A Lightweight Privacy-Preserving OAuth2-based
Protocol for Smart City Mobile Apps

Victor Sucasas, Georgios Mantas, Ayman Radwan, and Jonathan Rodriguez
Instituto de Telecomunicagdes, Aveiro, Portugal

Abstract—In the forthcoming Smart City scenario, users’ mo-
bile applications will be of fundamental role towards supporting
the envisioned functionalities and services. Mobile users, provided
with a smartphone, will be capable of ubiquitously connecting
to service providers through their installed mobile applications.
However, this connection must be authenticated, which threatens
the citizen privacy rights. Privacy-preserving mechanisms have
already been proposed in the past; nevertheless, they are based on
RSA groups or groups with bilinear pairings, which are inefficient
in mobile devices due to its computational complexity. Thus,
in this paper, we integrate a lightweight anonymous credential
mechanism, suitable for computationally-limited mobile devices,
into the user authentication phase of the OAuth2 protocol,
which has become a de facto solution for user authentication
in mobile applications. The proposed protocol enables citizen’s
authentication towards service providers, while preserving their
privacy. Additionally, the protocol is compliant with the OAuth2
specification, which enables an easy integration in current mobile
application implementations.

I. INTRODUCTION

The advances in communications in general, and in wire-
less communications in particular, created a suitable environ-
ment for the emergence of new trend of applications. Emerging
applications have moved towards more intelligent applications,
with increased number of connected devices, spanning a wide
spectrum of objects, ranging from mobile phones, through
smart objects, down to wireless sensors. This combination
of connected devices has created the perfect environment for
the concept of Internet of Things (IoT). Advancing one step
further, Smart City concept has emerged with the aim of
improving the life quality of citizens by using the Information
and Communication Technology (ICT) [1]. Within the Smart
City concept, diverse intelligent mobile applications (apps)
have emerged as a vital player to enhance and ease the life of
citizens [2]. Such applications are usually provided by third-
party Service Provider (SP) [3]. Developers usually benefit
from the powerful connectivity of mobile devices to create
useful mobile apps, which are ubiquitously accessible.

Emerging mobile apps provide a wide spectrum of services,
ranging from basic civil services such as accessing/editing your
personal information, passing through more private apps such
as e-Health, up to very critical apps such as e-banking. All
such apps provide enhanced quality of life to citizens, but have
access to highly sensitive vital personal information, which
require the highest level of security to protect such information
from forgery or even worse being hacked and mal-used [4].

Therefore, there is a clear need for resilient authentication and
authorization solutions that enable secure access to data with
such paramount importance [5]. Nowadays, the most reliable
and widely used authentication and authorization protocol for
mobile apps to gain access to services hosted by remote service
providers is the OAuth protocol. The OAuth protocol is widely
adopted by most famous service providers, such Facebook,
Microsoft and Google [6], [7]. OAuth protocol was primarily
developed to authorize third-party websites to gain access to
resources hosted by SP on behalf of end-users. Nonetheless,
once OAuth was widely embraced by big industrial names,
major service providers (the likes of Facebook and Google)
have endorsed it for their user authentication. Additionally, the
OAuth protocol was applied to mobile and web applications.
In conclusion, OAuth protocol has since become the major
authentication and authorization protocol for mobile apps [6].
OAuth2 is the most recent version of OAuth; OAuth1 has since
become obsolete [8].

Despite the wide adoption of OAuth2 protocol and the
high profile endorsement through the adoption by big names
(e.g. Facebook), OAuth2 protocol is still vulnerable to security
attacks targeting users’ data and credentials [6], [9], [10].
Malicious mobile apps, can be disguised as harmless useful
apps; hence installed on by citizens on their mobile device,
endangering their data and credentials [11], [12]. Such security
attacks do not only threaten citizen’s data and information,
but also impose risks on their safety, since citizens physical
location can be extracted through location information that
may be embedded in exchanged messages [5]. These threats
still discourage citizens from fully embracing Smart City and
its mobile apps. For users/citizens to fully take advantage of the
concept of Smart City and enhance their quality of life through
its vast apps, resilient security solutions to tackle loopholes
in authentication and authorization of citizens in mobile apps
have to be developed.

