiency at BSsg | 12.8 Gflops/W
Bandwidth 20 MHz
Total noise powerBo? -96 dBm

Channel coherence interval’,

1800 symbols

;D N Adaptive antenna
For the parameters given in Talfle I, the optimum value of AN — — ~Fixed antenna
the transmit power per antenna is found to (b898 Watt. \\\
In order to compare, a reference system has been consider o0 DAY
L < 1

100 [ ————— Fixed antenna

% Adaptive 13% load
Adaptive 50% load b
Adaptive 100% load

80

60 [

Number of active antennas, M

40 f

1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Number of active users in the cell, K

20

Fig. 2. Number of antennas as a function of the number of sdtee cell
at different average cell load.

A. Average rate per user at different cell load

In Fig.[3, we show the average rate achieved by a user at
different network load. It is observed that when the network
load is low, the user rates decrease considerabely compared
the reference case. However, the gap reduces with the serea
of network load.

150

where the number of antennas that maximize the EE durin
100% cell load are kept active disregarding the number o
users that the BS serves and are turned off altogether if th
BS serves none. In the following, first we illustrate hdw.
changes withK, at different cell loads. Then we present the
overall performance in terms of rate and EE which has bee
generated by taking the weighted average over the perfarenan
achieved for all the user states at each particular averalje c
load.

1) Interplay between number of active users and active
antennas in the systenifhe probability of getting different
number of users served by the BS simultaneously depends o
the average cell load, see Fig. In Fig.[2, we show how
the number of antennas increases with the number of active
users in a cell at different average cell load. Note that lier t

Average rate per user(Mbits/s)

a
o
T

1 1 1 1 1 1 1 1

20 30 40 50 60 70 80 90 100
Network load (%)

Fig. 3. Average rates in a cell at different cell loads.

reference case, all the available antennas are kept agtiepe B- EE gain at different cell load
for the case when there is no user in the system. However, Fig.[4 shows the overall gain in EE as the average load of
when the EE is optimized over changing number of users, théhe network increases. The largest percentage gain isvachie



at very low load and then the gain decreases as the loag@mporal variation of load has been captured by modeling
increases. At peak load, the gain is insignificant as the gaieach BS using massive MIMO with ai//G/m/m queue

from the probability of having small number of users thaball
EE improvement by reducing antennas is very low, see Fig.
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P s — — — Fixed antenna
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0 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Network load (%)

Fig. 4. Average EE gain at different cell load.

C. EE and user rate tradeoff

and mapping the user distribution to a DLP. We developed a
game theory based distributive algorithm that yields gigant
gains in EE at the cost of reduction of average user data rate
at low user load. However, the high rate degradation while
increasing the EE comes from the fact that we consider a very
tight reference case. In our reference case, the systendeoss
the complete shutdown of all the antennas when the BS is not
serving any user. This reduces the interference significant
resulting high data rates for users which in turn allows the
BS to reduce its activity time further. For transparencyg th
algorithm was developed for a simple rate formula based on
perfect CSlI, but the same methodology can be applied to other
rate formulas as well.
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