To address this technical challenge, we propose an OAtuh?2-
based protocol for Smart City mobile apps that addresses the
citizens privacy issues, since it allows the users to autheticate
towards the authentication servers without revealing identity
or account information to the browser installed in the smart-
phone, other smartphone apps, or to eavesdroppers. It is worth
mentioning that our work in [13] already provides a privacy-
preserving user authentication mechanism based on OAuth2.
However, the proposed approach in [13] is based on Elliptic
Curve Cryptography with bilinear pairings, which increases
the computational complexity. In this paper however we adopt
the credential system proposed in [14] ACL, which does not
relay on bilinear pairings, thus it is more convenient to be
implemented in low capable mobile devices.

Step1

Step 2

Step 3

Step 4

Browser

5 : UserAuthRequest2(auth-page)

Mobie App

| 1:RedrectToAuthzServer(t, app_id, p, s, URI)

2 ; AuthzCodeRequest(t;

app_id, p, 5, URT)

Authorization Server

4 : UserAuthReque

st1(auth-page)

6 : UserAuthResponse1

10 : Delegat quest()

7 : UserAuthRe:

9 : DelegateAcce!

ssRequest()

11 : DelegateAccessResponse

12 : DelegateAccel

ssResponse

14 : RedirectToMobieAp

3pURI(authz_code, s)

3 : ParametersValidation()

8 : UserAuthentication()

]T_‘

13 : ResponseEvaluation()

]T_‘

: AuthzCodeResponse(authz_code, s)

Step 5

Step 6

Fig. 1. OAuth2 protocol flow for mobile apps.

The remainder of this paper is organized as follows. Section
Il presents the OAuth2 protocol and how it is deployed
with mobile apps. Section III provides the system model.
Section IV details the proposed privacy-preserving OAuth2-
based protocol. Section V explains zero-knowledge proofs of
knowledge. Section VI provides the security analysis of the
proposed protocol. Finally, section VII concludes this paper.

II. OAUTH2 AND MOBILE APPS

The considered OAuth2 protocol defines four entities with
different roles [15], as follows: a) Resource Owner: an entity
that grants access to its protected resources; b) Resource
Server: the server where the resource owners’ protected re-
sources are kept; c) the Client: an app requesting access to
the protected resources on behalf of the Resource Owner; d)
Authentication Server (AS): the server providing access tokens
to the Client, after successfully authenticating the Resource
Owner and obtaining authorization.

Within the OAuth2 protocol for mobile apps, the Resource
Owner is the user who owns protected resources. Additionally,
the user installs a mobile app (i.e. the Client) on her/his mobile
device. The mobile app is the entity, which requests access to
the user’s protected resources on behalf of the user. Moreover
in the implementations of the OAuth2 protocol for mobile
apps, the user agent can be implemented by an embedded
web browser or a system native browser. An embedded web
browser is a User Interface (UI) component, which constitutes
a module of the mobile app and is used to display online
contents within the hosting mobile app. On the contrary, the
system native browser is the regular browser of the mobile
device, which does not constitute part of the mobile app. Both
the embedded web browser and the system native browser
perform the same role within the OAuth2 protocol flow. For

16 : ATReq(g, authz_code, URL, 300.18) | 1 i)

18 : AccessToken&RefreshToken

sake of simplicity, we refer to both entities as browser in the
rest of the paper [6], [9].

The OAuth2 protocol’s implementations are mainly based
on browser redirection. The mobile app redirects the browser
to the AS, which then interacts with the user, and finally it
redirects the browser back to the mobile app. The AS is the
entity responsible for performing the authentication of the user.
Once authenticated, the mobile app is then identified to the
user. The user then has to determine if she/he grants or denies
authorization to the mobile app to access her/his protected data.
If the mobile app is granted access, the browser is redirected
to the mobile app with an authorization code. The mobile app
then requests an access token from the AS. The mobile app
hence gains access to the user’s protected resources hosted
in the Resource Server [6], [9]. In more detail, the OAuth2
protocol flow for mobile apps, depicted in Figure 1, consists
of 6 steps, as follows [6], [7], [9], [16], [15]:

Step 1: The flow starts by the mobile app redirecting the
browser to the AS to request an Authorization Code (msg
1 and 2). More precisely, the mobile app sends a message
to the AS via the browser consisting of: i) the response
type (t=code); ii) the mobile app identifier app_id assigned
during the registration process with the AS; iii) the requested
permission scope p; iv) an optional state parameter s to
maintain the state between the request and response; and v) a
redirection URI, which the AS will use to redirect the browser
back if access is granted or denied.

Step 2: The AS requests credentials from the user through
sending an authentication page (msg 4) to the browser. The
user is then prompted by the browser to provide her/his
credentials (msg 5). The user provides her/his credentials
through the browser, who forwards them to AS (msg 6 & 7) for
authentication. The AS then validates the received credentials

Access Token
Notification

Authorization

Privacy-Preserving Citizen,
v e Server

Authentication

Smart City
Services Access

Resource

Citizen Anonymous credential Servers

Smart City 3
generation

Mobile App

Privacy Server

Fig. 2. System model of the proposed privacy-preserving OAuth2-based
protocol for Smart City mobile apps.

(msg 8).

Step 3: Once the user is authenticated, the AS proceeds to
determine the specific permissions that the user would like to
grant to the mobile app (msg 9 & 10). The user then provides
her/his preference to the AS, through the browser (msg 11 &
12).

Step 4: After authenticating the user and the permissions
are granted, the AS redirects the browser back to the mobile
app using the redirection URI. The AS also provides the
browser with the Authorization Code authz_code and the state
parameter s, provided in Step 1 (msg 14 & 15).

Step 5: The mobile app now can request the access token
from the AS. In doing so, the mobile app sends a message
with the grant type (g=authorization_code), the Authorization
Code authz_code, the redirection URI and the mobile app
identifier app_id (msg 16). The AS validates the parameters
in the received message (msg 16).

Step 6: The AS provides the mobile app with the requested
access token and a refresh token, which is optional (msg 18).

III. OAUTH2 VULNERABILITIES

The OAuth2 protocol is still vulnerable to attacks by
malicious mobile apps, running on the user’s mobile device,
which can be used to snatch confidential credentials; hence
user’s privacy can be compromised. If the user is using
embedded web browser, a malicious app can compromise the
user privacy through injecting JavaScript code which is capable
of retrieving user’s data once the submit button is clicked
[9]. Alternatively, in the case of a system native browser,
a malicious mobile app can phish the user’s credentials by
presenting its own Ul instead of allowing the system browser
to render the user authentication UI [10].

It is also worth mentioning that encryption is an optional
feature in OAuth2, which is frequently neglected by devel-
opers. Thus, OAuth2 protocol implementations often involve
the transmission of the user credentials and the application ID
app_id in clear text. Hence, any malicious entity that is able
to see the transcript of the OAuth2 communication can profile
the user and infer user activities.

IV. SYSTEM MODEL

In this paper, we propose a privacy-preserving OAuth2-
based protocol for Smart City mobile apps to gain authenti-
cated and authorized access to citizens’ personalized services
on remote resource servers. The considered system model,
described in Fig 2, for the proposed protocol consists of:

e Citizen (i.e. user): A citizen is a subscriber of person-
alized services and owner of personal data, which are
hosted on remote resource servers. In the rest of the
paper, citizen and user are used interchangeably.

e Mobile App: It is an app which runs on user’s mobile
device and provids the citizen with personalized ser-
vices. The app is responsible for gaining authorization
on behalf of the user, i.e. Citizen.

e Privacy App (P-App): The user will be also provided
with a privacy-preserving application, P-App, installed
in the user’s mobile device that will perform the cryp-
tographic operations required in the proposed protocol.

e Resource servers: They are remote servers, usually
owned by a third-party, providing personalized ser-
vices to mobile users.

e Authentication servers (ASs): They are responsible for
providing authenticated and authorized access to the
smart services hosted on the resource servers.

e Privacy Server (PS): It is a server that issues anony-
mous credentials to users. PS provides the crypto-
graphic elements that are required for privately au-
thenticating citizens towards ASs.

V. PROPOSED PRIVACY-PRESERVING OAUTH2-BASED
PROTOCOL

This section describes the proposed privacy-preserving
OAuth2-based protocol. The proposed protocol achieves user
identification and authentication without exposing the user
credentials and the user identity towards the browser or other
mobile applications installed in the smartphone, which could
be controlled by a malicious entity. We integrate a digital
anonymous credential system, called Anonymous Credential
Light (ACL) [14], into the OAuth2 protocol flow to achieve
user privacy. The proposed approach only modifies the infor-
mation transmitted during the OAuth2 message exchange, but
it does not require any modification on the number or the order
of the messages transmitted.

The ACL scheme, in which the proposed approach is based
on, consists in an efficient anonymous credential system. Its
efficiency relies on the fact that it works in elliptic curve
groups under the DDH assumption and it does not require
bilinear pairings. Our previous approach [13] to provide similar
functionality relied on bilinear pairings, which required more
computational effort [17], hence increasing the running time
in limited mobile devices. Our previous approach provided a
pseudonym based system in which users could authenticate to-
wards an AS with different pseudonyms per application. Users
were also allowed to renew these pseudonyms on-demand, and
off-line, once their time of validity expired, which was a very
convenient feature to make the system less dependent from
the PS and hence, more autonomous. In the new proposed

protocol this feature is not provided. Users are only given a
single credential that is used with different mobile applications,
and that requires contact with the PS to be renewed. Users
are also required to get one credential per different AS.
However, this new approach provides higher efficiency, in
terms of computational effort, compared to approaches based
on bilinear pairings or RSA that can take several seconds of
computation in computationally limited devices.

The proposed approach is constituted by 4 main compo-
nents: i) User registration towards the AS and the PS; The
user registers with different AS and creates user accounts,
obtaining a unique tag value and a secret value. The user
also registers with the PS and obtains a Privacy-Application
(P-App). User anonymous credential generation; The user
contacts the PS and obtains an anonymous credential, which
can be used to privately authenticate the user towards the
different AS in which the user has created an user account; iii)
Credential verification; The AS can verify that the user holds a
valid credential issued by the PS. iv) Privacy-preserving user
authentication; it takes place between the user and the AS
through the proposed modification of the OAuth2 protocol,
which preserves the user privacy from malicious applications
or browsers installed in the in the mobile device, or eavesdrop-
per entities accessing the communication between the user and
the service provider.

A. User registration with the AS and the PS

The user has to register with an AS, and get a unique tag
value m and a secret value S chosen by the user. The user
gets one tag and one secret value from each AS, and the AS
stores the tag associated with the user identity. The user must
access the PS to get an anonymous credential associated with
each tag. The user registers with the PS and obtains a privacy
application which is installed in the smartphone, P-App. This
application is in charge of performing the cryptographic opera-
tions required in the proposed protocol. The P-App also stores
the tag value m per each AS. The P-App does not store the
AS-specific secret values .S, which are kept by the user. The
P-App also asks the user for n — 1 user related parameters
(such as name, age, etc), At = (Aty,..., At,—1). Then the
P-App obtains the user-specific parameters L; = H(At;) for
i€ [l,n—1].

B. User anonymous credential generation

Firstly, the PS performs the setup phase of the ACL system
to generate the PS public parameters: It selects a group G
of prime order ¢, and g as generator; Then it selects a hash
function H : {0,1}* — Z,. Then it selects z, ho, h1,..., h, €
G; The PS picks a secret key x €r Z, and computes a public
key y = g¢*; Finally, the PS outputs the public parameters
(G,q,9,ho, ..., hn,y,2) and keeps the secret key x.

To generate an anonymous credential, the user, through the
P-App, and the PS have to perform a credential issuing pro-
tocol, which consists on three steps: registration; preparation;
and validation. This process must be performed once per each
m value. Hence, users obtain a credential per each AS account.

1) Registration:

e The P-App commits the vector of attributes L =
(Ly,...,Ly) where L; = H(At;) fori € [1,...,n—

1], and L,, = H(S). To obtain L,, the P-App asks the
user to insert his secret value S.

e The P-App chooses a random value R € Z,4, and
makes a commitment C, [18], as:

n
C = Commit(Ly,..., Ly, R) = H hEink
i=1

e The P-App sends the commitment C' to the PS and
perform an interactive standard zero knowledge proof
(ZK-proof) [19] to show to the PS that the user knows
the opening of the commitment. Note that this ZK-
proof is detailed in section VIL.

2) Preparation:

e The PS picks a random value rnd € Z4, and computes
the values z; = Cgmd and zo = z/z. The PS keeps
the values z; and 29 and sends to the P-App in the
user side the value rnd.

e The P-App receives the value rnd and computes itself
the values z; and zo and picks a blinding factor v and
computes: ¢ = 27, ¢(; = z{ and (o = /{1, which
blinds the values z, z; and zs.

e The P-App also chooses at random a value 7 € Z,
and computes n = 27.

3) Validation: The P-App and the PS perform two zero-
knowledge proof protocols combined into an OR-proof [19].
This proof consists of the following interactive protocol:

e The PS chooses at random u,c’, r}, and 5 € Z,, then
computes a = g*, ay = g" 2§, al, = g"2z5 . The PS
sends to the P-App a, a} and aj.

e The P-App checks that a, o}, a, € G hold. Then it
picks at random t1,t2,%3,t4,t5 € Z, and computes:
o = agy', af = al'gtCl* and af = afhPC.
The P-App computes ¢ = H((, (1, «,d, ab, v, m),
where m is the tag received from the AS. Then the
P-App sends to the PS the value e = € — t5 — t4 mod
q.

e The PS computes ¢ = e — ¢ mod g and r = u — cx
mod g (note that PS is using its secret key x). Then
PS sends to the P-App in the user side the values
(c,r, 7" ={r},my}).

e The P-App receives the values from the PS and
computes: p = r +t; mod q, w = ¢+ t2 mod q,
ph = yri+ts mod q, phy = yrh+ts mod q, W' = ' +t4
mod q, p =1 —w'y mod q.

Finally, the P-App obtains the blinded signature: o =
(m7 Ca C17 P, p/a w/7 M)’ where p/ = {p/1? p/2} The P_App
stores the tuple (o,m, (1), and also the factors v and rnd.
The tuple (o, m, (1) is compose by three values: the blinded
signature o signed by the PS, the tag value m associating the
user to a certain AS, and the blinded commitment ¢; computed
with the users attributes.

It is important to mention that the PS cannot link the
showing of this signature to its issuing. The PS cannot rec-
ognize signature variables, nor the blinded commitment (3,

which includes the commitment C, neither the tag m that has
been blindly signed. Hence the PS cannot link a user showing
this credential to a previous credential issuing procedure. This
feature provides users with an additional privacy feature, since
the PS cannot track users activities. This feature differs from
our previous proposed scheme provided in [13].

4) Signature verification: A verifier can now that the tuple
(o, m, (1) was correctly constructed if the following equation
holds and (; # 1:

Wt =H(C Ly, g ¢ hPe¢g, 2 ¢2 m) mod qO

C. Credential verification

A user that has performed an account registration with an
AS, obtaining a secret value S and a tag value m, and that has
performed a credential issuing process with the PS, will have
stored in its P-App a tag m, a signature o, and the blinded
commitment (;. The P-App also stores the values (rnd,~y).
The user can show this tag m and the signature o to a verifier,
which in our proposed protocol will be the AS. The AS can
verify the validity of such signature on the tag m, and identify
the user associated with the unique tag m. The AS can be
sure that the user knows the secret parameter S with which
the blinded commitment (; was constructed without requiring
the user or the P-App to send or disclose this value, by means
of a zero knowledge proof.

To proof the identity of the user, the P-App prompts the
user to insert its S value associated with the respective AS
and compute the attribute L,, = H(S). The P-App also obtains
the committed values L, ..., L,_1, computed from the stored
attributes Aty, ..., At,_1, i.e. L; = H(At;). Then the P-App
performs an interactive zero-knowledge proof of knowledge of
the opening of the blinded commitment (;, with the verifier,
to show the knowledge of the attributes L;, ..., L,, where L,
is also known by the AS. This ZK-proof is detailed in the
following section.

D. Privacy-preserving user authentication

The proposed OAuth2-based procotol integrates the cre-
dential verification algorithm, which includes the ZK-proof of
a blinded commitment, into the OAuth2 protocol flow. The
credential verification is performed between the P-App and
the AS, the user is only prompted by the P-App to insert the
secret value S. In the proposed protocol, the OAuth2 procotol
is performed according the description of the original OAuth2
specification, which has been detailed in section II, but inte-
grating the information required for the credential verification.
We detail below the additional information included in some
of the OAuth2 messages, namely the messages 4 to 13:

4.UserAuthRequestl() The AS sends an authentication
request to the user, which is managed by the browser.

5.UserAuthRequest2() The browser initiates the P-App
which will be the user interface. The P-App prompts the user to
include the secret for the AS, i.e. the value S. Then it includes
L, = H(S) in the list of secret values (L1, ..., Ly, R).

6.UserAuthReponsel() The P-App computes the value ¢
and 0 of the ZK-proof, see section VII. The P-App sends the

tuple (o, m, (1) that includes the signature, the tag and the
blinded commitment. The P-App also send the values ¢ and 6
of the ZK-proof.

7.UserAuthResponse2() The browser forwards to the AS
these values.

8.UserAuthentication() The AS looks up the tag m to
identify the user, and the associated secret S. Then the AS
picks a random value ¢ € Z, to continue with the interactive
ZK-proof. The AS performs the signature verification algo-
rithm to check the validity of the signature.

9.DelegatesAccessRequest() The AS sends c to the P-App.

11.DelegatesAccessResponse() The P-App computes the
values s; for ¢ € [0,n — 1] and £ and sends it to the AS to
complete the zero knowledge proof.

13.ResponseEvaluation() The AS accepts or rejects the
ZK-proof. In case of acceptance the AS continues the OAuth2
protocol, otherwise it halts and sends the browser a failure
notification.

VI. SECURITY ANALYSIS

The correctness and the security of the anonymous cre-
dential system used in our privacy-preserving OAuth2-based
protocol is already demonstrated in [14]. The identity privacy
feature of the proposed scheme relies on the fact that the
identity of the user is never disclosed or transmitted. User
get identified and authenticated though the transmission of the
AS-specific unique tag m. Although the tag and the signature
are transited in cleartext, the knowledge of the tag and the
signature does not enable an attacker to impersonate the user,
since the knowledge of the secret values is required to suc-
ceed in the ZK-proof performed during signature verification.
Moreover, one of the secret values is kept by the user and
never stored by the P-App, hindering the leakage of sensitive
information from the P-App. It is also worth mentioning that
the blinded signature scheme ensures that the PS cannot link
the show of a signature to its issuing, hence the PS cannot
track users activities.

VII. ZERO-KNOWLEDGE PROOFS OF KNOWLEDGE

A zero-knowledge proof (ZK-proof) [19] is an interactive
protocol between two parties in which a Prover wants to
proof to a Verifier that it holds a secret, but without revealing
anything more than the fact that it knows that secret. In our
protocol, the Prover is the User/P-App and the Verfier is the
PS and the AS during the credential issuing and signature
verification respectively.

A. Interactive ZK-proof of the openning of a commitment

The signature issuing process requires a standard ZK-proof
during the registration phase of the anonymous credential gen-
eration. In a standard ZK-proof of a representation, the Prover

knows C' = [[hZ'h{}, the public parameters (ho,...,hy,),
i=1
and the secret values (L1, ..., L,, R). The Verifier knows C

and the public parameters. Both the Prover and the Verifier
perform the following interactive protocol, which ends with the

rejection or acceptance of the proof by the Verifier depending
on whether the last equation holds.

Prover Verifier
(Li,..., Lo, R);C = T h¥ R ¢
i=1
(hoy ..., hp) (hoy ...y hy)
r;, € Zq;i S [O,TL];
n
t=TI hi";
i=0
_t
C GR Zq
°
si =r; —cLi;i € [1,n]
so = 1o — cR;
$05--+35n

(1‘[h3°> o=y
=0

B. Interactive ZK-proof of a blinded commitment, with the
knowledge of one secret value

The verification of the signature requires a ZK-proof on

the values used for the blinded commitment (; = z] where

n
z1 = Cg™, and C is the commitment C' = [[hlih{l.

In this proof the Verifier knows (i, one of the Zseclzret val-
ues L, = H(S) and the Prover knows the secret values
(L1, ...,Ln, R), the blinding factor 7, and the random factor
rnd. Both parties know the public parameters (hg,...,hy).
The objective of the ZK-proof is that the Verifier is convinced
that the Prover knows the secret values with which the blinded
commitment (; was constructed. Both Prover and Verifier
perform the following interactive protocol, which ends with the
rejection or acceptance of the proof by the Verifier depending
on whether the last equation holds.

Prover Verifier
(L17"'1Ln7R); ClaLl
(ho, - -, hn)iGiyrnd; v (ho, - -+, Tn)
Ti € Zg;i € [0,n — 1];

n—1

t= 11 K%

=0

t,0
CER Zq
S; =T, —
i€[l,n—1]
80 =19 — cRy;
€= by

80538 —1,§

(?fh?)f—MCf%tw

=0

VIII.

This paper proposes a lightweight privacy-preserving
OAuth2-based protocol for smart city mobile apps. The pro-
posed scheme enables users to obtain credentials to identify

CONCLUSION

and authenticate themselves, towards authentication servers,
without disclosing their identity to malicious entities located in
the user’s mobile device or eavesdropping the communication
between the user and the authentication server. Moreover,
the privacy server is in charge of issuing the anonymous
credentials and cannot link the issuing of a credential to the
usage of such credential and hence, enforcing users privacy.
The proposed scheme is integrated into the OAuth2 protocol,
without modifying the original message flow. Although the
proposed scheme cannot provide an autonomous pseudonym
self-generation scheme like the approach in [13], it is based
on a more lightweight signature scheme, hence more suitable
for hardware limited mobile devices.

REFERENCES

[1] ITU. An overview of smart sustainable cities and the role of information
and communication technologies. 2014.

[2] Solanas et al. Smart health: A context-aware health paradigm within
smart cities. Communications Magazine, IEEE, 52(8):74-81, Aug 2014.

[3] M. Fengou, G. Mantas, D. Lymberopoulos, N. Komninos, S. Fengos,
and N. Lazarou. A new framework architecture for next generation e-
health services. Biomedical and Health Informatics, IEEE Journal of,
17(1):9-18, Jan 2013.

[4] Catalin Gosman, Tudor Cornea, Ciprian Dobre, Florin Pop, and Aniello
Castiglione. Putting the User in Control of the Intelligent Transportation
System, pages 231-246. Springer International Publishing, Cham, 2016.

[S] Antoni Martinez-Balleste, Pablo Perez-Martinez, and Agusti Solanas.
The pursuit of citizens’ privacy: A privacy-aware smart city is possible.
IEEE Communications Magazine, 51:136-141, 2013.

[6] Eric Y. Chen, Yutong Pei, Shuo Chen, Yuan Tian, Robert Kotcher, and
Patrick Tague. Oauth demystified for mobile application developers. In
2014 ACM SIGSAC, CCS ’14. ACM, 2014.

[7] San-Tsai Sun and Konstantin Beznosov. The devil is in the (imple-
mentation) details: An empirical analysis of oauth sso systems. Aug
2012.

[8] E. Hammer-Lahav. The oauth 1.0 protocol. In IETF, 2010.

[9] M. Shehab and F. Mohsen. Towards enhancing the security of oauth
implementations in smart phones. In MS, 2014 IEEE, June.

[10] M. M. T. Lodderstedt and P. Hunt. Oauth 2.0 threat model and security
considerations. In IETF2013, 2013.

[11] Mariantonietta La Polla, Fabio Martinelli, and Daniele Sgandurra. A
survey on security for mobile devices. IEEE Communications Surveys
and Tutorials, 15(1):446-471, 2013.

[12] Mantas G, Komninos N, Rodriguez J, Logota E, and Marques H.
Security for 5g communications. In Fundamentals of 5G Mobile
Networks. John Wiley & Sons, 2015.

[13] V. Sucasas, Georgios Mantas, A. Radwan, and J. Rodriguez. An
oauth2-based protocol with strong user privacy preservation for smart
city mobile e-health apps. In Communications (ICC), 2016 IEEE
International Conference on, June 2016.

[14] Foteini Baldimtsi and Anna Lysyanskaya. Anonymous credentials light.
In Proceedings of the 2013 ACM SIGSAC, CCS ’13, pages 1087-1098,
New York, NY, USA, 2013. ACM.

[15] D. Hardt. The oauth 2.0 authorization framework. In IETF2012, 2012.
[16] G. Developers. Using oauth 2.0 for installed applications. In Available:

https://developers.google.com/identity/protocols/OAuth2InstalledApp,
2015.

[17] Patrik Bichsel, Jan Camenisch, Thomas Grof, and Victor Shoup.
Anonymous credentials on a standard java card. CCS ’09, pages 600—
610, New York, NY, USA, 2009. ACM.

[18] Ivan Damgard. Lectures on Data Security: Modern Cryptology in
Theory and Practice. Springer Berlin Heidelberg, Berlin, Heidelberg,
1999.

[19] Ivan Damgard. Lectures: http://www.cs.au.dk/ ivan/Sigma.pdf. 2010.

